5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren

De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix.

Waarom is snelle besluitvorming in de digitale toeleveringsketen zo belangrijk?

De zaken gaan snel; klanten verwachten snellere levering, hogere serviceniveaus en meer transparantie. De sleutel tot het voldoen aan deze eisen ligt in digitale supply chain-oplossingen die beslissingsintelligentie ondersteunen.

Toch worstelen veel organisaties. De kloof tussen data, analytics en actie blijft bestaan. Bedrijven verzamelen enorme hoeveelheden informatie, maar handelen er niet snel genoeg naar, of erger nog, ze nemen beslissingen op basis van verouderde of onvolledige data. Het overbruggen van deze kloof is noodzakelijk om de werkelijke waarde van een digitale supply chain te realiseren.

Snelle besluitvorming en kwaliteitsimplicaties

1. De beslissingskloof
Veel organisaties zitten vast tussen het verzamelen van gegevens en het uitvoeren van acties. Deze 'beslissingskloof' veroorzaakt vertragingen, waardoor de potentiële bedrijfswaarde die gerealiseerd had kunnen worden, afneemt. In een supply chain-omgeving kunnen vertraagde beslissingen leiden tot voorraadtekorten, overvoorraad, omzetverlies en ontevreden klanten.

2. Nieuwe AI-platforms zijn cruciaal
Digitale en AI-platforms stellen bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen door het data-naar-actieproces te digitaliseren. Vraagvoorspelling en voorraadoptimalisatie zijn belangrijke processen binnen de beslissingsmatrix, en tools zoals Smart IP&O helpen voorraadbehoeften te voorspellen en die beslissingen te optimaliseren op basis van kosten, serviceniveaus en veranderende vraagpatronen. Dit maakt besluitvorming mogelijk met een snelheid en schaal die voorheen niet haalbaar waren. Bovendien ondersteunt Smart IP&O belangrijkere strategische beslissingen en kleinere, frequentere operationele beslissingen, waardoor een breed scala aan de toeleveringsketen wordt geoptimaliseerd.

3. Kwaliteit van besluitvorming
Snelle beslissingen alleen zijn niet genoeg. De kwaliteit van die beslissingen is van belang. Effectieve besluitvorming vereist nauwkeurige gegevens, prognoses en analyses om ervoor te zorgen dat beslissingen tot positieve resultaten leiden. Organisaties kunnen belangrijke factoren zoals kosten, beschikbaarheid en serviceniveaus beter in evenwicht brengen door gebruik te maken van tools die inzicht bieden in toekomstige trends en prestaties. Deze aanpak stelt hen in staat om strategieën te creëren die aansluiten bij de werkelijke behoeften en eisen, waardoor de efficiëntie en het algehele succes worden verbeterd.

Smart IP&O gebruikt geavanceerde prognosemodellen en realtime data om snelle en betrouwbare beslissingen te garanderen. Organisaties kunnen bijvoorbeeld geprojecteerde statistieken gebruiken om serviceniveaus, kosten en voorraadbeschikbaarheid in evenwicht te brengen, zodat voorraadbeleid aansluit bij de werkelijke vraagtrends.

4. Schaalbaarheid en consistentie in besluitvorming
Naarmate bedrijven groeien, neemt de complexiteit van supply chain-beslissingen toe en kan het verwerken van een toenemend aantal producten, datapunten en processen een uitdaging zijn. Digitale platforms en automatiseringstools helpen bedrijven hun besluitvormingsprocessen te schalen door grote hoeveelheden data met precisie en uniformiteit te beheren.

Door repetitieve taken te automatiseren en consistente regels toe te passen in verschillende scenario's, kunnen bedrijven ervoor zorgen dat beslissingen uniform worden genomen, wat leidt tot meer voorspelbare en betrouwbare uitkomsten. Deze aanpak leidt tot meer voorspelbare en betrouwbare uitkomsten, omdat geautomatiseerde systemen ervoor zorgen dat beslissingen consistent zijn, zelfs als het bedrijf groeit.

AI-gestuurde platforms zoals Smart IP&O bieden schaalbaarheid, waardoor bedrijven duizenden producten en datapunten met constante nauwkeurigheid kunnen beheren. Deze consistentie is cruciaal voor het handhaven van serviceniveaus en het verlagen van kosten naarmate de activiteiten uitbreiden.

5. Digitalisering van besluitvormingsprocessen
Digitalisering van besluitvormingsprocessen omvat het automatiseren van verschillende aspecten van besluitvorming. Door digitale hulpmiddelen te gebruiken, kunnen routinematige beslissingen, zoals beslissingen met betrekking tot inventaris, vraag en productie, worden geautomatiseerd, wat zorgt voor snellere en efficiëntere afhandeling van dagelijkse taken. In gevallen waarin nog steeds menselijke tussenkomst vereist is, kunnen systemen worden ingesteld om gebruikers te waarschuwen wanneer aan specifieke voorwaarden of drempels wordt voldaan. Dit vermindert de handmatige inspanning en stelt werknemers in staat zich te concentreren op meer strategisch en complex werk, wat uiteindelijk de productiviteit en efficiëntie verbetert.

 

De belofte van de digitale supply chain ligt in het vermogen om data snel en nauwkeurig om te zetten in actie. Om deze belofte volledig te benutten, moeten organisaties de beslissingskloof overbruggen door platforms als Smart IP&O te adopteren. Deze platforms verbeteren snelle besluitvorming en zorgen ervoor dat de kwaliteit niet wordt opgeofferd in het proces. Naarmate bedrijven evolueren, zullen degenen die deze tools succesvol integreren in hun beslissingsmatrix beter gepositioneerd zijn om concurrerend te blijven en te voldoen aan de steeds groeiende verwachtingen van klanten.

 

7 belangrijke trends in vraagplanning die de toekomst vormgeven

Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt.

Datagestuurde inzichten

Geavanceerde analyses, machine learning en kunstmatige intelligentie (AI) worden integraal onderdeel van vraagplanning. Technologieën zoals Smart UP&O stellen bedrijven in staat om complexe datasets te analyseren, patronen te identificeren en nauwkeurigere voorspellingen te doen. Deze verschuiving naar datagestuurde inzichten helpt bedrijven om snel te reageren op marktveranderingen, voorraadtekorten te minimaliseren en overtollige voorraad te verminderen.

Probabilistic Forecasting

Probabilistische voorspellingen richten zich op het voorspellen van een reeks mogelijke uitkomsten in plaats van één enkel getal. Deze trend is met name belangrijk voor het beheren van onzekerheid en risico bij vraagplanning. Het helpt bedrijven zich voor te bereiden op verschillende vraagscenario's, het verbeteren van voorraadbeheer en het verminderen van de kans op voorraadtekorten of overvoorraad.

Consensusvoorspelling

Moderne productie beweegt richting een geïntegreerde aanpak waarbij afdelingen en belanghebbenden nauwer samenwerken. Samenwerkende prognoses omvatten het delen van inzichten in de hele toeleveringsketen, van leveranciers tot distributeurs en interne teams. Deze aanpak doorbreekt silo's en zorgt ervoor dat iedereen naar een gemeenschappelijk doel toewerkt, wat leidt tot een meer gesynchroniseerde en efficiënte toeleveringsketen.

Voorspellende en prescriptieve analyses

Predictive analytics voorspelt toekomstige uitkomsten op basis van historische data en trends, waardoor bedrijven vraagschommelingen kunnen anticiperen. Smart Demand Planner (SDP) automatiseert bijvoorbeeld prognoses om voorraad- en productieniveaus dienovereenkomstig aan te passen.

Prescriptieve analyses gaan verder door bruikbare aanbevelingen te bieden. Smart Inventory Planning and Optimization (IP&O) schrijft bijvoorbeeld optimale voorraadbeleidsregels voor op basis van serviceniveaus, kosten en risico's. Samen maken deze tools proactieve besluitvorming mogelijk, waardoor bedrijven hun reacties op toekomstige uitdagingen kunnen voorspellen en optimaliseren.

Scenariomodellering

Scenariomodellering wordt een belangrijk onderdeel van vraagplanning, waardoor bedrijven verschillende scenario's kunnen simuleren en hun impact op de bedrijfsvoering kunnen beoordelen. Deze methode helpt bedrijven aanpasbare strategieën te creëren om onzekerheden effectief aan te pakken. Smart IP&O verbetert deze mogelijkheid door Wat als scenario's waarmee gebruikers verschillende voorraadbeleidsregels kunnen testen voordat ze worden geïmplementeerd. Door variabelen zoals serviceniveaus of bestelhoeveelheden aan te passen, kunnen bedrijven de effecten op kosten en serviceniveaus visualiseren, waardoor ze de optimale strategie kunnen selecteren om risico's te minimaliseren en kosten te beheersen.

Realtime zichtbaarheid

Naarmate toeleveringsketens globaler en onderling verbonden worden, is realtime inzicht in inventaris en toeleveringsketenactiviteiten cruciaal. Verbeterde samenwerking met leveranciers en distributeurs, gecombineerd met realtimegegevens, stelt bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen. Dit helpt voorraadniveaus te optimaliseren, doorlooptijden te verkorten en de algehele veerkracht van de toeleveringsketen te verbeteren.

Meervoudige prognose

Dit omvat prognoses op verschillende niveaus van de producthiërarchie, zoals individuele items, productfamilies of zelfs hele productlijnen. Multilevel-prognoses zijn essentieel voor bedrijven met complexe productportfolio's, omdat ze ervoor zorgen dat prognoses nauwkeurig zijn op zowel micro- als macroniveau.

 

Vraagplanning is een doorslaggevend aspect van modern supply chain management, dat bedrijven de mogelijkheid biedt om de operationele efficiëntie te verbeteren, kosten te verlagen en beter te voldoen aan de vraag van klanten. Door geavanceerde platforms zoals Smart IP&O te benutten, worden de nauwkeurigheid van voorspellingen en het voorraadbeheer aanzienlijk verbeterd, waardoor snelle reacties op marktschommelingen mogelijk zijn. Geautomatiseerde statistische voorspellingen, gecombineerd met mogelijkheden zoals hiërarchievoorspellingen en voorspellingsoverschrijdingen, zorgen ervoor dat voorspellingen nauwkeurig en aanpasbaar zijn, wat leidt tot realistischere planningsbeslissingen. Bovendien kunnen bedrijven met hulpmiddelen zoals scenariomodellering verschillende vraagscenario's in hun producthiërarchie verkennen, wat geïnformeerde besluitvorming mogelijk maakt door inzicht te bieden in mogelijke uitkomsten en risico's. Deze aanpak stelt bedrijven in staat om de impact van beleidswijzigingen te anticiperen, betere beslissingen te nemen en uiteindelijk hun voorraad en algehele supply chain management te optimaliseren, waarbij ze op de hoogte blijven van belangrijke trends in het proces.

 

 

 

Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog analyseren we de automatische prognoses voor vraagprojecties in tijdreeksen, waarbij we ons concentreren op de belangrijkste technieken, uitdagingen en best practices. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen. Sommige artikelen hebben een stabiele vraag, andere vertonen een stijgende of dalende trend en sommige vertonen seizoensinvloeden. Het selecteren van de juiste methode voor elk item kan overweldigend zijn. Hier onderzoeken we hoe automatische prognoses dit proces vereenvoudigen.

Automatische prognoses worden van fundamenteel belang bij het beheren van grootschalige vraagprojecties. Met duizenden items is het handmatig selecteren van een prognosemethode voor elk item onpraktisch. Automatische prognoses maken gebruik van software om deze beslissingen te nemen, waardoor nauwkeurigheid en efficiëntie in het prognoseproces worden gegarandeerd. Het belang ervan ligt in het vermogen om complexe, grootschalige prognosebehoeften efficiënt af te handelen. Het elimineert de noodzaak van handmatige selectie, waardoor tijd wordt bespaard en fouten worden verminderd. Deze aanpak is vooral nuttig in omgevingen met uiteenlopende vraagpatronen, waarbij voor elk artikel mogelijk een andere prognosemethode nodig is.

 

Belangrijke overwegingen voor effectieve prognoses

  1. Uitdagingen van handmatige prognoses:
    • Onhaalbaarheid: het handmatig kiezen van prognosemethoden voor duizenden items is onbeheersbaar.
    • Inconsistentie: Menselijke fouten kunnen leiden tot inconsistente en onnauwkeurige voorspellingen.
  2. Criteria voor methodeselectie:
    • Foutmeting: Het primaire criterium voor het selecteren van een voorspellingsmethode is de typische voorspellingsfout, gedefinieerd als het verschil tussen voorspelde en werkelijke waarden. Deze fout wordt gemiddeld over de prognosehorizon (bijvoorbeeld maandelijkse prognoses over een jaar).
    • Holdout-analyse: deze techniek simuleert het proces van wachten tot een jaar is verstreken door enkele historische gegevens te verbergen, voorspellingen te doen en vervolgens de verborgen gegevens te onthullen om fouten te berekenen. Dit helpt bij het kiezen van de beste methode in realtime.
  3. Prognose toernooi:
    • Methodevergelijking: Verschillende methoden concurreren om elk item te voorspellen, waarbij de methode de laagste gemiddelde fout oplevert.
    • Parameterafstemming: Elke methode wordt getest met verschillende parameters om de optimale instellingen te vinden. Eenvoudige exponentiële afvlakking kan bijvoorbeeld worden geprobeerd met verschillende wegingsfactoren.

 

De algoritmen achter effectieve automatische prognoses

Automatische prognoses zijn zeer rekenkundig, maar haalbaar met moderne technologie. Het proces omvat:

  • Gegevenssegmentatie: Door historische gegevens in segmenten te verdelen, kunt u verschillende aspecten van historische gegevens beheren en benutten voor nauwkeurigere prognoses. Voor een product met een seizoensgebonden vraag kunnen de gegevens bijvoorbeeld worden gesegmenteerd op basis van seizoenen om seizoensspecifieke trends en patronen vast te leggen. Door deze segmentatie kunnen voorspellers effectiever voorspellingen maken en testen.
  • Herhaalde simulaties: Het gebruik van glijdende simulaties houdt in dat voorspellingen over verschillende perioden herhaaldelijk worden getest en verfijnd. Deze methode valideert de nauwkeurigheid van voorspellingsmethoden door ze toe te passen op verschillende gegevenssegmenten. Een voorbeeld is de glijdende-venstermethode, waarbij een venster met een vaste grootte door de tijdreeksgegevens beweegt en voor elke positie voorspellingen wordt gegenereerd om de prestaties te evalueren.
  • Parameteroptimalisatie: Parameteroptimalisatie omvat het uitproberen van meerdere varianten van elke prognosemethode om de best presterende te vinden. Door parameters aan te passen, zoals de afvlakkingsfactor bij exponentiële afvlakkingsmethoden of het aantal eerdere waarnemingen in ARIMA-modellen, kunnen voorspellers modellen verfijnen om de prestaties te verbeteren.

In onze software laten we bijvoorbeeld verschillende prognosemethoden met elkaar concurreren om de beste prestaties op een bepaald item. Kennis van automatische prognoses wordt onmiddellijk overgedragen op Simple Moving Average, lineair voortschrijdend gemiddelde, Single Exponential Smoothing, Double Exponential Smoothing, Winters' Exponential Smoothing en Promo-voorspellingen. Deze competitie zorgt ervoor dat de meest geschikte methode wordt geselecteerd op basis van empirisch bewijs, en niet op basis van subjectief oordeel. De winnaar van het toernooi komt het dichtst in de buurt van het voorspellen van nieuwe gegevenswaarden uit oude gegevens. De nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, waarbij elk een deel van de gegevens gebruikt, in een proces dat bekend staat als glijdende simulatie. eerder uitgelegd in een eerdere blog.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

De laatste twee methoden zijn geschikt voor seizoensreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoenscycli met gegevens zijn (bijvoorbeeld minder dan 24 perioden met maandelijkse gegevens of acht perioden met driemaandelijkse gegevens). Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, eenvoudig te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

Automatische prognoses voor tijdreeksgegevens zijn essentieel voor het efficiënt en nauwkeurig beheren van grootschalige vraagprojecties. Bedrijven kunnen een betere voorspellingsnauwkeurigheid bereiken en hun planningsprocessen stroomlijnen door de selectie van voorspellingsmethoden te automatiseren en technieken zoals holdout-analyse en voorspellingstoernooien te gebruiken. Het omarmen van deze geavanceerde voorspellingstechnieken zorgt ervoor dat bedrijven voorop blijven lopen in dynamische marktomgevingen en weloverwogen beslissingen nemen op basis van betrouwbare gegevensprojecties.

 

 

 

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken. Met AI kunnen we de vraag nauwkeuriger voorspellen, overtollige voorraden verminderen, voorraadtekorten voorkomen en uiteindelijk de bedrijfsresultaten van onze organisatie verbeteren. Laten we eens kijken hoe deze aanpak niet alleen de verkoop- en operationele efficiëntie verhoogt, maar ook de klanttevredenheid verhoogt door ervoor te zorgen dat producten altijd beschikbaar zijn wanneer dat nodig is.

 

Inzichten voor verbeterde besluitvorming in voorraadbeheer

  1. Verbeterde voorspellingsnauwkeurigheid Geavanceerde Machine Learning-algoritmen analyseren historische gegevens om patronen te identificeren die mensen mogelijk over het hoofd zien. Technieken als clustering, detectie van regimeveranderingen, detectie van afwijkingen en regressieanalyse bieden diepgaande inzichten in gegevens. Het meten van voorspellingsfouten is essentieel voor het verfijnen van voorspellingsmodellen; Technieken als Mean Absolute Error (MAE) en Root Mean Squared Error (RMSE) helpen bijvoorbeeld bij het kwantificeren van de nauwkeurigheid van voorspellingen. Bedrijven kunnen de nauwkeurigheid verbeteren door voortdurend prognoses te monitoren en aan te passen op basis van deze foutstatistieken. Zoals de Demand Planner bij een Hardware Retailer vermeld, “Met de verbeteringen aan onze prognoses en voorraadplanning die Smart Software mogelijk maakte, hebben we de veiligheidsvoorraad met 20% kunnen verminderen en tegelijkertijd de voorraadtekorten met 35% kunnen verminderen.”
  1. Realtime gegevensanalyse State-of-the-art systemen kunnen enorme hoeveelheden gegevens in realtime verwerken, waardoor bedrijven hun voorraadniveaus dynamisch kunnen aanpassen op basis van de huidige vraagtrends en marktomstandigheden. Afwijkingsdetectiealgoritmen kunnen plotselinge pieken of dalen in de vraag automatisch identificeren en corrigeren, zodat de voorspellingen accuraat blijven. Een opmerkelijk succesverhaal komt van Smart IP&O, waarmee een bedrijf de voorraad tegen 20% kon verminderen en tegelijkertijd de serviceniveaus kon handhaven door voortdurend realtime gegevens te analyseren en de prognoses dienovereenkomstig aan te passen. FedEx Tech's Manager Materials benadrukt, “Wat het verzoek ook is, we moeten aan onze serviceverplichtingen de volgende dag voldoen. Smart stelt ons in staat om onze voorraad aan te passen om er zeker van te zijn dat we de producten en onderdelen bij de hand hebben om de serviceniveaus te bereiken die onze klanten nodig hebben.”
  1. Verbeterde supply chain-efficiëntie Intelligente technologieplatforms kunnen de gehele supply chain optimaliseren, van inkoop tot distributie, door doorlooptijden te voorspellen en orderhoeveelheden te optimaliseren. Dit verkleint het risico op over- en onderbezetting. Met behulp van op prognoses gebaseerd voorraadbeheer heeft Smart Software bijvoorbeeld een fabrikant geholpen zijn toeleveringsketen te stroomlijnen, de doorlooptijden met 15% te verkorten en de algehele efficiëntie te verbeteren. De VP Operations bij Procon Pump verklaarde: “Een van de dingen die ik leuk vind aan deze nieuwe tool... is dat ik de gevolgen van beslissingen over voorraadvoorraden kan evalueren voordat ik ze implementeer.”
  1. Verbeterde besluitvorming AI biedt bruikbare inzichten en aanbevelingen, waardoor managers weloverwogen beslissingen kunnen nemen. Dit omvat het identificeren van langzaam bewegende artikelen, het voorspellen van de toekomstige vraag en het optimaliseren van de voorraadniveaus. Regressieanalyse kan bijvoorbeeld de verkoop relateren aan externe variabelen zoals seizoensinvloeden of economische indicatoren, waardoor een dieper inzicht ontstaat in de vraagfactoren. Een van de klanten van Smart Software rapporteerde een aanzienlijke verbetering in de besluitvormingsprocessen, wat resulteerde in een stijging van het serviceniveau met 30% en een vermindering van de overtollige voorraad met 15%. “Smart IP&O stelde ons in staat de vraag op elke opslaglocatie te modelleren en, met behulp van serviceniveaugestuurde planning, te bepalen hoeveel we op voorraad moesten hebben om het serviceniveau te bereiken dat we nodig hebben”, aldus de Inkoopmanager bij Seneca Companies.
  1. Kostenbesparing Door de voorraadniveaus te optimaliseren kunnen bedrijven de opslagkosten verlagen en verliezen als gevolg van verouderde of verlopen producten minimaliseren. AI-gestuurde systemen verminderen ook de noodzaak van handmatige voorraadcontroles, waardoor tijd en arbeidskosten worden bespaard. Dat blijkt uit een recente casestudy hoe de implementatie van Inventory Planning & Optimization (IP&O) binnen 90 dagen na de start van het project werd gerealiseerd. In de daaropvolgende zes maanden maakte IP&O het mogelijk de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in een voorraadreductie van $9,0 miljoen, terwijl het beoogde serviceniveau behouden bleef.

 

Door gebruik te maken van geavanceerde algoritmen en realtime data-analyse kunnen bedrijven optimale voorraadniveaus handhaven en de algehele prestaties van hun supply chain verbeteren. Inventory Planning & Optimization (IP&O) is een krachtig hulpmiddel dat uw organisatie kan helpen deze doelen te bereiken. Het integreren van de modernste voorraadoptimalisatie in uw organisatie kan leiden tot aanzienlijke verbeteringen op het gebied van efficiëntie, kostenreductie en klanttevredenheid.

 

 

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten schiet omhoog als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in Epicor Kinetic en hoe u hiervan kunt profiteren met Epicor Smart Inventory Planning and Optimization (Smart IP&O) om uw vraag voor te blijven in het licht van deze complexiteit.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, zullen we de vraag naar die producten voorspellen en vervolgens MRP invoeren om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een mobiele telefoon kocht. Je hebt een merk en model gekozen, maar van daaruit kreeg je waarschijnlijk opties voorgeschoteld: welk schermformaat wil je? Hoeveel opslagruimte wil je? Welke kleur heeft jouw voorkeur? Als dat bedrijf deze mobiele telefoons binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type schermformaat, voor alle opslagcapaciteiten, voor alle kleuren, en ook voor alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze mobiele telefoons kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

Planning BOM uitgelegd Hier komen Planning BOM's om de hoek kijken. Misschien werkt het verkoopteam aan een grote B2B-mogelijkheid voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningsstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen voor de mogelijke componenten ervan. De fabrikant van mobiele telefoons weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 128 GB opslagruimte, en dat veel minder mensen kiezen voor upgrades naar 256 GB of 512 GB. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugbrengen naar de 128GB-optie, 30% naar de 256GB-optie en 10% naar de 512GB-optie. Ze zouden hetzelfde kunnen doen voor schermformaten, kleuren of andere beschikbare aanpassingen.

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix bepaalt. Het is duidelijk dat het definiëren van deze verhoudingen enige aandacht vergt, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

Het belang van een goede voorspelling

Natuurlijk hebben we nog steeds een goede voorspelling nodig om in Epicor Kinetic te laden. Zoals uitgelegd in dit artikel, kan Epicor Kinetic weliswaar een voorspelling importeren, maar kan het er vaak geen genereren, en als dat wel het geval is, zijn er vaak een groot aantal moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bezocht, wat resulteert in onnauwkeurige prognoses. . Het is daarom aan het bedrijf om met zijn eigen sets prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren.
  • Overmatig vertrouwen op klant- of verkoopprognoses.
  • Gebrek aan nauwkeurigheid of prestatieregistratie.

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘mobiele telefoonbedrijf’, zonder een systematische manier om de belangrijkste vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Slimme IP&O: een allesomvattende oplossing

Smart IP&O ondersteunt planning op alle niveaus van uw stuklijst, hoewel het “uitblazen” wordt afgehandeld via MRP binnen Epicor Kinetic. Dit is de methode die we gebruiken voor onze Epicor Kinetic-klanten, die eenvoudig en effectief is:

  • Smart Demand Planner: Het platform bevat een speciaal gebouwde prognosetoepassing genaamd Smart Demand Planner die u gaat gebruiken om de vraag naar uw vervaardigde producten (meestal eindproducten) te voorspellen. Het genereert statistische prognoses, stelt planners in staat aanpassingen aan te brengen en/of andere prognoses in te passen (zoals verkoop- of klantprognoses) en houdt de nauwkeurigheid bij. De output hiervan is een prognose die wordt ingevoerd in de prognoseinvoer in Epicor Kinetic, waar MRP deze zal ophalen. MRP zal vervolgens gebruik maken van de vraag op het niveau van het eindproduct en ook de materiaalvereisten via de stuklijst uitblazen, zodat de vraag ook op lagere niveaus wordt onderkend.
  • Smart Inventory Optimization: U gebruikt tegelijkertijd Smart Inventory Optimization om min-/max-/veiligheidsniveaus in te stellen voor zowel alle eindproducten die u op voorraad maakt (indien van toepassing; sommige van onze klanten werken puur op bestelling op basis van een vaste vraag), als voor onbewerkte goederen materialen. De sleutel hier is dat Smart op grondstofniveau de vraag naar werkgebruik, doorlooptijden van leveranciers, enz. zal benutten om deze parameters te optimaliseren, terwijl tegelijkertijd verkooporders/verzendingen worden gebruikt als vraag op het niveau van het eindproduct. Smart verwerkt deze meerdere inputs van de vraag op elegante wijze via de bidirectionele integratie met Epicor Kinetic.

Wanneer MRP wordt uitgevoerd, worden vraag en aanbod (wat wederom de vraag naar grondstoffen omvat die voortvloeit uit de voltooide goede prognose) geneutraliseerd met de min/max/veiligheidsniveaus die u hebt vastgesteld om PO- en werksuggesties voor te stellen.

 

Breid Epicor Kinetic uit met Smart IP&O

Smart IP&O is ontworpen om uw Epicor Kinetic-systeem uit te breiden met vele geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

Door gebruik te maken van de Planning BOM-mogelijkheden van Epicor Kinetic naast de geavanceerde functies voor prognoses en voorraadoptimalisatie van Smart IP&O, zorgt u ervoor dat u efficiënt en nauwkeurig aan de vraag kunt voldoen, ongeacht de complexiteit van uw productconfiguraties. Deze synergie verbetert niet alleen de nauwkeurigheid van de prognoses, maar versterkt ook de algehele operationele efficiëntie, waardoor u voorop kunt blijven lopen in een concurrerende markt.