5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren

De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix.

Waarom is snelle besluitvorming in de digitale toeleveringsketen zo belangrijk?

De zaken gaan snel; klanten verwachten snellere levering, hogere serviceniveaus en meer transparantie. De sleutel tot het voldoen aan deze eisen ligt in digitale supply chain-oplossingen die beslissingsintelligentie ondersteunen.

Toch worstelen veel organisaties. De kloof tussen data, analytics en actie blijft bestaan. Bedrijven verzamelen enorme hoeveelheden informatie, maar handelen er niet snel genoeg naar, of erger nog, ze nemen beslissingen op basis van verouderde of onvolledige data. Het overbruggen van deze kloof is noodzakelijk om de werkelijke waarde van een digitale supply chain te realiseren.

Snelle besluitvorming en kwaliteitsimplicaties

1. De beslissingskloof
Veel organisaties zitten vast tussen het verzamelen van gegevens en het uitvoeren van acties. Deze 'beslissingskloof' veroorzaakt vertragingen, waardoor de potentiële bedrijfswaarde die gerealiseerd had kunnen worden, afneemt. In een supply chain-omgeving kunnen vertraagde beslissingen leiden tot voorraadtekorten, overvoorraad, omzetverlies en ontevreden klanten.

2. Nieuwe AI-platforms zijn cruciaal
Digitale en AI-platforms stellen bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen door het data-naar-actieproces te digitaliseren. Vraagvoorspelling en voorraadoptimalisatie zijn belangrijke processen binnen de beslissingsmatrix, en tools zoals Smart IP&O helpen voorraadbehoeften te voorspellen en die beslissingen te optimaliseren op basis van kosten, serviceniveaus en veranderende vraagpatronen. Dit maakt besluitvorming mogelijk met een snelheid en schaal die voorheen niet haalbaar waren. Bovendien ondersteunt Smart IP&O belangrijkere strategische beslissingen en kleinere, frequentere operationele beslissingen, waardoor een breed scala aan de toeleveringsketen wordt geoptimaliseerd.

3. Kwaliteit van besluitvorming
Snelle beslissingen alleen zijn niet genoeg. De kwaliteit van die beslissingen is van belang. Effectieve besluitvorming vereist nauwkeurige gegevens, prognoses en analyses om ervoor te zorgen dat beslissingen tot positieve resultaten leiden. Organisaties kunnen belangrijke factoren zoals kosten, beschikbaarheid en serviceniveaus beter in evenwicht brengen door gebruik te maken van tools die inzicht bieden in toekomstige trends en prestaties. Deze aanpak stelt hen in staat om strategieën te creëren die aansluiten bij de werkelijke behoeften en eisen, waardoor de efficiëntie en het algehele succes worden verbeterd.

Smart IP&O gebruikt geavanceerde prognosemodellen en realtime data om snelle en betrouwbare beslissingen te garanderen. Organisaties kunnen bijvoorbeeld geprojecteerde statistieken gebruiken om serviceniveaus, kosten en voorraadbeschikbaarheid in evenwicht te brengen, zodat voorraadbeleid aansluit bij de werkelijke vraagtrends.

4. Schaalbaarheid en consistentie in besluitvorming
Naarmate bedrijven groeien, neemt de complexiteit van supply chain-beslissingen toe en kan het verwerken van een toenemend aantal producten, datapunten en processen een uitdaging zijn. Digitale platforms en automatiseringstools helpen bedrijven hun besluitvormingsprocessen te schalen door grote hoeveelheden data met precisie en uniformiteit te beheren.

Door repetitieve taken te automatiseren en consistente regels toe te passen in verschillende scenario's, kunnen bedrijven ervoor zorgen dat beslissingen uniform worden genomen, wat leidt tot meer voorspelbare en betrouwbare uitkomsten. Deze aanpak leidt tot meer voorspelbare en betrouwbare uitkomsten, omdat geautomatiseerde systemen ervoor zorgen dat beslissingen consistent zijn, zelfs als het bedrijf groeit.

AI-gestuurde platforms zoals Smart IP&O bieden schaalbaarheid, waardoor bedrijven duizenden producten en datapunten met constante nauwkeurigheid kunnen beheren. Deze consistentie is cruciaal voor het handhaven van serviceniveaus en het verlagen van kosten naarmate de activiteiten uitbreiden.

5. Digitalisering van besluitvormingsprocessen
Digitalisering van besluitvormingsprocessen omvat het automatiseren van verschillende aspecten van besluitvorming. Door digitale hulpmiddelen te gebruiken, kunnen routinematige beslissingen, zoals beslissingen met betrekking tot inventaris, vraag en productie, worden geautomatiseerd, wat zorgt voor snellere en efficiëntere afhandeling van dagelijkse taken. In gevallen waarin nog steeds menselijke tussenkomst vereist is, kunnen systemen worden ingesteld om gebruikers te waarschuwen wanneer aan specifieke voorwaarden of drempels wordt voldaan. Dit vermindert de handmatige inspanning en stelt werknemers in staat zich te concentreren op meer strategisch en complex werk, wat uiteindelijk de productiviteit en efficiëntie verbetert.

 

De belofte van de digitale supply chain ligt in het vermogen om data snel en nauwkeurig om te zetten in actie. Om deze belofte volledig te benutten, moeten organisaties de beslissingskloof overbruggen door platforms als Smart IP&O te adopteren. Deze platforms verbeteren snelle besluitvorming en zorgen ervoor dat de kwaliteit niet wordt opgeofferd in het proces. Naarmate bedrijven evolueren, zullen degenen die deze tools succesvol integreren in hun beslissingsmatrix beter gepositioneerd zijn om concurrerend te blijven en te voldoen aan de steeds groeiende verwachtingen van klanten.

 

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken. Met AI kunnen we de vraag nauwkeuriger voorspellen, overtollige voorraden verminderen, voorraadtekorten voorkomen en uiteindelijk de bedrijfsresultaten van onze organisatie verbeteren. Laten we eens kijken hoe deze aanpak niet alleen de verkoop- en operationele efficiëntie verhoogt, maar ook de klanttevredenheid verhoogt door ervoor te zorgen dat producten altijd beschikbaar zijn wanneer dat nodig is.

 

Inzichten voor verbeterde besluitvorming in voorraadbeheer

  1. Verbeterde voorspellingsnauwkeurigheid Geavanceerde Machine Learning-algoritmen analyseren historische gegevens om patronen te identificeren die mensen mogelijk over het hoofd zien. Technieken als clustering, detectie van regimeveranderingen, detectie van afwijkingen en regressieanalyse bieden diepgaande inzichten in gegevens. Het meten van voorspellingsfouten is essentieel voor het verfijnen van voorspellingsmodellen; Technieken als Mean Absolute Error (MAE) en Root Mean Squared Error (RMSE) helpen bijvoorbeeld bij het kwantificeren van de nauwkeurigheid van voorspellingen. Bedrijven kunnen de nauwkeurigheid verbeteren door voortdurend prognoses te monitoren en aan te passen op basis van deze foutstatistieken. Zoals de Demand Planner bij een Hardware Retailer vermeld, “Met de verbeteringen aan onze prognoses en voorraadplanning die Smart Software mogelijk maakte, hebben we de veiligheidsvoorraad met 20% kunnen verminderen en tegelijkertijd de voorraadtekorten met 35% kunnen verminderen.”
  1. Realtime gegevensanalyse State-of-the-art systemen kunnen enorme hoeveelheden gegevens in realtime verwerken, waardoor bedrijven hun voorraadniveaus dynamisch kunnen aanpassen op basis van de huidige vraagtrends en marktomstandigheden. Afwijkingsdetectiealgoritmen kunnen plotselinge pieken of dalen in de vraag automatisch identificeren en corrigeren, zodat de voorspellingen accuraat blijven. Een opmerkelijk succesverhaal komt van Smart IP&O, waarmee een bedrijf de voorraad tegen 20% kon verminderen en tegelijkertijd de serviceniveaus kon handhaven door voortdurend realtime gegevens te analyseren en de prognoses dienovereenkomstig aan te passen. FedEx Tech's Manager Materials benadrukt, “Wat het verzoek ook is, we moeten aan onze serviceverplichtingen de volgende dag voldoen. Smart stelt ons in staat om onze voorraad aan te passen om er zeker van te zijn dat we de producten en onderdelen bij de hand hebben om de serviceniveaus te bereiken die onze klanten nodig hebben.”
  1. Verbeterde supply chain-efficiëntie Intelligente technologieplatforms kunnen de gehele supply chain optimaliseren, van inkoop tot distributie, door doorlooptijden te voorspellen en orderhoeveelheden te optimaliseren. Dit verkleint het risico op over- en onderbezetting. Met behulp van op prognoses gebaseerd voorraadbeheer heeft Smart Software bijvoorbeeld een fabrikant geholpen zijn toeleveringsketen te stroomlijnen, de doorlooptijden met 15% te verkorten en de algehele efficiëntie te verbeteren. De VP Operations bij Procon Pump verklaarde: “Een van de dingen die ik leuk vind aan deze nieuwe tool... is dat ik de gevolgen van beslissingen over voorraadvoorraden kan evalueren voordat ik ze implementeer.”
  1. Verbeterde besluitvorming AI biedt bruikbare inzichten en aanbevelingen, waardoor managers weloverwogen beslissingen kunnen nemen. Dit omvat het identificeren van langzaam bewegende artikelen, het voorspellen van de toekomstige vraag en het optimaliseren van de voorraadniveaus. Regressieanalyse kan bijvoorbeeld de verkoop relateren aan externe variabelen zoals seizoensinvloeden of economische indicatoren, waardoor een dieper inzicht ontstaat in de vraagfactoren. Een van de klanten van Smart Software rapporteerde een aanzienlijke verbetering in de besluitvormingsprocessen, wat resulteerde in een stijging van het serviceniveau met 30% en een vermindering van de overtollige voorraad met 15%. “Smart IP&O stelde ons in staat de vraag op elke opslaglocatie te modelleren en, met behulp van serviceniveaugestuurde planning, te bepalen hoeveel we op voorraad moesten hebben om het serviceniveau te bereiken dat we nodig hebben”, aldus de Inkoopmanager bij Seneca Companies.
  1. Kostenbesparing Door de voorraadniveaus te optimaliseren kunnen bedrijven de opslagkosten verlagen en verliezen als gevolg van verouderde of verlopen producten minimaliseren. AI-gestuurde systemen verminderen ook de noodzaak van handmatige voorraadcontroles, waardoor tijd en arbeidskosten worden bespaard. Dat blijkt uit een recente casestudy hoe de implementatie van Inventory Planning & Optimization (IP&O) binnen 90 dagen na de start van het project werd gerealiseerd. In de daaropvolgende zes maanden maakte IP&O het mogelijk de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in een voorraadreductie van $9,0 miljoen, terwijl het beoogde serviceniveau behouden bleef.

 

Door gebruik te maken van geavanceerde algoritmen en realtime data-analyse kunnen bedrijven optimale voorraadniveaus handhaven en de algehele prestaties van hun supply chain verbeteren. Inventory Planning & Optimization (IP&O) is een krachtig hulpmiddel dat uw organisatie kan helpen deze doelen te bereiken. Het integreren van de modernste voorraadoptimalisatie in uw organisatie kan leiden tot aanzienlijke verbeteringen op het gebied van efficiëntie, kostenreductie en klanttevredenheid.

 

 

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten schiet omhoog als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in Epicor Kinetic en hoe u hiervan kunt profiteren met Epicor Smart Inventory Planning and Optimization (Smart IP&O) om uw vraag voor te blijven in het licht van deze complexiteit.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, zullen we de vraag naar die producten voorspellen en vervolgens MRP invoeren om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een mobiele telefoon kocht. Je hebt een merk en model gekozen, maar van daaruit kreeg je waarschijnlijk opties voorgeschoteld: welk schermformaat wil je? Hoeveel opslagruimte wil je? Welke kleur heeft jouw voorkeur? Als dat bedrijf deze mobiele telefoons binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type schermformaat, voor alle opslagcapaciteiten, voor alle kleuren, en ook voor alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze mobiele telefoons kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

Planning BOM uitgelegd Hier komen Planning BOM's om de hoek kijken. Misschien werkt het verkoopteam aan een grote B2B-mogelijkheid voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningsstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen voor de mogelijke componenten ervan. De fabrikant van mobiele telefoons weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 128 GB opslagruimte, en dat veel minder mensen kiezen voor upgrades naar 256 GB of 512 GB. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugbrengen naar de 128GB-optie, 30% naar de 256GB-optie en 10% naar de 512GB-optie. Ze zouden hetzelfde kunnen doen voor schermformaten, kleuren of andere beschikbare aanpassingen.

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix bepaalt. Het is duidelijk dat het definiëren van deze verhoudingen enige aandacht vergt, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

Het belang van een goede voorspelling

Natuurlijk hebben we nog steeds een goede voorspelling nodig om in Epicor Kinetic te laden. Zoals uitgelegd in dit artikel, kan Epicor Kinetic weliswaar een voorspelling importeren, maar kan het er vaak geen genereren, en als dat wel het geval is, zijn er vaak een groot aantal moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bezocht, wat resulteert in onnauwkeurige prognoses. . Het is daarom aan het bedrijf om met zijn eigen sets prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren.
  • Overmatig vertrouwen op klant- of verkoopprognoses.
  • Gebrek aan nauwkeurigheid of prestatieregistratie.

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘mobiele telefoonbedrijf’, zonder een systematische manier om de belangrijkste vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Slimme IP&O: een allesomvattende oplossing

Smart IP&O ondersteunt planning op alle niveaus van uw stuklijst, hoewel het “uitblazen” wordt afgehandeld via MRP binnen Epicor Kinetic. Dit is de methode die we gebruiken voor onze Epicor Kinetic-klanten, die eenvoudig en effectief is:

  • Smart Demand Planner: Het platform bevat een speciaal gebouwde prognosetoepassing genaamd Smart Demand Planner die u gaat gebruiken om de vraag naar uw vervaardigde producten (meestal eindproducten) te voorspellen. Het genereert statistische prognoses, stelt planners in staat aanpassingen aan te brengen en/of andere prognoses in te passen (zoals verkoop- of klantprognoses) en houdt de nauwkeurigheid bij. De output hiervan is een prognose die wordt ingevoerd in de prognoseinvoer in Epicor Kinetic, waar MRP deze zal ophalen. MRP zal vervolgens gebruik maken van de vraag op het niveau van het eindproduct en ook de materiaalvereisten via de stuklijst uitblazen, zodat de vraag ook op lagere niveaus wordt onderkend.
  • Smart Inventory Optimization: U gebruikt tegelijkertijd Smart Inventory Optimization om min-/max-/veiligheidsniveaus in te stellen voor zowel alle eindproducten die u op voorraad maakt (indien van toepassing; sommige van onze klanten werken puur op bestelling op basis van een vaste vraag), als voor onbewerkte goederen materialen. De sleutel hier is dat Smart op grondstofniveau de vraag naar werkgebruik, doorlooptijden van leveranciers, enz. zal benutten om deze parameters te optimaliseren, terwijl tegelijkertijd verkooporders/verzendingen worden gebruikt als vraag op het niveau van het eindproduct. Smart verwerkt deze meerdere inputs van de vraag op elegante wijze via de bidirectionele integratie met Epicor Kinetic.

Wanneer MRP wordt uitgevoerd, worden vraag en aanbod (wat wederom de vraag naar grondstoffen omvat die voortvloeit uit de voltooide goede prognose) geneutraliseerd met de min/max/veiligheidsniveaus die u hebt vastgesteld om PO- en werksuggesties voor te stellen.

 

Breid Epicor Kinetic uit met Smart IP&O

Smart IP&O is ontworpen om uw Epicor Kinetic-systeem uit te breiden met vele geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

Door gebruik te maken van de Planning BOM-mogelijkheden van Epicor Kinetic naast de geavanceerde functies voor prognoses en voorraadoptimalisatie van Smart IP&O, zorgt u ervoor dat u efficiënt en nauwkeurig aan de vraag kunt voldoen, ongeacht de complexiteit van uw productconfiguraties. Deze synergie verbetert niet alleen de nauwkeurigheid van de prognoses, maar versterkt ook de algehele operationele efficiëntie, waardoor u voorop kunt blijven lopen in een concurrerende markt.

 

 

De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor is op het gebied van supply chain-analyse. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. Maar we zijn niet de enigen: er zijn een klein aantal andere softwarebedrijven over de hele wereld die bezig zijn met een inhaalslag.

Wat is de volgende stap op het gebied van supply chain-analyse? Waar ligt de volgende grens? Het kan gaan om een soort neuraal netwerkmodel van een distributiesysteem. Maar we zouden betere kansen hebben op een uitbreiding van onze toonaangevende modellen van voorraadsystemen met één echelon naar voorraadsystemen met meerdere echelons.

Figuren 1 en 2 illustreren het onderscheid tussen systemen met één en meerdere echelons. Figuur 1 toont een fabrikant die afhankelijk is van een bron om zijn voorraad reserveonderdelen of componenten aan te vullen. Wanneer er voorraadtekorten dreigen, bestelt de fabrikant aanvullingsvoorraden bij de Bron.

Single Multiechelon Inventory Optimization Software AI

Figuur 1: Een inventarisatiesysteem met één echelon

 

Single-echelon-modellen bevatten niet expliciet details van de Bron. Het blijft mysterieus, een onzichtbare geest wiens enige relevante kenmerk de willekeurige tijd is die nodig is om te reageren op een aanvullingsverzoek. Belangrijk is dat er impliciet van wordt uitgegaan dat de Bron zelf nooit een voorraad opslaat. Die veronderstelling kan voor veel doeleinden ‘goed genoeg’ zijn, maar kan niet letterlijk waar zijn. Dit wordt afgehandeld door stockout-gebeurtenissen van leveranciers in de distributie van de doorlooptijd van de aanvullingen te verwerken. Het terugdringen van die veronderstelling is de reden voor multi-echelon-modellering.

Figuur 2 toont een eenvoudig inventarisatiesysteem met twee niveaus. Het verschuift domeinen van productie naar distributie. Er zijn meerdere magazijnen (WH's) afhankelijk van een distributiecentrum (DC) voor bevoorrading. Nu is de DC een expliciet onderdeel van het model. Het heeft een beperkte capaciteit om bestellingen te verwerken en vereist zijn eigen herschikkingsprotocollen. De DC krijgt zijn aanvulling van hogerop in de keten van een bron. De Bron kan de fabrikant van het inventarisitem zijn of misschien een “regionale DC” of iets dergelijks, maar – raad eens? – het is een andere geest. Net als in het single-echelonmodel heeft deze geest één zichtbaar kenmerk: de waarschijnlijkheidsverdeling van de doorlooptijd van de aanvulling. (De clou van een beroemde grap uit de natuurkunde is: “Maar mevrouw, het zijn schildpadden helemaal naar beneden.” In ons geval: “Het zijn geesten helemaal naar boven.”)

Two Multiechelon Inventory Optimization Software AI

Figuur 2: Een inventarisatiesysteem met twee niveaus

 

Het probleem van procesontwerp en -optimalisatie is veel moeilijker op twee niveaus. De moeilijkheid is niet alleen de toevoeging van nog twee controleparameters voor elke WH (bijvoorbeeld een Min en een Max voor elk) plus dezelfde twee parameters voor de DC. Het lastigste deel is het modelleren van de interactie tussen de WH's. In het model met één niveau opereert elke WH in zijn eigen kleine wereld en hoort hij nooit "Sorry, we hebben geen voorraad meer" van de spookachtige Bron. Maar in een systeem met twee niveaus zijn er meerdere WH's die allemaal strijden om bevoorrading vanuit hun gedeelde DC. Deze concurrentie creëert de belangrijkste analytische moeilijkheid: de WH's kunnen niet afzonderlijk worden gemodelleerd, maar moeten tegelijkertijd worden geanalyseerd. Als één DC bijvoorbeeld tien WH's bedient, zijn er 2+10×2 = 22 voorraadbeheerparameters waarvan de waarden moeten worden berekend. In nerdtaal: het is niet triviaal om een beperkt, discreet optimalisatieprobleem met 22 variabelen en een stochastische objectieve functie op te lossen.

Als we het verkeerde systeemontwerp kiezen, ontdekken we een nieuw fenomeen dat inherent is aan systemen met meerdere niveaus, dat we informeel ‘meltdown’ of ‘catastrofe’ noemen. Bij dit fenomeen kan het DC de bevoorradingsbehoefte van de WH's niet bijhouden, waardoor er uiteindelijk voorraadtekorten op magazijnniveau ontstaan. Vervolgens putten de steeds hectischer wordende aanvullingsverzoeken van de WH de voorraad bij het DC uit, waardoor zijn eigen paniekerige verzoeken om aanvulling vanuit het regionale DC beginnen. Als het regionale DC er te lang over doet om het DC weer aan te vullen, dan ontaardt het hele systeem in een tragedie van uitputting.

Eén oplossing voor het meltdown-probleem is om het DC zo te ontwerpen dat het bijna nooit leeg raakt, maar dat kan erg duur zijn. Daarom is er in de eerste plaats een regionaal DC. Elk betaalbaar systeemontwerp heeft dus een DC die net goed genoeg is om lang mee te gaan tussen meltdowns. Dit perspectief impliceert een nieuw type Key Performance Indicator (KPI), zoals “De kans op een meltdown binnen X jaar is minder dan Y procent.”

De volgende grens zal nieuwe methoden en nieuwe maatstaven vereisen, maar zal een nieuwe manier bieden om distributiesystemen te ontwerpen en te optimaliseren. Onze skunkfabriek genereert al prototypes. Bekijk deze ruimte.

 

 

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.