Smart Software presenteert op Epicor Insights 2021

Smart Software President en CEO presenteert Epicor Insights 2021 breakout-sessie over het creëren van concurrentievoordeel met slimme voorraadplanning en -optimalisatie

 

Belmont, MA, juni 2021 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op Epicor Insights 2021.

Greg Hartunian, CEO van Smart Software, zal presenteren "Concurrentievoordeel creëren met slimme voorraadplanning en -optimalisatie." Greg zal uitleggen hoe planningsteams in staat kunnen worden gesteld om de voorraad te verminderen, de serviceniveaus te verbeteren en de operationele efficiëntie te verhogen. De meeste voorraadplanningsteams vertrouwen op traditionele prognosebenaderingen, vuistregels en verkoopfeedback op aanvraag. Onze breakout-sessie bij Epicor Insights bespreekt deze benaderingen, waarom ze vaak falen en hoe nieuwe probabilistische prognose- en optimalisatiemethoden een groot verschil kunnen maken voor uw bedrijfsresultaten.

  • De presentatie is gepland voor wo 14 juli 10:25-11:15 AM (PST) 

1 Epicor Inventory Mangement Platinum Partner

Epicor Insights 2021 brengt meer dan 2.000 gebruikers van Epicor's branchespecifieke ERP-oplossingen voor de productie-, distributie- en dienstverlenende sector samen. Ga voor meer informatie naar INZICHTEN 2021.

 Bezoek ons in Mandalay Bay in Las Vegas, in het Solution Pavilion, stand #1.

3 Epicor Inventory Mangement Platinum Partner

 

2 Epicor Inventory Mangement Platinum Partner

 

Smart Software is een Epicor Platinum Partner en toonaangevende leverancier van oplossingen voor vraagplanning, prognoses, voorraadoptimalisatie en analyse. Ons webplatform, Smart IP&O, maakt gebruik van probabilistische prognosemodellering, machine learning en collaboratieve vraagplanning om de voorraadniveaus te optimaliseren en de nauwkeurigheid van de prognoses te vergroten. Je gebruikt Smart IP&O om nauwkeurige prognoses en optimaal voorraadbeleid te creëren die geautomatiseerde bestellingen in Epicor stimuleren. Het platform omvat bidirectionele integraties met zowel Epicor ERP als Prophet 21.

 

 

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

 


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Laten we beginnen met in te zien dat een hogere omzet een goede zaak voor u is, en dat het vergroten van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten.

Maar laten we ook erkennen dat een toenemende beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad aanhoudt, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit tot een win-win te maken, als het maar kan worden herkend.

Om hier de juiste beslissing te nemen, moet u systematisch over het probleem nadenken. Dat vereist dat u probabilistische modellen van het voorraadbeheerproces gebruikt.

 

Een scenario

Laten we eens kijken naar een specifiek, realistisch scenario. Heel wat factoren zijn van invloed op de resultaten:

  • Het artikel: een specifiek reserveonderdeel voor een klein volume.
  • Vraaggemiddelde: gemiddeld 0,1 eenheden per dag (dus zeer "intermitterend")
  • Standaardafwijking van de vraag: 0,35 eenheden per dag (dus zeer variabel of "oververspreid").
  • Gemiddelde doorlooptijd leverancier: 5 dagen.
  • Eenheidsprijs: $100.
  • Bewaarkosten per jaar als % van eenheidskosten: 10%.
  • Bestelkosten per PO-snede: $25.
  • Gevolgen stockout: omzetverlies (dus een competitieve markt, geen backorders).
  • Tekortkosten per verloren verkoop: $100.
  • Doelstelling serviceniveau: 85% (dus 15% kans op een stockout in elke aanvullingscyclus).
  • Voorraadbeheerbeleid: Periodieke beoordeling/Order-up-to (ook wel at (T,S)-beleid genoemd)

 

Voorraadbeheerbeleid

Een woord over het voorraadbeheerbeleid. Het (T,S)-beleid is een van de vele die in de praktijk gebruikelijk zijn. Hoewel er andere, efficiëntere beleidsregels zijn (ze wachten bijvoorbeeld niet tot T dagen zijn verstreken voordat ze de voorraad aanpassen), is (T,S) een van de eenvoudigste en daarom behoorlijk populair. Het werkt als volgt: elke T dagen controleer je hoeveel eenheden je op voorraad hebt, zeg X eenheden. Vervolgens bestelt u SX-eenheden, die verschijnen na de doorlooptijd van de leverancier (in dit geval 5 dagen). De T in (T,S) is het "bestelinterval", het aantal dagen tussen bestellingen; de S is het "order-up-to-niveau", het aantal eenheden dat u bij de hand wilt hebben aan het begin van elke aanvullingscyclus.

Om het meeste uit dit beleid te halen, moet u verstandig waarden van T en S kiezen. Verstandig kiezen betekent dat u niet kunt winnen door te raden of door eenvoudige vuistregels te gebruiken, zoals "Houd een gemiddelde van 3 x de gemiddelde vraag bij de hand." Slechte keuzes van T en S schaden zowel uw klanten als uw bedrijfsresultaten. En te lang vasthouden aan keuzes die ooit goed waren, kan resulteren in slechte prestaties als een van de bovenstaande factoren aanzienlijk verandert, dus de waarden van T en S moeten zo nu en dan opnieuw worden berekend.

De slimme manier om de juiste waarden van T en S te kiezen, is door probabilistische modellen te gebruiken die zijn gecodeerd in geavanceerde software. Het gebruik van software is essentieel wanneer u moet opschalen en waarden van T en S moet kiezen die geschikt zijn voor niet één item, maar voor honderden of duizenden.

 

Analyse van scenario

Laten we eens kijken hoe we in dit scenario geld kunnen verdienen. Wat is het voordeel? Als er geen kosten zouden zijn, zou deze post gemiddeld $3.650 per jaar kunnen genereren: 0,1 eenheden/dag x 365 dagen x $100/eenheid. Daarvan worden de bedrijfskosten afgetrokken, bestaande uit voorraad-, bestel- en tekortkosten. Elk van deze zal afhangen van uw keuzes van T en S.

De software geeft specifieke getallen: het instellen van T = 321 dagen en S = 40 eenheden resulteert in gemiddelde jaarlijkse bedrijfskosten van $604, wat een verwachte marge oplevert van $3.650 – $604 = $3.046. Zie tabel 1, linkerkolom. Dit gebruik van software wordt 'voorspellende analyse' genoemd omdat het input van het systeemontwerp vertaalt in schattingen van een belangrijke prestatie-indicator, marge.

Bedenk nu of u het beter kunt doen. Het doel van het serviceniveau in dit scenario is 85%, wat een enigszins ontspannen standaard is die geen aandacht zal trekken. Wat als u uw klanten een 99%-serviceniveau zou kunnen bieden? Dat klinkt als een duidelijk concurrentievoordeel, maar zou het uw marge verminderen? Niet als je de waarden van T en S goed aanpast.

Door T = 216 dagen en S = 35 eenheden in te stellen, worden de gemiddelde jaarlijkse bedrijfskosten verlaagd tot $551 en wordt de verwachte marge verhoogd tot $3.650 – $551 = $3.099. Zie tabel 1, rechterkolom. Dit is de win-win die we wilden: hogere klanttevredenheid en ongeveer 2% meer omzet. Dit gebruik van de software wordt "gevoeligheidsanalyse" genoemd omdat het laat zien hoe gevoelig de marge is voor de keuze van het serviceniveaudoel.

Software kan u ook helpen de complexe, willekeurige dynamiek van voorraadbewegingen te visualiseren. Een bijproduct van de analyse die tabel 1 vulde, zijn grafieken die de willekeurige paden laten zien die door de voorraad worden afgelegd terwijl deze afneemt gedurende een aanvullingscyclus. Figuur 1 toont een selectie van 100 willekeurige scenario's voor het scenario waarin de service level target 99% is. In de figuur resulteerde slechts 1 van de 100 scenario's in een stockout, wat de juistheid van de keuze voor order-up-to-level bevestigt.

 

Overzicht

Het beheer van voorraden reserveonderdelen wordt vaak lukraak gedaan met behulp van onderbuikgevoel, gewoonte of verouderde vuistregel. Op deze manier doorgaan is geen betrouwbaar en reproduceerbaar pad naar een hogere marge of hogere klanttevredenheid. Waarschijnlijkheidstheorie, gedestilleerd tot waarschijnlijkheidsmodellen en vervolgens gecodeerd in geavanceerde software, vormt de basis voor coherente, efficiënte richtlijnen voor het beheren van reserveonderdelen op basis van feiten: vraagkenmerken, doorlooptijden, serviceniveaudoelen, kosten en andere factoren. De hier geanalyseerde scenario's illustreren dat het mogelijk is om zowel een hoger serviceniveau als een hogere marge te realiseren. Een groot aantal scenario's die hier niet worden weergegeven, biedt manieren om hogere serviceniveaus te bereiken, maar marge te verliezen. Gebruik de software.

Scenarios with different service level targets

Stock on hand during one replenishment cycle

 

 

Laat een reactie achter

gerelateerde berichten

Call an Audible to Proactively Counter Supply Chain Noise

Bel een Audible om proactief ruis in de supply chain tegen te gaan

U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

Managing the Inventory of Promoted Items

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Top 3 Most Common Inventory Control Policies

Top 3 meest voorkomende voorraadbeheerbeleid

Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Omgaan met de stijgende vraag tijdens de rebound

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Veel van onze klanten die tijdens de pandemie de vraag zagen opdrogen, zien nu de vraag terugkeren. Sommigen zien een aanzienlijke stijging van de vraag. Andere klanten in kritieke sectoren zoals kunststoffen, biotechnologie, halfgeleiders en elektronica zagen de vraag al in april stijgen. Lees verder voor suggesties over hoe u met deze situaties om kunt gaan.

      Een stijgende vraag veroorzaakt meestal twee problemen: onvermogen om bestellingen uit te voeren en onvermogen om aanvulling te krijgen vanwege overbelasting van leveranciers. Deze situatie vereist veranderingen in de manier waarop u uw geavanceerde planningssoftware gebruikt. Hier zijn drie tips om u te helpen het hoofd te bieden.

       

      Tip #1: Beperk uw temporele focus

       

      In normale tijden (weet je nog?), impliceerden meer gegevens betere resultaten. Tegenwoordig vergiftigen oude gegevens uw berekeningen, omdat ze voorwaarden vertegenwoordigen die niet meer van toepassing zijn. Voorspellingen en andere berekeningen dient u te baseren op gegevens uit de huidige situatie. Waar gegevens uit het verleden moeten worden afgesneden, kan duidelijk zijn uit een grafiek van de gegevens, of u kunt besluiten een "redelijke" afkapdatum vast te stellen op basis van een consensus van collega's. Smart Software heeft machine learning-algoritmen ontwikkeld die automatisch identificeren hoeveel historische data optimaal aan het voorspellingsmodel moet worden ingevoerd. Let op deze verbeteringen aan de software die binnenkort wordt uitgerold. Voer in de tussentijd nauwkeurigheidstests uit met behulp van uitgestelde werkelijke waarden met verschillende historische startdatums. Smart's prognose versus werkelijke functie ondersteunt dit automatisch.

      Smart Demand Planner forecasts vs. actual report

       

      Tip #2: Verhoog je planningstempo

       

      Wanneer de activiteiten stabiel zijn, kunt u uw voorraadbeleid instellen en erop vertrouwen dat dit voor een lange tijd geschikt is. In turbulente tijden is het belangrijk om de frequentie van uw planningscycli te verhogen om te voorkomen dat oude beleidsinstellingen te ver wegdrijven van de optimale situatie.  Frequentere herijking van uw voorraadbeleid en prognoses betekent dat u sneller trends opmerkt die uw concurrentie zullen verrassen en u altijd een stap voor blijven. Met software die in staat is om automatisch optimale waarden te selecteren, kan al dat werk in één keer door de software worden gedaan. U moet die wijzigingen bekijken en mogelijk aanpassen, maar het is logisch om de software het grootste deel van het werk te laten doen.

       

      Tip #3: Doe meer wat-als-planning

       

      In turbulente tijden verwacht je misschien nog meer turbulentie in de toekomst. Door uw software te gebruiken voor wat-als-planning kunt u zich voorbereiden op veranderingen die mogelijk komen. Stel dat u contact heeft gehad met een belangrijke leverancier die erop wijst dat ze mogelijk de prijzen verhogen of hun leveringsschema's moeten verschuiven. Door de software verschillende inputs te geven, kunt u noodplannen maken. Als de prijzen stijgen, kunt u zien hoe reageren door het wijzigen van bestelhoeveelheden van invloed zou zijn op uw voorraadkosten en voorraadinvesteringen. Als de doorlooptijden oplopen, kunt u zien wat de impact zou zijn op de artikelbeschikbaarheid. Deze voorkennis helpt u erachter te komen wat uw tegenbewegingen zouden zijn voordat de crisis toeslaat.

      Als er ooit een tijd is geweest dat we op de automatische piloot konden cruisen, dan is het wel in de achteruitkijkspiegel. Uw organisatie, die een explosieve groei doormaakt, heeft veel uitdagingen. Oude antwoorden zijn achterhaald; nieuwe antwoorden moeten ergens vandaan komen, snel. Geavanceerde software die gebruikmaakt van probabilistische voorspelling kan helpen, samen met veranderingen in planningsprocessen.

       

      Laat een reactie achter

      gerelateerde berichten

      Call an Audible to Proactively Counter Supply Chain Noise

      Bel een Audible om proactief ruis in de supply chain tegen te gaan

      U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

      Managing the Inventory of Promoted Items

      Beheer van de inventaris van gepromote artikelen

      In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

      Top 3 Most Common Inventory Control Policies

      Top 3 meest voorkomende voorraadbeheerbeleid

      Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Maximaliseer machine-uptime met probabilistische modellering

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Twee voorraadproblemen

          Als je zowel dingen maakt als verkoopt, bezit je twee voorraadproblemen. Bedrijven die dingen verkopen, moeten zich onophoudelijk concentreren op het hebben van voldoende productvoorraad om aan de vraag van de klant te voldoen. Fabrikanten en activa-intensieve industrieën zoals energieopwekking, openbaar vervoer, mijnbouw en raffinage hebben een extra voorraadprobleem: voldoende reserveonderdelen hebben om hun machines draaiende te houden. In deze technische samenvatting worden de basisprincipes van twee probabilistische modellen van machinestoringen besproken. Het relateert ook de beschikbaarheid van machines aan de toereikendheid van de voorraad reserveonderdelen.

           

          Modellering van het falen van een machine die wordt behandeld als een "zwarte doos"

          Net zoals de vraag naar producten inherent willekeurig is, geldt dat ook voor de timing van machinestoringen. Evenzo, net zoals probabilistische modellering de juiste manier is om met willekeurige vraag om te gaan, is het ook de juiste manier om met willekeurige storingen om te gaan.

          Modellen van machinestoringen hebben twee componenten. De eerste gaat over de willekeurige duur van uptime. De tweede gaat over de willekeurige duur van downtime.

          Het veld van betrouwbaarheid theorie biedt verschillende standaard waarschijnlijkheidsmodellen die de willekeurige tijd beschrijven tot het uitvallen van een machine zonder rekening te houden met de reden voor het uitvallen. Het eenvoudigste model van uptime is de exponentiële verdeling. Dit model zegt dat de gevaar tarief, dwz de kans op falen in het volgende moment, is constant, ongeacht hoe lang het systeem in werking is. Het exponentiële model is goed in het modelleren van bepaalde soorten systemen, met name elektronica, maar het is niet universeel toepasbaar.

           

          Download de whitepaper

           

          De volgende stap omhoog in modelcomplexiteit is de Weibull model (uitgesproken als "WHY-bull"). De Weibull-verdeling maakt het mogelijk dat het risico van falen in de loop van de tijd verandert, ofwel afneemt na een inbrandperiode, ofwel vaker toeneemt naarmate slijtage zich ophoopt. De exponentiële verdeling is een speciaal geval van de Weibull-verdeling waarin de risicograad niet toeneemt of afneemt.

          Weibull Reliability Plot

          Figuur 1: Drie verschillende Weibull-overlevingscurven

          Figuur 1 illustreert de waarschijnlijkheid van het Weibull-model dat een machine nog steeds draait als functie van hoe lang deze al draait. Er zijn drie curven die overeenkomen met constante, afnemende en toenemende risicopercentages. Om voor de hand liggende redenen worden deze genoemd overlevingscurven omdat ze de overlevingskans voor verschillende tijdsperioden uitzetten (maar ze worden ook wel betrouwbaarheidscurven). De zwarte curve die hoog begint en snel daalt (β=3) geeft een machine weer die met de jaren verslijt. De lichtste curve in het midden snel (β=1) toont de exponentiële verdeling. De medium-donkere curve (β=0,5) is er een die een hoog percentage vroege risico's heeft, maar beter wordt met de leeftijd.

          Er is natuurlijk nog een ander fenomeen dat in de analyse moet worden meegenomen: downtime. Het modelleren van downtime is waar voorraadtheorie in beeld komt. Downtime wordt gemodelleerd door een combinatie van twee verschillende distributies. Als er een reserveonderdeel beschikbaar is om het defecte onderdeel te vervangen, kan de downtime erg kort zijn, bijvoorbeeld één dag. Maar als er geen reserve op voorraad is, kan de downtime behoorlijk lang zijn. Zelfs als de reserve snel kan worden verkregen, kan het enkele dagen of een week duren voordat de machine kan worden gerepareerd. Als het reserveonderdeel door een verre leverancier moet worden vervaardigd en over zee moet worden vervoerd en vervolgens per spoor moet worden vervoerd naar uw fabriek, kan de uitvaltijd weken of maanden zijn. Dit alles betekent dat het bijhouden van een goede inventaris van reserveonderdelen erg belangrijk is om de productie op gang te houden.

          Bij dit geaggregeerde type analyse wordt de machine behandeld als een zwarte doos die werkt of niet. Hoewel de details worden genegeerd van welk onderdeel het heeft begeven en wanneer, is een dergelijk model nuttig voor het inschatten van de pool van machines die nodig is om met grote waarschijnlijkheid een minimaal niveau van productiecapaciteit te handhaven.

          De binominale verdeling is het waarschijnlijkheidsmodel dat relevant is voor dit probleem. De binominale is hetzelfde model dat bijvoorbeeld de verdeling beschrijft van het aantal "koppen" dat resulteert uit twintig worpen van een munt. In het machinebetrouwbaarheidsprobleem komen de machines overeen met munten, en een resultaat van koppen komt overeen met het hebben van een werkende machine.

          Als voorbeeld, als

          • de kans dat een bepaalde machine op een bepaalde dag draait, is 90%
          • machinestoringen zijn onafhankelijk (bijv. geen overstroming of tornado om ze allemaal in één keer weg te vagen)
          • je hebt minimaal een kans van 95% nodig dat er op een bepaalde dag minstens 5 machines draaien

          dan schrijft het binominale model zeven machines voor om je doel te bereiken.

           

          Modellering van machinestoringen op basis van componentstoringen

          Maximize Machine Uptime with Probabilistic Modeling

          Het Weibull-model kan ook worden gebruikt om het falen van een enkel onderdeel te beschrijven. Elke realistisch complexe productiemachine heeft echter meerdere onderdelen en heeft daarom meerdere faalwijzen. Dit betekent dat het berekenen van de tijd totdat de machine uitvalt een analyse vereist van een "race naar mislukking", waarbij elk onderdeel strijdt om de "eer" om als eerste te falen.

          Als we de redelijke aanname maken dat onderdelen onafhankelijk van elkaar falen, wijst de standaardkanstheorie de weg naar het combineren van de modellen van het falen van individuele onderdelen tot een algemeen model van machinefalen. De tijd tot het eerste van vele onderdelen faalt heeft een poly-Weibull verdeling. Op dit punt kan de analyse echter behoorlijk ingewikkeld worden, en de beste stap zou kunnen zijn om over te schakelen van analyse-per-vergelijking naar analyse-per-simulatie.

           

          Machinestoring simuleren op basis van de details van defecte onderdelen

          Simulatieanalyse kreeg zijn moderne start als een spin-off van het Manhattan-project om de eerste atoombom te bouwen. De methode wordt ook vaak genoemd Monte Carlo simulatie naar het grootste gokcentrum ter wereld vroeger (vandaag zou het "Macau-simulatie" zijn).

          Een simulatiemodel zet de logica van de opeenvolging van willekeurige gebeurtenissen om in overeenkomstige computercode. Vervolgens gebruikt het door de computer gegenereerde (pseudo-)willekeurige getallen als brandstof om het simulatiemodel aan te drijven. De faaltijd van elk onderdeel wordt bijvoorbeeld gemaakt door te putten uit de specifieke Weibull-faaltijdverdeling. Dan begint de vroegste van die storingstijden met de volgende episode van machinestilstand.

          simulation of machine uptime over one year of operation

          Afbeelding 2: een simulatie van de bedrijfstijd van een machine gedurende een jaar

          Figuur 2 toont de resultaten van een simulatie van de uptime van een enkele machine. Machines doorlopen afwisselende periodes van uptime en downtime. In deze simulatie wordt aangenomen dat uptime een exponentiële verdeling heeft met een gemiddelde duur (MTBF = Mean Time Before Failure) van 30 dagen. Downtime heeft een 50:50 verdeling tussen 1 dag als er een reserve beschikbaar is en 30 dagen als dat niet het geval is. In de simulatie weergegeven in figuur 2 werkt de machine gedurende 85% van de dagen in één jaar in bedrijf.

           

          Een geschatte formule voor machine-uptime

          Hoewel Monte Carlo-simulatie nauwkeurigere resultaten kan opleveren, doet een eenvoudiger algebraïsch model het goed als benadering en maakt het gemakkelijker om te zien hoe de belangrijkste variabelen zich verhouden.

          Definieer de volgende sleutelvariabelen:

          • MTBF = Mean Time Before Failure (dagen)
          • Pa = waarschijnlijkheid dat er een reserveonderdeel beschikbaar is wanneer dat nodig is
          • MDTshort = Mean Down Time als er een reserve beschikbaar is wanneer dat nodig is
          • MDTlong = Mean Down Time als er geen reserve beschikbaar is wanneer dat nodig is
          • Uptime = Percentage dagen dat de machine in bedrijf is.

          Dan is er een eenvoudige benadering voor de Uptime:

          Uptime ≈ 100 x MTBF/(MTBF + MDTkort x Pa + MDTlang x (1-Pa)). (Vergelijking 1)

          Vergelijking 1 vertelt ons dat de uptime afhangt van de beschikbaarheid van een reserve. Als er altijd een reserve is (Pa=1), bereikt de uptime een piekwaarde van ongeveer 100 x MTBF/(MTBF + MDTshort). Als er nooit een reserve beschikbaar is (Pa=0), bereikt de uptime de laagste waarde van ongeveer 100 x MTBF/(MTBF + MDTlong). Wanneer de reparatietijd ongeveer net zo lang is als de normale tijd tussen storingen, zakt de uptime naar een onaanvaardbaar niveau in de buurt van 50%. Als er altijd een reserve beschikbaar is, kan de uptime de 100% benaderen.

          Het relateren van machinestilstand aan de inventaris van reserveonderdelen

          Het minimaliseren van uitvaltijd vereist een meervoudig initiatief met intensieve training van de machinist, gebruik van hoogwaardige grondstoffen, effectief preventief onderhoud en adequate reserveonderdelen. De eerste drie stellen de voorwaarden voor goede resultaten. De laatste gaat over onvoorziene omstandigheden.

          Inventory Planning for Manufacturers MRO SAAS

          Als een machine eenmaal uitvalt, vliegt het geld de deur uit en is er een premie om het snel weer op gang te krijgen. Deze scène kan zich op twee manieren afspelen. De goede heeft een reserveonderdeel klaarliggen, zodat de uitvaltijd tot een minimum kan worden beperkt. De slechte heeft geen reserveonderdelen beschikbaar, dus er is een strijd om de levering van het benodigde onderdeel te bespoedigen. In dit geval moet de fabrikant zowel de kosten van verloren productie als de kosten van versnelde verzending dragen, als dat al een optie is.

          Als het voorraadsysteem goed is ontworpen, zal de beschikbaarheid van reserveonderdelen geen grote belemmering vormen voor de inzetbaarheid van de machine. Met het ontwerp van een voorraadsysteem bedoel ik de resultaten van verschillende keuzes: of het tekortbeleid een nabestellingsbeleid of een verliesbeleid is, of de inventarisatiecyclus periodiek of continu is, en welke bestelpunten en bestelhoeveelheden worden vastgesteld.

          Wanneer voorraadbeleid voor producten wordt ontworpen, worden ze beoordeeld aan de hand van verschillende criteria. Serviceniveau is het percentage van de bevoorradingsperioden dat verstrijkt zonder dat er sprake is van voorraaduitval. Fill Rate is het percentage bestelde eenheden dat direct uit voorraad wordt geleverd. Het gemiddelde voorraadniveau is het typische aantal beschikbare eenheden.

          Geen van deze is precies de maatstaf die nodig is voor de opslag van reserveonderdelen, hoewel ze allemaal gerelateerd zijn. De benodigde maatstaf is Artikelbeschikbaarheid, het percentage dagen waarin er ten minste één reserve klaar is voor gebruik. Hogere serviceniveaus, opvullingspercentages en voorraadniveaus impliceren allemaal een hoge itembeschikbaarheid en er zijn manieren om van de ene naar de andere om te schakelen. (Wanneer meerdere machines dezelfde voorraad reserveonderdelen delen, wordt voorraadbeschikbaarheid vervangen door de waarschijnlijkheidsverdeling van het aantal reserveonderdelen op een bepaalde dag. We laten dat complexere probleem voor een andere dag liggen.)

          Het is duidelijk dat het aanhouden van een goede voorraad reserveonderdelen de kosten van machinestilstand vermindert. Natuurlijk zorgt het aanhouden van een goede voorraad reserveonderdelen voor eigen voorraad- en bestelkosten. Dit is het tweede voorraadprobleem van de fabrikant. Zoals bij elke beslissing met betrekking tot inventaris, is het belangrijk om de juiste balans te vinden tussen deze twee concurrerende kostenplaatsen. Zien dit artikel over probabilistische prognoses voor intermitterende vraag voor begeleiding bij het vinden van dat evenwicht.

           

          Laat een reactie achter

          gerelateerde berichten

          Call an Audible to Proactively Counter Supply Chain Noise

          Bel een Audible om proactief ruis in de supply chain tegen te gaan

          U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

          Managing the Inventory of Promoted Items

          Beheer van de inventaris van gepromote artikelen

          In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

          Top 3 Most Common Inventory Control Policies

          Top 3 meest voorkomende voorraadbeheerbeleid

          Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Voorraad optimaliseren? Volg deze 4 stappen

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Service Level Driven Planning (SLDP) is een benadering van voorraadplanning. Het schrijft optimale doelen voor het serviceniveau voor, identificeert en communiceert continu afwegingen tussen service en kosten die aan de basis liggen van alle verstandige voorraadbeslissingen. Wanneer een organisatie deze relatie begrijpt, kunnen ze communiceren waar ze risico lopen en waar niet, en kunnen ze effectief omgaan met hun inventarismiddelen. SLDP helpt voorraadonevenwichtigheden bloot te leggen en maakt weloverwogen beslissingen mogelijk over hoe deze het beste kunnen worden gecorrigeerd. Om SLDP te implementeren, moet u verder kijken dan traditionele planningsbenaderingen, zoals willekeurige targeting op serviceniveau (al mijn A-items moeten serviceniveau 99% krijgen, B-items 95%, C-items 80%, enz.) precies voorspellen wat er gaat gebeuren en wanneer. SLDP ontvouwt zich in 4 stappen: Benchmark, Collaborate, Plan en Track.

               

              Stap 1. Benchmarkprestaties

               

              Alle deelnemers aan het voorraadplannings- en investeringsproces moeten een gemeenschappelijk begrip hebben van hoe het huidige beleid presteert binnen een overeengekomen reeks inventarisstatistieken. Metrieken moeten historisch bereikte serviceniveaus en opvullingspercentages, levertijd aan klanten, doorlooptijdprestaties van leveranciers, voorraadrotaties en voorraadinvesteringen omvatten. Zodra deze statistieken zijn gebenchmarkt en er dagelijks over kan worden gerapporteerd, beschikt de organisatie over de informatie die zij nodig heeft om prioriteit te geven aan planningsinspanningen. Als de voorraad bijvoorbeeld is toegenomen, maar de serviceniveaus niet, zou dit erop wijzen dat de voorraad niet correct is verdeeld over de SKU's. Rapporten moeten met muisklikken worden gegenereerd, zodat planners zich kunnen concentreren op analyse in plaats van tijdrovende rapportgeneratie. Prestaties uit het verleden zijn geen garantie voor toekomstige prestaties, aangezien variabiliteit in de vraag, kosten, prioriteiten en doorlooptijden altijd veranderen. SLDP maakt dus voorspellende benchmarking mogelijk die inschat welke prestaties in de toekomst waarschijnlijk zullen zijn. Software voor voorraadoptimalisatie gebruiken waarschijnlijkheidsvoorspelling kan worden gebruikt om een realistisch bereik van potentiële behoeften en bevoorradingscycli in te schatten, waarbij u uw planningsparameters stresstests uitvoert om te ontdekken hoe vaak en welke artikelen u op voorraad en overschotten kunt verwachten.

               

              Stap 2. "Wat als" planning en samenwerking

               

              "Wat als" voorraadmodellering en samenwerking vormen de kern van SLDP. De historische en voorspellende benchmarks moeten eerst worden gedeeld met alle relevante belanghebbenden, waaronder verkoop, financiën en bedrijfsvoering. Er moeten inspanningen worden geleverd om de volgende vragen te beantwoorden:

              – Zijn zowel de huidige prestaties als de investering acceptabel?
              – Zo nee, hoe moeten deze worden verbeterd?
              – Welke SKU's zullen waarschijnlijk als volgende worden geëist en in welke hoeveelheden?
              – Waar zijn we bereid meer risico te nemen?
              – Waar moet het voorraadrisico worden geminimaliseerd?
              – Wat zijn de specifieke voorraadkosten?
              – Aan welke bedrijfsregels en beperkingen moeten we ons houden (klantenserviceniveau-overeenkomsten, voorraaddrempels, enz.)

              Zodra de bovenstaande vragen zijn beantwoord, kan nieuw voorraadplanningsbeleid worden ontwikkeld. Voorraadoptimalisatiesoftware kan alle kosten in verband met voorraadbeheer met elkaar verzoenen, inclusief voorraadkosten, om de juiste set planningsparameters (min/max, veiligheidsvoorraad, bestelpunten, enz.) en voorgeschreven serviceniveaus te genereren. Het optimale beleid kan worden vergeleken met het huidige beleid en aangepast op basis van randvoorwaarden en bedrijfsregels. Bepaalde artikelen kunnen bijvoorbeeld gericht zijn op een nagestreefd serviceniveau om te voldoen aan een klantenserviceovereenkomst. Er kunnen verschillende 'wat als'-scenario's voor voorraadplanning worden ontwikkeld en gedeeld met de belangrijkste belanghebbenden. U kunt bijvoorbeeld modelleren hoe kortere doorlooptijden de voorraadkosten beïnvloeden. Zodra er consensus is bereikt en de risico's en kosten duidelijk zijn gecommuniceerd, kan het gewijzigde beleid worden geüpload naar het ERP-systeem om voorraadaanvulling te stimuleren.

               

              Stap 3. Voortdurend plannen en beheren per uitzondering

              SLDP maakt voortdurend nieuwe prognoses van geoptimaliseerde planningsparameters op basis van veranderende eisen, doorlooptijden, kosten en andere factoren. Dit betekent dat serviceniveaus en voorraadwaarde kunnen veranderen. Het voorgeschreven serviceniveau van 95% kan bijvoorbeeld in de volgende planningsperiode worden verhoogd naar 99% als de voorraadkosten voor dat artikel plotseling stijgen. Dit geldt ook als u ervoor kiest om willekeurig een bepaald serviceniveau te targeten of planningsparameters vast te leggen op een specifieke eenheidshoeveelheid. Een beoogd serviceniveau van 95% kan bijvoorbeeld vandaag $1.000 in voorraad vereisen, maar $2.000 volgende maand als de doorlooptijden pieken. Evenzo kan een bestelpunt van 10 eenheden vandaag 95%-service krijgen en volgende maand alleen 85%-service als reactie op de toegenomen vraagvariabiliteit. Voorraadoptimalisatiesoftware identificeert welke artikelen naar verwachting significante veranderingen in serviceniveau en/of voorraadwaarde zullen hebben en welke artikelen niet volgens het consensusplan worden besteld. Er worden automatisch uitzonderingslijsten gemaakt, waardoor u deze items gemakkelijk kunt bekijken en kunt beslissen hoe u ze in de toekomst wilt beheren. Prescriptieve analyses kunnen helpen vaststellen of de hoofdoorzaak van de verandering een vraagafwijking, een verandering in de algehele variabiliteit van de vraag, een verandering in de doorlooptijd of een verandering in de kosten is, zodat u het beleid dienovereenkomstig kunt verfijnen.

               

              Stap 4. Houd de lopende prestaties bij

               

              SLDP-processen meten regelmatig historische en huidige operationele prestaties. De resultaten moeten worden gecontroleerd om ervoor te zorgen dat de serviceniveaus verbeteren en de voorraadniveaus afnemen in vergelijking met de historische benchmarks bepaald in stap 1. Meetstatistieken bijhouden zoals beurten, geaggregeerde en artikelspecifieke serviceniveaus, opvullingspercentages, out-of-stocks en leveranciers doorlooptijd prestaties. Deel resultaten binnen de hele organisatie en identificeer de hoofdoorzaken van operationele inefficiënties. SLDP-processen maken het bijhouden van prestaties gemakkelijk door tools te bieden die automatisch de benodigde rapporten genereren in plaats van deze last op planners te leggen om ze in Excel te beheren. Hierdoor kan de organisatie operationele problemen ontdekken die van invloed zijn op de prestaties en feedback geven over wat werkt en wat moet worden verbeterd.

              Conclusie

              Het SLDP-raamwerk is een manier om het voorraadplanningsproces te rationaliseren en een aanzienlijk economisch rendement te genereren. Het organiserende principe is dat klantenserviceniveaus en inventariskosten in verband met het gekozen beleid moeten worden begrepen, gevolgd en voortdurend verfijnd. Het gebruik van voorraadoptimalisatiesoftware helpt ervoor te zorgen dat u het goedkoopste serviceniveau kunt identificeren. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wetenschappelijke beoordelingen van toekomstige risico's en omstandigheden. Het wordt gerealiseerd door een combinatie van uitvoerende visie, inhoudelijke expertise van het personeel en de kracht van moderne software voor voorraadplanning en -optimalisatie.

              Bekijk hoe Smart Inventory Optimization Service Level Driven Planning ondersteunt en download het productblad hier: https://smartcorp.com/inventory-optimization/

              Laat een reactie achter

              gerelateerde berichten

              Call an Audible to Proactively Counter Supply Chain Noise

              Bel een Audible om proactief ruis in de supply chain tegen te gaan

              U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

              Managing the Inventory of Promoted Items

              Beheer van de inventaris van gepromote artikelen

              In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

              Top 3 Most Common Inventory Control Policies

              Top 3 meest voorkomende voorraadbeheerbeleid

              Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

              recente berichten

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]