Eenvoudig is goed, behalve als dat niet het geval is

In deze blog sturen we het gesprek in de richting van het transformatieve potentieel van technologie op het gebied van voorraadbeheer. De discussie draait om de beperkingen van eenvoudig denken bij het beheren van voorraadbeheerprocessen en de noodzaak van het adopteren van systematische softwareoplossingen. Dr. Tom Willemain benadrukt het contrast tussen Smart Software en de basale, zij het comfortabele, benaderingen die doorgaans door veel bedrijven worden toegepast. Deze elementaire methoden, die vaak de voorkeur genieten vanwege hun gebruiksgemak en nulkosten, worden onder de loep genomen vanwege hun tekortkomingen bij het aanpakken van de dynamische uitdagingen van voorraadbeheer.

Het belang van dit onderwerp ligt in de cruciale rol die voorraadbeheer speelt in de operationele efficiëntie van een bedrijf en de directe impact ervan op klanttevredenheid en winstgevendheid. Dr. Tom Willemain wijst op de veelvoorkomende valkuilen van het vertrouwen op te eenvoudige vuistregels, zoals het grillige kinderrijmpje dat door een bedrijf wordt gebruikt om de herschikkingspunten te bepalen, of de onderbuikgevoel-methode, die afhangt van niet-kwantificeerbare intuïtie in plaats van van gegevens. Hoewel deze benaderingen aantrekkelijk zijn in hun eenvoud, slagen ze er niet in zich aan te passen aan marktschommelingen, de betrouwbaarheid van leveranciers of veranderingen in de vraag, waardoor aanzienlijke risico's voor het bedrijf ontstaan. De video bekritiseert ook de praktijk van het vaststellen van herschikkingspunten op basis van veelvouden van de gemiddelde vraag, waarbij de minachting voor de volatiliteit van de vraag wordt benadrukt, een fundamentele overweging in de voorraadtheorie.

Concluderend pleit de presentator voor een meer geavanceerde, datagestuurde benadering van voorraadbeheer. Door gebruik te maken van geavanceerde softwareoplossingen zoals die van Smart Software, kunnen bedrijven complexe vraagpatronen nauwkeurig modelleren en voorraadregels stresstesten aan de hand van talloze toekomstscenario's. Deze wetenschappelijke methode maakt het mogelijk om bestelpunten in te stellen die rekening houden met de reële variabiliteit, waardoor het risico op voorraadtekorten en de daaraan verbonden kosten worden geminimaliseerd. De video benadrukt dat, hoewel eenvoudige heuristieken verleidelijk kunnen zijn vanwege hun gebruiksgemak, ze niet geschikt zijn voor de huidige dynamische marktomstandigheden. De presentator moedigt kijkers aan om technologische oplossingen te omarmen die professionele nauwkeurigheid en aanpassingsvermogen bieden en duurzaam zakelijk succes garanderen.

 

 

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten schiet omhoog als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in Epicor Kinetic en hoe u hiervan kunt profiteren met Epicor Smart Inventory Planning and Optimization (Smart IP&O) om uw vraag voor te blijven in het licht van deze complexiteit.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, zullen we de vraag naar die producten voorspellen en vervolgens MRP invoeren om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een mobiele telefoon kocht. Je hebt een merk en model gekozen, maar van daaruit kreeg je waarschijnlijk opties voorgeschoteld: welk schermformaat wil je? Hoeveel opslagruimte wil je? Welke kleur heeft jouw voorkeur? Als dat bedrijf deze mobiele telefoons binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type schermformaat, voor alle opslagcapaciteiten, voor alle kleuren, en ook voor alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze mobiele telefoons kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

Planning BOM uitgelegd Hier komen Planning BOM's om de hoek kijken. Misschien werkt het verkoopteam aan een grote B2B-mogelijkheid voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningsstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen voor de mogelijke componenten ervan. De fabrikant van mobiele telefoons weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 128 GB opslagruimte, en dat veel minder mensen kiezen voor upgrades naar 256 GB of 512 GB. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugbrengen naar de 128GB-optie, 30% naar de 256GB-optie en 10% naar de 512GB-optie. Ze zouden hetzelfde kunnen doen voor schermformaten, kleuren of andere beschikbare aanpassingen.

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix bepaalt. Het is duidelijk dat het definiëren van deze verhoudingen enige aandacht vergt, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

Het belang van een goede voorspelling

Natuurlijk hebben we nog steeds een goede voorspelling nodig om in Epicor Kinetic te laden. Zoals uitgelegd in dit artikel, kan Epicor Kinetic weliswaar een voorspelling importeren, maar kan het er vaak geen genereren, en als dat wel het geval is, zijn er vaak een groot aantal moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bezocht, wat resulteert in onnauwkeurige prognoses. . Het is daarom aan het bedrijf om met zijn eigen sets prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren.
  • Overmatig vertrouwen op klant- of verkoopprognoses.
  • Gebrek aan nauwkeurigheid of prestatieregistratie.

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘mobiele telefoonbedrijf’, zonder een systematische manier om de belangrijkste vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Slimme IP&O: een allesomvattende oplossing

Smart IP&O ondersteunt planning op alle niveaus van uw stuklijst, hoewel het “uitblazen” wordt afgehandeld via MRP binnen Epicor Kinetic. Dit is de methode die we gebruiken voor onze Epicor Kinetic-klanten, die eenvoudig en effectief is:

  • Smart Demand Planner: Het platform bevat een speciaal gebouwde prognosetoepassing genaamd Smart Demand Planner die u gaat gebruiken om de vraag naar uw vervaardigde producten (meestal eindproducten) te voorspellen. Het genereert statistische prognoses, stelt planners in staat aanpassingen aan te brengen en/of andere prognoses in te passen (zoals verkoop- of klantprognoses) en houdt de nauwkeurigheid bij. De output hiervan is een prognose die wordt ingevoerd in de prognoseinvoer in Epicor Kinetic, waar MRP deze zal ophalen. MRP zal vervolgens gebruik maken van de vraag op het niveau van het eindproduct en ook de materiaalvereisten via de stuklijst uitblazen, zodat de vraag ook op lagere niveaus wordt onderkend.
  • Smart Inventory Optimization: U gebruikt tegelijkertijd Smart Inventory Optimization om min-/max-/veiligheidsniveaus in te stellen voor zowel alle eindproducten die u op voorraad maakt (indien van toepassing; sommige van onze klanten werken puur op bestelling op basis van een vaste vraag), als voor onbewerkte goederen materialen. De sleutel hier is dat Smart op grondstofniveau de vraag naar werkgebruik, doorlooptijden van leveranciers, enz. zal benutten om deze parameters te optimaliseren, terwijl tegelijkertijd verkooporders/verzendingen worden gebruikt als vraag op het niveau van het eindproduct. Smart verwerkt deze meerdere inputs van de vraag op elegante wijze via de bidirectionele integratie met Epicor Kinetic.

Wanneer MRP wordt uitgevoerd, worden vraag en aanbod (wat wederom de vraag naar grondstoffen omvat die voortvloeit uit de voltooide goede prognose) geneutraliseerd met de min/max/veiligheidsniveaus die u hebt vastgesteld om PO- en werksuggesties voor te stellen.

 

Breid Epicor Kinetic uit met Smart IP&O

Smart IP&O is ontworpen om uw Epicor Kinetic-systeem uit te breiden met vele geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

Door gebruik te maken van de Planning BOM-mogelijkheden van Epicor Kinetic naast de geavanceerde functies voor prognoses en voorraadoptimalisatie van Smart IP&O, zorgt u ervoor dat u efficiënt en nauwkeurig aan de vraag kunt voldoen, ongeacht de complexiteit van uw productconfiguraties. Deze synergie verbetert niet alleen de nauwkeurigheid van de prognoses, maar versterkt ook de algehele operationele efficiëntie, waardoor u voorop kunt blijven lopen in een concurrerende markt.

 

 

De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor is op het gebied van supply chain-analyse. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. Maar we zijn niet de enigen: er zijn een klein aantal andere softwarebedrijven over de hele wereld die bezig zijn met een inhaalslag.

Wat is de volgende stap op het gebied van supply chain-analyse? Waar ligt de volgende grens? Het kan gaan om een soort neuraal netwerkmodel van een distributiesysteem. Maar we zouden betere kansen hebben op een uitbreiding van onze toonaangevende modellen van voorraadsystemen met één echelon naar voorraadsystemen met meerdere echelons.

Figuren 1 en 2 illustreren het onderscheid tussen systemen met één en meerdere echelons. Figuur 1 toont een fabrikant die afhankelijk is van een bron om zijn voorraad reserveonderdelen of componenten aan te vullen. Wanneer er voorraadtekorten dreigen, bestelt de fabrikant aanvullingsvoorraden bij de Bron.

Single Multiechelon Inventory Optimization Software AI

Figuur 1: Een inventarisatiesysteem met één echelon

 

Single-echelon-modellen bevatten niet expliciet details van de Bron. Het blijft mysterieus, een onzichtbare geest wiens enige relevante kenmerk de willekeurige tijd is die nodig is om te reageren op een aanvullingsverzoek. Belangrijk is dat er impliciet van wordt uitgegaan dat de Bron zelf nooit een voorraad opslaat. Die veronderstelling kan voor veel doeleinden ‘goed genoeg’ zijn, maar kan niet letterlijk waar zijn. Dit wordt afgehandeld door stockout-gebeurtenissen van leveranciers in de distributie van de doorlooptijd van de aanvullingen te verwerken. Het terugdringen van die veronderstelling is de reden voor multi-echelon-modellering.

Figuur 2 toont een eenvoudig inventarisatiesysteem met twee niveaus. Het verschuift domeinen van productie naar distributie. Er zijn meerdere magazijnen (WH's) afhankelijk van een distributiecentrum (DC) voor bevoorrading. Nu is de DC een expliciet onderdeel van het model. Het heeft een beperkte capaciteit om bestellingen te verwerken en vereist zijn eigen herschikkingsprotocollen. De DC krijgt zijn aanvulling van hogerop in de keten van een bron. De Bron kan de fabrikant van het inventarisitem zijn of misschien een “regionale DC” of iets dergelijks, maar – raad eens? – het is een andere geest. Net als in het single-echelonmodel heeft deze geest één zichtbaar kenmerk: de waarschijnlijkheidsverdeling van de doorlooptijd van de aanvulling. (De clou van een beroemde grap uit de natuurkunde is: “Maar mevrouw, het zijn schildpadden helemaal naar beneden.” In ons geval: “Het zijn geesten helemaal naar boven.”)

Two Multiechelon Inventory Optimization Software AI

Figuur 2: Een inventarisatiesysteem met twee niveaus

 

Het probleem van procesontwerp en -optimalisatie is veel moeilijker op twee niveaus. De moeilijkheid is niet alleen de toevoeging van nog twee controleparameters voor elke WH (bijvoorbeeld een Min en een Max voor elk) plus dezelfde twee parameters voor de DC. Het lastigste deel is het modelleren van de interactie tussen de WH's. In het model met één niveau opereert elke WH in zijn eigen kleine wereld en hoort hij nooit "Sorry, we hebben geen voorraad meer" van de spookachtige Bron. Maar in een systeem met twee niveaus zijn er meerdere WH's die allemaal strijden om bevoorrading vanuit hun gedeelde DC. Deze concurrentie creëert de belangrijkste analytische moeilijkheid: de WH's kunnen niet afzonderlijk worden gemodelleerd, maar moeten tegelijkertijd worden geanalyseerd. Als één DC bijvoorbeeld tien WH's bedient, zijn er 2+10×2 = 22 voorraadbeheerparameters waarvan de waarden moeten worden berekend. In nerdtaal: het is niet triviaal om een beperkt, discreet optimalisatieprobleem met 22 variabelen en een stochastische objectieve functie op te lossen.

Als we het verkeerde systeemontwerp kiezen, ontdekken we een nieuw fenomeen dat inherent is aan systemen met meerdere niveaus, dat we informeel ‘meltdown’ of ‘catastrofe’ noemen. Bij dit fenomeen kan het DC de bevoorradingsbehoefte van de WH's niet bijhouden, waardoor er uiteindelijk voorraadtekorten op magazijnniveau ontstaan. Vervolgens putten de steeds hectischer wordende aanvullingsverzoeken van de WH de voorraad bij het DC uit, waardoor zijn eigen paniekerige verzoeken om aanvulling vanuit het regionale DC beginnen. Als het regionale DC er te lang over doet om het DC weer aan te vullen, dan ontaardt het hele systeem in een tragedie van uitputting.

Eén oplossing voor het meltdown-probleem is om het DC zo te ontwerpen dat het bijna nooit leeg raakt, maar dat kan erg duur zijn. Daarom is er in de eerste plaats een regionaal DC. Elk betaalbaar systeemontwerp heeft dus een DC die net goed genoeg is om lang mee te gaan tussen meltdowns. Dit perspectief impliceert een nieuw type Key Performance Indicator (KPI), zoals “De kans op een meltdown binnen X jaar is minder dan Y procent.”

De volgende grens zal nieuwe methoden en nieuwe maatstaven vereisen, maar zal een nieuwe manier bieden om distributiesystemen te ontwerpen en te optimaliseren. Onze skunkfabriek genereert al prototypes. Bekijk deze ruimte.

 

 

Epicor verwerft slimme software voor AI-aangedreven technologieën voor voorraadplanning en -optimalisatie

Smart Software is verheugd aan te kondigen dat we ons aansluiten bij Epicor, een wereldleider van branchespecifieke bedrijfssoftware. De overname brengt twee bedrijven samen die nauw op elkaar zijn afgestemd om organisaties te helpen op het juiste moment tot de juiste inzichten te komen en actie te ondernemen om de bedrijfsprestaties te maximaliseren.

Door zich aan te sluiten bij Epicor zullen Smart Software-klanten profiteren van aanzienlijke schaalgrootte, ontwikkeling en investeringen in onze oplossingen voor voorraadplanning en optimalisatie, waardoor u in de loop van de tijd nog meer mogelijkheden en productopties krijgt. Met de overname van Smart Software complementeert en versterkt Epicor zijn portfolio van best-in-class ERP-oplossingen, waardoor makers, verhuizers en verkopers wereldwijd hun toeleveringsketens kunnen stroomlijnen en vereenvoudigen om een concurrentievoordeel te behalen. Als uw strategische zakenpartner is het onze topprioriteit bij de integratie van de organisaties in de komende maanden om u het hoogste niveau van service en ondersteuning te blijven bieden dat u verwacht.

Voor meer informatie over het nieuws kunt u terecht op de website Epicor-nieuwskamer

 

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Disney, Arizona Public Service en Ameren. Smart's Inventory Planning & Optimization Platform, Smart IP&O, biedt vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad waaraan moet worden voldaan

Over Epicor
Epicor rust hardwerkende bedrijven uit met bedrijfsoplossingen die de wereld draaiende houden. Al 50 jaar vertrouwen Epicor-klanten in de automobiel-, bouwtoeleverings-, distributie-, productie- en detailhandelssector op Epicor om hen te helpen beter zaken te doen. Innovatieve Epicor-oplossingenets zijn zorgvuldig samengesteld om aan de behoeften van de klant te voldoen en gebouwd om flexibel te reageren op hun snel veranderende realiteit. Met diepgaande kennis en ervaring in de sector versnelt Epicor de ambities van haar klanten, of ze nu willen groeien en transformeren, of simpelweg productiever en effectiever willen worden. Bezoek www.epicor.com voor meer informatie.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.