Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Aanvankelijk, in de jaren tachtig, werd de gebruikelijke praktijk van het gebruik van jaarlijkse gegevens voor prognoses en de introductie van maandelijkse gegevens als innovatief beschouwd. Deze periode markeerde het begin van een trend in de richting van het verhogen van de resolutie van data-analyse, waardoor bedrijven snellere verschuivingen in de marktdynamiek kunnen opvangen en hierop kunnen reageren. Naarmate we verder kwamen in de jaren 2000, was de norm van maandelijkse data-analyse ingeburgerd, maar de 'cool kids' – vernieuwers aan de rand van business analytics – begonnen te experimenteren met wekelijkse data. Deze verschuiving werd gedreven door de noodzaak om de bedrijfsactiviteiten te synchroniseren met de steeds volatielere marktomstandigheden en het consumentengedrag dat snellere reacties vergde dan maandelijkse cycli konden bieden. Tegenwoordig, in de jaren 2020, is de grens weliswaar nog steeds gebruikelijk, maar is de grens opnieuw verschoven, dit keer naar dagelijkse data-analyse, waarbij sommige pioniers zich zelfs aan uuranalyses wagen.

De echte kracht van dagelijkse data-analyse ligt in het vermogen om een gedetailleerd beeld te geven van de bedrijfsvoering, waarbij dagelijkse schommelingen worden vastgelegd die door maandelijkse of wekelijkse gegevens over het hoofd kunnen worden gezien. De complexiteit van dagelijkse gegevens vereist echter geavanceerde analytische benaderingen om betekenisvolle inzichten te verkrijgen. Op dit niveau vereist het begrijpen van de vraag het worstelen met concepten als wisselvalligheid, seizoensinvloeden, trends en volatiliteit. Intermittentie, of het optreden van dagen zonder vraag, wordt duidelijker bij een dagelijkse granulariteit en vereist gespecialiseerde voorspellingstechnieken zoals de methode van Croston voor nauwkeurige voorspellingen. Seizoensgebondenheid op dagelijks niveau kan meerdere patronen aan het licht brengen, zoals hogere verkopen in het weekend of op feestdagen, die maandelijkse gegevens zouden maskeren. Trends kunnen worden waargenomen als stijgingen of dalingen van de vraag op de korte termijn, waardoor flexibele aanpassingsstrategieën nodig zijn. Ten slotte wordt de volatiliteit op dagelijks niveau geaccentueerd, wat significantere schommelingen in de vraag laat zien dan uit maandelijkse of wekelijkse analyses blijkt, wat van invloed kan zijn op de voorraadbeheerstrategieën en de behoefte aan buffervoorraden. Dit niveau van complexiteit onderstreept de behoefte aan geavanceerde analytische hulpmiddelen en expertise op het gebied van dagelijkse data-analyse.

Kortom, de evolutie van minder frequente naar dagelijkse tijdreeksvoorspellingen markeert een substantiële verschuiving in de manier waarop bedrijven data-analyse benaderen. Deze transitie weerspiegelt niet alleen het steeds snellere tempo van het bedrijfsleven, maar onderstreept ook de behoefte aan tools die een grotere granulariteit van de gegevens aankunnen. De toewijding van Smart Software aan het verfijnen van de analytische mogelijkheden voor het beheren van dagelijkse gegevens benadrukt de bredere beweging van de sector naar meer dynamische, responsieve en datagestuurde besluitvorming. Deze verschuiving gaat niet alleen over het bijhouden van de tijd, maar over het benutten van gedetailleerde inzichten om concurrentievoordelen te creëren in een steeds veranderende zakelijke omgeving.

 

Kan willekeur een bondgenoot zijn in de voorspellingsstrijd?

Feynmans perspectief belicht onze reis: “In haar pogingen om zoveel mogelijk over de natuur te leren, heeft de moderne natuurkunde ontdekt dat bepaalde dingen nooit met zekerheid ‘gekend’ kunnen worden. Veel van onze kennis moet altijd onzeker blijven. Het meeste wat we kunnen weten is in termen van waarschijnlijkheden.” – Richard Feynman, The Feynman Lectures on Physics.

Wanneer we de complexe wereld van de logistiek proberen te begrijpen, speelt willekeur een cruciale rol. Dit introduceert een interessante paradox: in een realiteit waarin precisie en zekerheid worden gewaardeerd, zou de onvoorspelbare aard van vraag en aanbod daadwerkelijk als een strategische bondgenoot kunnen dienen?

De zoektocht naar nauwkeurige voorspellingen is niet alleen een academische oefening; het is een cruciaal onderdeel van operationeel succes in tal van sectoren. Voor vraagplanners die moeten anticiperen op de productvraag zijn de gevolgen van het goed of fout doen van de vraag van cruciaal belang. Daarom is het herkennen en benutten van de kracht van willekeur niet slechts een theoretische oefening; het is een noodzaak voor veerkracht en aanpassingsvermogen in een steeds veranderende omgeving.

Onzekerheid omarmen: dynamische, stochastische en Monte Carlo-methoden

Dynamische modellering: De zoektocht naar absolute precisie in voorspellingen negeert de intrinsieke onvoorspelbaarheid van de wereld. Traditionele voorspellingsmethoden, met hun rigide raamwerken, schieten tekort in het accommoderen van de dynamiek van verschijnselen in de echte wereld. Door onzekerheid te omarmen, kunnen we overgaan op flexibelere en dynamischere modellen waarin willekeur als fundamentele component is opgenomen. In tegenstelling tot hun rigide voorgangers zijn deze modellen ontworpen om te evolueren als reactie op nieuwe gegevens, waardoor veerkracht en aanpassingsvermogen worden gegarandeerd. Deze paradigmaverschuiving van een deterministische naar een probabilistische benadering stelt organisaties in staat met meer vertrouwen door onzekerheid te navigeren en weloverwogen beslissingen te nemen, zelfs in volatiele omgevingen.

Stochastische modellering leidt voorspellers door de mist van onvoorspelbaarheid met de principes van waarschijnlijkheid. In plaats van te proberen willekeur te elimineren, omarmen stochastische modellen het. Deze modellen schuwen het idee van een enkelvoudige, vooraf bepaalde toekomst, maar presenteren in plaats daarvan een reeks mogelijke uitkomsten, elk met een geschatte waarschijnlijkheid. Deze benadering biedt een genuanceerder en realistischer beeld van de toekomst, waarbij de inherente variabiliteit van systemen en processen wordt erkend. Door een spectrum van potentiële toekomsten in kaart te brengen, voorziet stochastische modellering besluitvormers van een alomvattend inzicht in onzekerheid, waardoor strategische planning mogelijk is die zowel geïnformeerd als flexibel is.

Vernoemd naar het historische centrum van toeval en fortuin, maken Monte Carlo-simulaties gebruik van de kracht van willekeur om het uitgestrekte landschap van mogelijke uitkomsten te verkennen. Deze techniek omvat het genereren van duizenden, zo niet miljoenen, scenario's door middel van willekeurige steekproeven, waarbij elk scenario een ander toekomstbeeld schetst, gebaseerd op de inherente onzekerheden van de echte wereld. Beslissers kunnen, gewapend met inzichten uit Monte Carlo-simulaties, de reikwijdte van de mogelijke gevolgen van hun beslissingen inschatten, waardoor het een instrument van onschatbare waarde is voor risicobeoordeling en strategische planning in onzekere omgevingen.

Successen in de echte wereld: het benutten van willekeur

De strategie om willekeur in de prognoses te integreren is in diverse sectoren van onschatbare waarde gebleken. Grote beleggingsondernemingen en banken vertrouwen bijvoorbeeld voortdurend op stochastische modellen om het volatiele gedrag van de aandelenmarkt het hoofd te bieden. Een opmerkelijk voorbeeld is de manier waarop hedgefondsen deze modellen gebruiken om prijsbewegingen te voorspellen en risico's te beheren, wat leidt tot meer strategische beleggingskeuzes.

Op dezelfde manier vertrouwen veel bedrijven op het gebied van supply chain management op Monte Carlo-simulaties om de onvoorspelbaarheid van de vraag aan te pakken, vooral tijdens piekseizoenen zoals de feestdagen. Door verschillende scenario's te simuleren, kunnen ze zich op een reeks uitkomsten voorbereiden en ervoor zorgen dat ze over voldoende voorraadniveaus beschikken zonder dat ze te veel middelen inzetten. Deze aanpak minimaliseert het risico op voorraadtekorten en overtollige voorraad.

Deze successen uit de praktijk benadrukken de waarde van het integreren van willekeur in voorspellingsinspanningen. In plaats van de tegenstander te zijn die vaak wordt gezien, ontpopt willekeur zich als een onmisbare bondgenoot in het ingewikkelde ballet van voorspellingen. Door methoden te hanteren die rekening houden met de inherente onzekerheid van de toekomst – ondersteund door geavanceerde tools als Smart IP&O – kunnen organisaties met vertrouwen en flexibiliteit door het onvoorspelbare navigeren. In het grote geheel van voorspellingen kan het dus verstandig zijn om het idee te omarmen dat we weliswaar geen controle hebben over de worp van de dobbelstenen, maar dat we er wel een strategie omheen kunnen bedenken.

 

 

 

Waarschuwingssignalen dat er sprake is van een tekort aan supply chain-analyse

“Zakendoen is oorlog” is misschien een overdreven metafoor, maar het is niet zonder geldigheid. Net als de ‘Bomber Gap’ en de ‘Missile Gap’ liggen de zorgen om achterop te raken bij de concurrentie, en de daaruit voortvloeiende dreiging van vernietiging, altijd op de loer in de hoofden van bedrijfsleiders. Als ze dat niet doen, moeten ze dat doen, want niet alle gaten zijn denkbeeldig (de Bomber Gap en de Missile Gap bleken niet te bestaan tussen de VS en de USSR, maar de kloof tussen de Japanse en Amerikaanse productiviteit in de jaren tachtig was maar al te reëel). Het verschil tussen paranoia en gerechtvaardigde bezorgdheid is het omzetten van angst in feiten. Dit bericht gaat over het organiseren van uw aandacht voor mogelijke hiaten in de supply chain-analyses van uw bedrijf.

Hiaten in het toezicht

Het Amerikaanse leger heeft een gezegde: “Tijd besteed aan verkenning is nooit verspilde tijd.” Zo nu en dan, onze Slimme voorspeller blog heeft een bericht waarmee je je hoofd op een draai kunt zetten om te zien wat er om je heen gebeurt. Een voorbeeld is ons bericht op digitale tweelingen, een hot topic in de technische wereld. Samenvattend: het gebruik van vraag- en aanbodsimulaties om zwakke punten in uw voorraadplan op te sporen is een vorm van supply chain-verkenning. Door deze gaten in het toezicht te dichten, kunnen bedrijven corrigerende maatregelen nemen voordat zich een daadwerkelijk probleem voordoet.

Situationele bewustzijnsverschillen

Een militaire commandant moet bijhouden wat er beschikbaar is voor gebruik en hoe goed het wordt gebruikt. De rapporten beschikbaar in Smart Operational Analytics houdt u op de hoogte van uw voorraadaantallen, de nauwkeurigheid van uw prognoses, het reactievermogen van uw leveranciers en trends op deze en andere operationele gebieden. U weet precies waar u staat op het gebied van diverse supply chain-KPI's, zoals serviceniveau, opvullingspercentages en voorraadomloop. U weet of de werkelijke prestaties overeenkomen met de geplande prestaties en of het voorraadplan (dat wil zeggen wat u moet bestellen, wanneer, bij wie en waarom) wordt nageleefd of genegeerd.

Behendigheidsverschillen

De zakelijke omgeving kan snel veranderen. Het enige dat nodig is, is een tanker die zijdelings vastzit in het Suezkanaal, een paar ballistische anti-scheepsraketten in de Rode Zee, of een weersgebeurtenis in de hele regio. Deze catastrofes kunnen net zo goed op de hoofden van uw concurrenten terechtkomen als op die van u, maar wie van u is wendbaar genoeg om als eerste te reageren? Uitzonderingsrapportage in Vraagplanner en slimme operationele analyses kan grote veranderingen in de aard van de vraag detecteren, zodat u snel verouderde vraaggegevens eruit kunt filteren voordat deze al uw berekeningen voor vraagprognoses of voorraadoptimalisatie vergiftigen. Smart Demand Planner kan vooraf waarschuwen voor een aanstaande stijging of daling van de vraag. Smart Inventory Optimization kan u helpen uw tactieken voor het aanvullen van uw voorraad aan te passen aan deze verschuivingen in de vraag.

 

Innovatiehiaten

Of je nu naar je concurrentie verwijst als ‘The Other Guys’ of ‘Everybody Else’ of iets dat niet kan worden afgedrukt, degenen waar je je zorgen over moet maken, zijn degenen die altijd op zoek zijn naar een voorsprong. Wanneer u Smart als uw partner kiest, geven wij u die voorsprong met innovatieve maar in de praktijk bewezen voorspellende oplossingen. Smart Software innoveert al sinds de geboorte, meer dan 40 jaar geleden, voorspellende modellen.

  • Onze eerste producten introduceerden meerdere technische innovaties: beoordeling van de voorspelde kwaliteit door naar de toekomst te kijken en niet naar het verleden; automatische selectie van de beste uit een reeks concurrerende methodologieën, waarbij gebruik wordt gemaakt van de graphics op de eerste pc's om eenvoudige beheeroverschrijvingen van statistische voorspellingen mogelijk te maken.
  • Later hebben we een radicaal andere benadering bedacht en gepatenteerd voor het voorspellen van de intermitterende vraag die kenmerkend is voor zowel reserveonderdelen als dure duurzame goederen. Onze technologie is gepatenteerd en heeft meerdere prijzen ontvangen voor de dramatische verbetering van het voorraadbeheer. De oplossing is nu een in de praktijk bewezen aanpak die wordt gebruikt door veel toonaangevende bedrijven op het gebied van serviceonderdelen, MRO, aftermarket-onderdelen en buitendienst.
  • Meer recentelijk neemt het cloudplatform van Smart voor vraagvoorspelling, voorspellende modellering, voorraadoptimalisatie en analyse alle relevante gegevens die anders opgesloten zitten in uw ERP- of EAM-systemen, externe bestanden en andere ongelijksoortige gegevensbronnen, en organiseert deze in de Slimme datapijplijn, structureert het in onze gemeenschappelijk datamodel, en verwerkt deze in onze AWS-wolk. Smart maakt gebruik van de kracht van ons gepatenteerd probabilistische vraagsimulaties in Smart Inventory Optimization om de regels die u gebruikt om elk van uw voorraaditems te beheren, te stresstesten en te optimaliseren.

Het is mijn taak, samen met mijn medeoprichter Dr. Nelson Hartunian, ons data science-team en academische consultants, om de grenzen van supply chain-analyses te blijven verleggen en de voordelen voor u terug te brengen door voortdurend nieuwe versies van onze producten uit te rollen, zodat u zorg ervoor dat u niet blijft steken in een innovatiekloof – of in een van de andere.

 

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten.

Wat is een digitale tweeling?

Hoewel er verschillende definities van digital twin zijn, is er een die goed werkt:

Een digitale tweeling is een dynamiek virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich identiek gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen dus dat kan mogelijke prestatieresultaten voorspellen en problemen die het echte product zou kunnen ondergaan. [Bron: Unity.com]. Voor meer achtergrondinformatie kunt u terecht op Mckinsey.com.

Wat is het verschil tussen een digital twin (hierna DT) en een model? In de eerste plaats wordt een ODC verbonden met realtime gegevens om het model te behouden als een actuele weergave van het systeem waarmee u werkt.

Onze huidige producten zouden we “slow-motion DT's” kunnen noemen, omdat ze meestal worden gebruikt met niet-realtime gegevens (maar geen verouderde gegevens, omdat deze van de ene op de andere dag worden bijgewerkt) en worden toegepast op problemen zoals het plannen van de grondstoffenaankopen voor het volgende kwartaal of het instellen van voorraadparameters voor een maand of langer.

Gebruiken mensen digital twins in mijn branche?

Mijn indruk is dat de penetratie van DT's wellicht het hoogst is in de lucht- en ruimtevaart- en nucleaire industrie. De meeste van onze klanten bevinden zich elders: in de productie, distributie en openbare voorzieningen zoals transport en energie. Binnenkort zullen we nieuwe producten aanbieden die dichter bij de strikte definitie van een DT komen die nauw verbonden is met het systeem dat hij vertegenwoordigt.

DT-voorbeeld

De meeste gebruikers van Smart Inventory Optimization (SIO) voer de applicatie periodiek uit, meestal maandelijks. SIO analyseert de huidige vraag naar voorraadartikelen en recente doorlooptijden van leveranciers en zet deze om in respectievelijk vraag- en aanbodscenario's. Vervolgens stellen gebruikers interactief (voor individuele artikelen) of automatisch (op schaal) parameters voor voorraadbeheer in die de gewenste gemiddelde prestaties op lange termijn opleveren, waarbij de concurrerende doelen van het minimaliseren van de voorraad in evenwicht worden gebracht en tegelijkertijd een voldoende niveau van artikelbeschikbaarheid wordt gegarandeerd.

Smart Supply Planner (SSP) reageert op een directere manier op onvoorziene gebeurtenissen. Elke dag kan er een abnormale bestelling plaatsvinden die de vraag doet toenemen, bijvoorbeeld wanneer een nieuwe klant een verrassende eerste voorraadbestelling plaatst. Of een belangrijke leverancier kan een probleem ervaren in zijn fabriek en gedwongen worden de verzending van uw geplande aanvullingsorders uit te stellen. Op de lange termijn worden deze onvoorziene omstandigheden gemiddeld en rechtvaardigen ze de aanbevelingen die uit SIO komen. SSP biedt u echter een manier om op de korte termijn te reageren en kansen te grijpen of kogels te ontwijken.

In de kern werkt SSP als SIO, in die zin dat het scenariogestuurd is. De verschillen zijn dat het korte planningshorizon gebruikt en real-time initiële omstandigheden gebruikt als basis voor zijn simulaties van de prestaties van voorraadsystemen. Vervolgens zal het realtime aanbevelingen doen voor interventies die de verstoring veroorzaakt door de onvoorziene gebeurtenissen compenseren. Dit omvat onder meer het annuleren of versnellen van aanvullingsorders.

Overzicht

Met Digital Twins kunt u plannen ‘in silico’ uitproberen voordat u ze in de fabriek of het magazijn implementeert. De kern bestaat uit wiskundige modellen van uw bedrijfsvoering, maar verbonden met realtime gegevens. Ze bieden een ‘digitale sandbox’ waarin u ideeën kunt uitproberen en direct voorspellingen kunt krijgen over hoe goed ze zullen werken. Veel meer dan een spreadsheet zullen DT's binnenkort het belangrijkste hulpmiddel zijn in uw gereedschapskist voor voorraadplanning.

 

Speel jij het voorraadraadspel?

Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

Hoe goed bent u in het aanvoelen van de juiste waarden? In deze blogpost wordt u uitgedaagd om de beste Min- en Max-waarden voor een notioneel voorraaditem te raden. We laten u de vraaggeschiedenis zien, geven u een paar relevante feiten, waarna u Min- en Max-waarden kunt kiezen en zien hoe goed ze zouden werken. Klaar?

De uitdaging

Figuur 1 toont de dagelijkse vraaggeschiedenis van het artikel. De gemiddelde vraag bedraagt 2 eenheden per dag. De doorlooptijd voor het aanvullen is constant 10 dagen (wat onrealistisch is maar in uw voordeel werkt). Bestellingen die niet direct uit voorraad leverbaar zijn, kunnen niet worden nabesteld en gaan verloren. U wilt minimaal een opvullingspercentage van 80% bereiken, maar niet tegen elke prijs. U wilt ook het gemiddelde aantal beschikbare eenheden minimaliseren en toch een opvullingspercentage van ten minste 80% bereiken. Welke Min- en Max-waarden zouden een 80%-opvullingspercentage opleveren met het laagste gemiddelde aantal beschikbare eenheden? [Neem uw antwoorden op, zodat u ze later kunt controleren. De oplossing staat hieronder aan het einde van het artikel.]

Are You Playing the Inventory Guessing Game-1

Berekening van de beste min- en max-waarden

De manier om de beste waarden te bepalen is door een digitale tweeling te gebruiken, ook wel een Monte Carlo-simulatie genoemd. De analyse creëert een groot aantal vraagscenario's en passeert deze door de wiskundige logica van het voorraadbeheersysteem om te zien welke waarden zullen worden overgenomen door de belangrijkste prestatie-indicatoren (KPI's).

We hebben voor dit probleem een digitale tweeling gebouwd en deze systematisch getest met 1.085 paar Min- en Max-waarden. Voor elk paar hebben we in totaal 100 keer 365 bedrijfsdagen gesimuleerd. Vervolgens hebben we het gemiddelde van de resultaten genomen om de prestaties van het Min/Max-paar te beoordelen in termen van twee KPI's: opvullingspercentage en gemiddelde voorraad.

Figuur 2 toont de resultaten. De inherente afweging tussen voorraadomvang en opvullingspercentage is duidelijk in de figuur: als je een hoger opvullingspercentage wilt, moet je een grotere voorraad accepteren. Op elk inventarisniveau is er echter een bereik aan opvullingspercentages, dus het is de bedoeling om het Min/Max-paar te vinden dat het hoogste opvullingspercentage oplevert voor een inventaris van een bepaalde grootte.

Een andere manier om Figuur 2 te interpreteren is door te focussen op de groene stippellijn die het beoogde 80%-opvullingspercentage aangeeft. Er zijn veel Min/Max-paren die in de buurt van het 80%-doel kunnen raken, maar ze verschillen qua voorraadgrootte van ongeveer 6 tot ongeveer 8 eenheden. Figuur 3 zoomt in op dat gebied van Figuur 2 en toont een behoorlijk aantal Min/Max-paren die competitief zijn.

We hebben de resultaten van alle 1.085 simulaties gesorteerd om te identificeren wat economen de efficiënte grens noemen. De efficiënte grens is de reeks meest efficiënte Min/Max-paren om de wisselwerking tussen opvullingspercentage en aanwezige eenheden te benutten. Dat wil zeggen, het is een lijst met Min/Max-paren die de goedkoopste manier bieden om elk gewenst opvullingspercentage te bereiken, niet alleen 80%. Figuur 4 toont de efficiënte grens voor dit probleem. Van links naar rechts kunt u de laagste prijs aflezen die u zou moeten betalen (gemeten aan de hand van de gemiddelde voorraadgrootte) om het beoogde opvullingspercentage te bereiken. Om bijvoorbeeld een opvullingspercentage van 90% te bereiken, zou u een gemiddelde voorraad van ongeveer 10 eenheden moeten hebben.

Figuren 2, 3 en 4 tonen resultaten voor verschillende Min/Max-paren, maar geven niet de waarden van Min en Max achter elk punt weer. Tabel 1 toont alle simulatiegegevens: de waarden van Min, Max, gemiddelde beschikbare eenheden en opvullingspercentage. Het antwoord op het raadspel is gemarkeerd in de eerste regel van de tabel: Min=7 en Max=131. Heb je het juiste antwoord gekregen, of iets dat in de buurt komt?2? Heb je misschien de efficiënte grens bereikt?

Conclusies

Misschien heb je geluk gehad, of misschien heb je inderdaad een Gouden Darm, maar de kans is groter dat je niet het juiste antwoord hebt gekregen, en nog waarschijnlijker dat je het niet eens hebt geprobeerd. Het vinden van het juiste antwoord is buitengewoon moeilijk zonder de digitale tweeling te gebruiken. Raden is onprofessioneel.

Een stap verder dan raden is ‘raden en zien’, waarbij u uw gok implementeert en vervolgens een tijdje (maanden?) wacht om te zien of de resultaten u bevallen. Die tactiek is op zijn minst ‘wetenschappelijk’, maar inefficiënt.

Denk nu eens aan de moeite om de beste (Min,Max) paren voor duizenden items te bepalen. Op die schaal is er zelfs nog minder reden om het inventarisraadspel te spelen. Het juiste antwoord is om het te spelen… Slim3.

1 Dit antwoord heeft een bonus, omdat het een opvullingspercentage van iets meer dan 80% behaalt bij een lagere gemiddelde voorraadgrootte dan de Min/Max-combinatie die precies 80% bereikte. Met andere woorden: (7,13) bevindt zich op de efficiënte grens.

2 Omdat deze resultaten afkomstig zijn van een simulatie in plaats van een exacte wiskundige vergelijking, is er een bepaalde foutmarge verbonden aan elk geschat opvullingspercentage en voorraadniveau. Omdat de gemiddelde resultaten echter gebaseerd waren op 100 simulaties over een periode van 365 dagen, zijn de foutmarges echter klein. Over alle experimenten heen waren de gemiddelde standaardfouten in het opvullingspercentage en de gemiddelde voorraad respectievelijk slechts 0,009% en 0,129 eenheden.

3 Mocht je dit nog niet weten: een van de oprichters van Smart Software was … Charlie Smart.

Are You Playing the Inventory Guessing Game-111

Are You Playing the Inventory Guessing Game-Table 1