Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen.

 

  1. Organiseer uw bedrijf rond een prognose van één getal. Dat klinkt verstandig: het is goed om een gedeelde visie te hebben. Maar elk onderdeel van het bedrijf zal zijn eigen idee hebben over welk getal het getal is. De financiële sector wil misschien kwartaalomzet, de marketing wil misschien websitebezoeken, de verkoop wil misschien een verloop, het onderhoud wil misschien een langere tijd tot het misgaat. Overigens heeft elke eenheid waarschijnlijk een handvol belangrijke statistieken. U heeft geen slogan nodig, u moet uw werk gedaan krijgen.

 

  1. Integreer bedrijfskennis in een gezamenlijk prognoseproces. Dit is een goede algemene regel, maar als uw samenwerkingsproces gebrekkig is, kan het knoeien met een statistische prognose via managementoverschrijvingen de nauwkeurigheid verminderen. Je hebt geen slogan nodig; je moet de nauwkeurigheid van alle methoden meten en vergelijken en de winnaars volgen.

 

  1. Voorspelling met behulp van causale modellering. Extrapolatieve prognosemethoden houden geen rekening met de onderliggende krachten die uw verkopen aandrijven, ze werken alleen met de resultaten. Causale modellering brengt u dieper in de fundamentele drijfveren en kan zowel de nauwkeurigheid als het inzicht verbeteren. Causale modellen (geïmplementeerd door middel van regressieanalyse) kunnen echter minder nauwkeurig zijn, vooral als ze voorspellingen van de drijvende krachten vereisen (“voorspellingen van de voorspellers”) in plaats van simpelweg de geregistreerde waarden van vertraagde voorspellende variabelen in te pluggen. Je hebt geen slogan nodig: je hebt een onderlinge vergelijking nodig.

 

  1. Voorspel de vraag in plaats van verzendingen. Vraag is wat je echt wilt, maar het ‘opstellen van een vraagsignaal’ kan lastig zijn: wat doe je met interne overboekingen? Eenmalige? Verloren omzet? Bovendien kunnen vraaggegevens worden gemanipuleerd. Als klanten bijvoorbeeld opzettelijk geen bestellingen plaatsen of proberen hun bestellingen te misleiden door te lang van tevoren te bestellen, zal de bestelgeschiedenis niet beter zijn dan de verzendgeschiedenis. Althans met verzendgeschiedenis, het klopt: u weet wat u heeft verzonden. Prognoses van verzendingen zijn geen voorspellingen van de ‘vraag’, maar vormen een solide uitgangspunt.

 

  1. Gebruik Machine Learning-methoden. Ten eerste is ‘Machine learning’ een elastisch concept dat een steeds groter aantal alternatieven omvat. Onder de motorkap van veel door ML geadverteerde modellen bevindt zich slechts een automatisch kiezen een extrapolatieve voorspellingsmethode (dat wil zeggen: de beste pasvorm) die, hoewel uitstekend in het voorspellen van de normale vraag, al bestaat sinds de jaren tachtig (Smart Software was het eerste bedrijf dat een automatische selectiemethode voor de pc uitbracht). ML-modellen zijn data-hogs die grotere datasets nodig hebben dan u mogelijk ter beschikking heeft. Het op de juiste manier kiezen en trainen van een ML-model vereist een niveau van statistische expertise dat ongebruikelijk is in veel productie- en distributiebedrijven. Misschien wil je iemand vinden die je hand vasthoudt voordat je dit spel gaat spelen.

 

  1. Door uitschieters te verwijderen, ontstaan betere voorspellingen. Hoewel het waar is dat zeer ongebruikelijke pieken of dalen in de vraag onderliggende vraagpatronen, zoals trends of seizoensinvloeden, zullen maskeren, is het niet altijd waar dat u de pieken moet wegnemen. Vaak weerspiegelen deze pieken in de vraag de onzekerheid die willekeurig uw bedrijfsvoering kan verstoren en waarmee dus rekening moet worden gehouden. Het verwijderen van dit soort gegevens uit uw vraagvoorspellingsmodel kan de gegevens op papier voorspelbaarder maken, maar u zult verrast zijn als dit opnieuw gebeurt. Wees dus voorzichtig met het verwijderen van uitschieters massaal.

 

 

 

 

De automatische prognosefunctie

Automatische prognoses zijn de populairste en meest gebruikte functie van SmartForecasts en Smart Demand Planner. Automatische prognoses maken is eenvoudig. Maar de eenvoud van Automatic Forecasting maskeert een krachtige interactie van een aantal zeer effectieve prognosemethoden. In deze blog bespreken we een deel van de theorie achter deze kernfunctie. We richten ons op automatische prognoses, deels vanwege de populariteit ervan en deels omdat veel andere prognosemethoden vergelijkbare resultaten opleveren. Kennis van automatische prognoses wordt onmiddellijk overgedragen naar eenvoudig voortschrijdend gemiddelde, lineair voortschrijdend gemiddelde, enkele exponentiële afvlakking, dubbele exponentiële afvlakking, Winters' exponentiële afvlakking en promoprognoses.

 

Prognose toernooi

Automatische prognoses werken door een toernooi uit te voeren met een reeks concurrerende methoden. Omdat personal computers en cloud computing snel zijn, en omdat we zeer efficiënte algoritmen hebben gecodeerd in de automatische voorspellingsengine van SmartForecasts, is het praktisch om een puur empirische benadering te volgen om te beslissen welke extrapolatieve voorspellingsmethode moet worden gebruikt. Dit betekent dat u het zich kunt veroorloven om een aantal benaderingen uit te proberen en vervolgens degene te behouden die het beste presteert bij het voorspellen van de betreffende gegevensreeks. SmartForecasts automatiseert dit proces volledig voor u door de verschillende voorspellingsmethoden uit te proberen in een gesimuleerd voorspellingstoernooi. De winnaar van het toernooi is de methode die het dichtst bij het voorspellen van nieuwe gegevenswaarden van oude komt. Nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, die elk een deel van de gegevens gebruiken, in een proces dat bekend staat als glijdende simulatie.

 

Glijdende simulatie

De glijdende simulatie veegt herhaaldelijk door steeds langere delen van de historische gegevens, waarbij in elk geval het gewenste aantal perioden in uw prognosehorizon wordt voorspeld. Stel dat er 36 historische gegevenswaarden zijn en dat u zes perioden vooruit moet voorspellen. Stel je voor dat je de voorspellingsnauwkeurigheid van een bepaalde methode, bijvoorbeeld een voortschrijdend gemiddelde van vier waarnemingen, wilt beoordelen op de gegevensreeks die voorhanden is.

Op een gegeven moment in de glijdende simulatie worden de eerste 24 punten (alleen) gebruikt om de 25e tot en met 30e historische gegevenswaarden te voorspellen, die we tijdelijk als onbekend beschouwen. We zeggen dat de punten 25-30 buiten de analyse worden gehouden. Het berekenen van de absolute waarden van de verschillen tussen de zes prognoses en de overeenkomstige werkelijke historische waarden levert één exemplaar op van elk een 1-staps, 2-staps, 3-staps, 4-staps, 5-staps en 6-staps vooruit absolute voorspelling fout. Als u dit proces herhaalt met de eerste 25 punten, krijgt u meer voorbeelden van 1-staps, 2-staps, 3-staps vooruit-fouten, enzovoort. Het gemiddelde van alle absolute foutschattingen die op deze manier zijn verkregen, geeft een samenvatting van de nauwkeurigheid in één getal.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

 

De laatste twee methoden zijn geschikt voor seizoenreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoensgegevenscycli zijn (bijvoorbeeld minder dan 24 periodes met maandelijkse gegevens of acht periodes met driemaandelijkse gegevens).

Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, gemakkelijk te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

 

 

 

 

6 observaties over succesvolle vraagvoorspellingsprocessen

1. Voorspellen is een kunst die een combinatie van professioneel oordeel en objectieve statistische analyse vereist. Succesvolle vraagprognoses vereisen een basisvoorspelling die gebruikmaakt van statistische prognosemethoden. Eenmaal vastgesteld, kan het proces zich richten op hoe u statistische prognoses het beste kunt aanpassen op basis van uw eigen inzichten en zakelijke kennis.

2. Het prognoseproces is meestal iteratief. Het kan zijn dat u uw aanvankelijke prognose een aantal keer moet verfijnen voordat u tevreden bent. Het is belangrijk om snel en eenvoudig alternatieve prognoses te kunnen genereren en vergelijken. Het volgen van de nauwkeurigheid van deze prognoses in de loop van de tijd, inclusief alternatieven die niet werden gebruikt, helpt het proces te informeren en te verbeteren.

3. De geloofwaardigheid van prognoses hangt sterk af van grafische vergelijkingen met historische gegevens. Een beeld zegt meer dan duizend woorden, dus geef prognoses altijd weer via direct beschikbare grafische displays met ondersteunende numerieke rapporten.

4. Een van de belangrijkste technische taken bij prognoses is om de keuze van de prognosetechniek af te stemmen op de aard van de gegevens. Effectieve vraagvoorspellingsprocessen maken gebruik van mogelijkheden die de juiste methode identificeren om te gebruiken. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere. Een automatische selectie, die automatisch de juiste prognosemethode selecteert en gebruikt, bespaart tijd en zorgt ervoor dat uw basisvoorspelling zo nauwkeurig mogelijk is.

5. Succesvolle vraagvoorspellingsprocessen werken samen met andere bedrijfsprocessen. Prognoses kunnen bijvoorbeeld een essentiële eerste stap zijn in financiële analyse. Bovendien zijn nauwkeurige prognoses voor verkoop en productvraag fundamentele input voor de processen voor productieplanning en voorraadbeheer van een productiebedrijf.

6. Een goed planningsproces erkent dat prognoses nooit precies kloppen. Omdat zelfs in het beste prognoseproces een fout sluipt, zijn eerlijke schattingen van de foutmarge en prognosebias een van de nuttigste aanvullingen op een prognose.

 

 

 

 

Geef overtollige voorraad niet de schuld van "slechte" verkoop-/klantprognoses

Verkoopprognoses zijn vaak onnauwkeurig, simpelweg omdat het verkoopteam gedwongen wordt een cijfer te geven, ook al weten ze niet echt wat de vraag van hun klanten zal zijn. Laat de verkoopteams verkopen. Doe geen moeite om het spel te spelen van het veinzen van acceptatie van deze voorspellingen als beide partijen (verkoop en toeleveringsketen) weten dat het vaak niets meer is dan een WAG. Doe dit in plaats daarvan:

  • Accepteer variabiliteit in de vraag als een feit van het leven. Ontwikkel een planningsproces dat dat wel doet een betere baan houdt rekening met de variabiliteit van de vraag.
  • Maak afspraken over een niveau van voorraadrisico dat acceptabel is voor groepen artikelen.
  • Zodra het voorraadrisico is overeengekomen, gebruikt u software om een nauwkeurige schatting te maken van de veiligheidsvoorraad die nodig is om de variabiliteit in de vraag tegen te gaan.
  • Ontvang een buy-in. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde items meer kans hebben op backorders als ze prioriteit geven aan voorraadinvesteringen in andere items.
  • Het gebruik van een consensus #safetystock-proces zorgt ervoor dat u goed buffert en de juiste verwachtingen schept bij verkoop, klanten, financiën en toeleveringsketen.

 

Wanneer u dit doet, verlost u alle partijen van het voorspellingsspel dat ze in de eerste plaats niet konden spelen. U krijgt betere resultaten, zoals hogere serviceniveaus met lagere voorraadkosten. En met veel minder vingerwijzen.

 

 

 

 

Wat maakt een probabilistische voorspelling?

Wat is al die heisa rond de term 'probabilistische prognoses'? Is het gewoon een recentere marketingterm die sommige softwareleveranciers en consultants hebben bedacht om innovatie te veinzen? Is er een echt tastbaar verschil in vergelijking met voorgaande "best passende" technieken? Zijn toch niet alle voorspellingen probabilistisch?

Om deze vraag te beantwoorden, is het nuttig om na te denken over wat de voorspelling u werkelijk vertelt in termen van kansen. Een "goede" voorspelling moet onbevooroordeeld zijn en daarom een 50/50 waarschijnlijkheid opleveren die hoger of lager is dan de werkelijke. Een "slechte" voorspelling zal subjectieve buffers inbouwen (of de voorspelling kunstmatig verlagen) en resulteren in een hoge of lage vraag. Overweeg een verkoper die opzettelijk zijn prognose verlaagt door geen verkopen te rapporteren die hij verwacht te sluiten als 'conservatief'. Hun voorspellingen zullen een negatieve voorspellingsbias hebben, aangezien de werkelijke waarden bijna altijd hoger zullen zijn dan wat ze voorspelden. Overweeg aan de andere kant een klant die een opgeblazen prognose aan zijn fabrikant geeft. Bezorgd over stockouts, overschatten ze de vraag om hun aanbod zeker te stellen. Hun voorspelling zal een positieve bias hebben, aangezien de werkelijke waarden bijna altijd lager zullen zijn dan wat ze voorspelden. 

Dit soort ééncijferige voorspellingen die hierboven zijn beschreven, zijn problematisch. We verwijzen naar deze voorspellingen als "puntvoorspellingen", omdat ze één punt (of een reeks punten in de tijd) vertegenwoordigen op een plot van wat er in de toekomst zou kunnen gebeuren. Ze geven geen volledig beeld, want om effectieve zakelijke beslissingen te nemen, zoals het bepalen hoeveel voorraad er moet worden opgeslagen of het aantal werknemers dat beschikbaar moet zijn om aan de vraag te voldoen, is gedetailleerde informatie vereist over hoeveel lager of hoger de werkelijke waarde zal zijn! Met andere woorden, u hebt de kansen nodig voor elke mogelijke uitkomst die zich kan voordoen. Dus op zichzelf is de puntvoorspelling niet probabilistisch.   

Om een probabilistische voorspelling te krijgen, moet u de verdeling van mogelijke eisen rond die voorspelling kennen. Zodra u dit hebt berekend, wordt de voorspelling 'probabilistisch'. Hoe prognosesystemen en beoefenaars zoals vraagplanners, voorraadanalisten, materiaalmanagers en CFO's deze waarschijnlijkheden bepalen, is de kern van de vraag: "wat maakt een prognose probabilistisch?"     

Normale verdelingen
De meeste prognoses en de systemen/software die ze produceren, beginnen met een voorspelling van de vraag. Vervolgens berekenen ze het bereik van mogelijke eisen rond die voorspelling door onjuiste theoretische aannames te doen over de verdeling. Als u ooit een "betrouwbaarheidsinterval" in uw voorspellingssoftware hebt gebruikt, is dit gebaseerd op een kansverdeling rond de voorspelling. De manier waarop dit vraagbereik wordt bepaald, is door uit te gaan van een bepaald type distributie. Meestal betekent dit dat we uitgaan van een klokvormige verdeling, ook wel bekend als een normale verdeling. Wanneer de vraag intermitterend is, kunnen sommige systemen voor voorraadoptimalisatie en vraagvoorspelling aannemen dat de vraag Poisson-vormig is. 

Nadat de prognose is gemaakt, wordt de veronderstelde verdeling rond de vraagprognose gegooid en hebt u uw schatting van kansen voor elke mogelijke vraag - dat wil zeggen, een "probabilistische prognose". Deze schattingen van de vraag en de bijbehorende waarschijnlijkheden kunnen vervolgens worden gebruikt om desgewenst extreme waarden of iets daartussenin te bepalen. De extreme waarden in de bovenste percentielen van de distributie (dwz 92%, 95%, 99%, enz.) worden meestal gebruikt als invoer voor voorraadbeheermodellen. Bestelpunten voor kritieke reserveonderdelen in een elektriciteitsbedrijf kunnen bijvoorbeeld worden gepland op basis van een 99.5%-serviceniveau of zelfs hoger. Terwijl een niet-kritiek serviceonderdeel kan worden gepland op een 85%- of 90%-serviceniveau.

Het probleem met het maken van aannames over de verdeling is dat je deze kansen verkeerd zult interpreteren. Als de vraag bijvoorbeeld niet normaal verdeeld is, maar u een klokvormige/normale curve op de voorspelling afdwingt, hoe kan het dan dat de kansen onjuist zijn. In het bijzonder wilt u misschien het voorraadniveau weten dat nodig is om een 99%-kans te bereiken dat de voorraad niet opraakt en de normale distributie zal u vertellen om 200 eenheden in voorraad te hebben. Maar als je het vergelijkt met de daadwerkelijke vraag, kom je erachter dat 200 eenheden slechts in 40/50 waarnemingen volledig aan de vraag voldeden. Dus in plaats van een 99%-serviceniveau te krijgen, behaalde u alleen een 80%-serviceniveau! Dit is een gigantische misser die het gevolg is van het proberen een vierkante pin in een rond gat te passen. De misser zou ertoe hebben geleid dat u een onjuiste voorraadvermindering had genomen.

Empirisch geschatte verdelingen zijn slim
Om een slimme (lees nauwkeurige) probabilistische voorspelling te maken, moet u eerst de verdeling van de vraag empirisch schatten zonder enige naïeve aannames over de vorm van de verdeling. Smart Software doet dit door tienduizenden gesimuleerde vraag- en doorlooptijdscenario's uit te voeren. Onze oplossing maakt gebruik van gepatenteerde technieken die Monte Carlo-simulatie, statistische bootstrapping en andere methoden bevatten. De scenario's zijn ontworpen om reële onzekerheid en willekeur van zowel vraag als doorlooptijden te simuleren. Actuele historische waarnemingen worden gebruikt als de primaire invoer, maar de oplossing geeft u de mogelijkheid om ook te simuleren van niet-waargenomen waarden. Alleen al omdat 100 eenheden de historische piekvraag was, wil dat nog niet zeggen dat u in de toekomst gegarandeerd op 100 piekt. Nadat de scenario's zijn voltooid, weet u de exacte waarschijnlijkheid voor elke uitkomst. De "punt"-voorspelling wordt dan het middelpunt van die verdeling. Elke toekomstige periode in de tijd wordt uitgedrukt in termen van de kansverdeling die bij die periode hoort.

Leiders in probabilistische prognoses
Smart Software, Inc. was twintig jaar geleden het eerste bedrijf dat ooit statistische bootstrapping introduceerde als onderdeel van een commercieel verkrijgbaar softwaresysteem voor vraagvoorspelling. We kregen er destijds een Amerikaans patent voor en werden finalist genoemd in de APICS Corporate Awards of Excellence for Technological Innovation. Ons NSF gesponsord onderzoek die tot deze en andere ontdekkingen leidden, speelden een belangrijke rol bij het bevorderen van prognoses en voorraadoptimalisatie. Wij zetten ons in voor voortdurende innovatie, en dat kunt u ook vind hier meer informatie over ons meest recente patent.