Probabilistische versus deterministische orderplanning

De slimme voorspeller

Man with a computer in a warehouse best practices in demand planning, forecasting and inventory optimization

Denk aan het probleem van het aanvullen van de voorraad. Stel dat het betreffende voorraadartikel een reserveonderdeel is, om precies te zijn. Zowel u als uw leverancier zullen een idee willen hebben van hoeveel u gaat bestellen en wanneer. En uw ERP-systeem dringt er misschien op aan dat u ook het geheim prijsgeeft.

Deterministisch model van aanvulling

De eenvoudigste manier om een fatsoenlijk antwoord op deze vraag te krijgen, is aan te nemen dat de wereld, nou ja, eenvoudig is. In dit geval betekent eenvoudig 'niet willekeurig' of, in nerdtaal, 'deterministisch'. In het bijzonder doe je alsof de willekeurige grootte en timing van de vraag in werkelijkheid een continue druppel-druppel-druppel is van een vaste grootte die met een vast interval komt, bijvoorbeeld 2, 2, 2, 2, 2, 2... Als dit onrealistisch lijkt , het is. De echte vraag ziet er misschien meer zo uit: 0, 1, 10, 0, 1, 0, 0, 0 met veel nullen, af en toe maar willekeurige pieken.

Maar eenvoud heeft zijn deugden. Als je net doet alsof de gemiddelde vraag elke dag op rolletjes loopt, is het gemakkelijk om uit te rekenen wanneer je je volgende bestelling moet plaatsen en hoeveel eenheden je nodig hebt. Stel dat uw voorraadbeleid van het type (Q,R) is, waarbij Q een vaste bestelhoeveelheid is en R een vast bestelpunt. Wanneer de voorraad daalt tot of onder het bestelpunt R, bestelt u Q-eenheden meer. Om de fantasie compleet te maken, gaan we ervan uit dat de doorlooptijd voor aanvulling ook vast is: na L dagen zullen die Q nieuwe eenheden op de plank liggen, klaar om aan de vraag te voldoen.

Alles wat u nu nodig heeft om uw vragen te beantwoorden, is de gemiddelde vraag per dag D naar het artikel. De logica gaat als volgt:

  1. U begint elke aanvullingscyclus met Q-eenheden bij de hand.
  2. Je put die voorraad uit met D eenheden per dag.
  3. U bereikt dus het bestelpunt R na (QR)/D dagen.
  4. Je bestelt dus elke (QR)/D dagen.
  5. Elke aanvullingscyclus duurt (QR)/D + L dagen, dus u maakt in totaal 365D/(Q-R+LD) bestellingen per jaar.
  6. Zolang de doorlooptijd L < R/D is, zult u nooit een voorraad hebben en zal uw voorraad zo klein mogelijk zijn.

Afbeelding 1 toont de grafiek van voorhanden voorraad versus tijd voor het deterministische model. Rond Smart Software verwijzen we naar deze plot als de "Deterministische zaagtand". De voorraad begint op het niveau van de laatste bestelhoeveelheid Q. Na gestaag afnemen gedurende de uitvaltijd (QR)/D, bereikt het niveau het bestelpunt R en activeert een bestelling voor nog een Q-eenheden. Gedurende de doorlooptijd L daalt de voorraad tot precies nul, dan komt de nieuwe bestelling op magische wijze aan en begint de volgende cyclus.

Figure 1 Deterministic model of on-hand inventory

Afbeelding 1: deterministisch model van voorhanden voorraad

 

Dit model heeft twee voordelen. Het vereist niet meer dan algebra van de middelbare school en het combineert (bijna) alle relevante factoren om de twee gerelateerde vragen te beantwoorden: wanneer moeten we de volgende bestelling plaatsen? Hoeveel bestellingen plaatsen we in een jaar?

Probabilistisch model van aanvulling

Het is niet verrassend dat als we een deel van de fantasie uit het deterministische model halen, we meer bruikbare informatie krijgen. Het probabilistische model omvat alle rommelige willekeur in het echte probleem: de onzekerheid in zowel de timing als de omvang van de vraag, de variatie in de doorlooptijd van de aanvulling en de gevolgen van die twee factoren: de kans dat de beschikbare voorraad de nabestelling onderschrijdt punt, de kans dat er een stockout zal zijn, de variabiliteit in de tijd tot de volgende bestelling, en het variabele aantal uitgevoerde bestellingen in een jaar.

Het probabilistische model werkt door de gevolgen van onzekere vraag en variabele doorlooptijd te simuleren. Door de historische vraagpatronen van het item te analyseren (en waarnemingen uit te sluiten die zijn geregistreerd in een tijd waarin de vraag mogelijk fundamenteel anders was), creëren geavanceerde statistische methoden een onbeperkt aantal realistische vraagscenario's. Vergelijkbare analyse wordt toegepast op records van doorlooptijden van leveranciers. Door deze vraag- en aanbodscenario's te combineren met de operationele regels van een bepaald voorraadbeheerbeleid, ontstaan scenario's van het aantal beschikbare onderdelen. Uit deze scenario's kunnen we samenvattingen halen van de variërende intervallen tussen bestellingen.

Figuur 2 toont een voorbeeld van een probabilistisch scenario; de vraag is willekeurig en het artikel wordt beheerd met bestelpunt R = 10 en bestelhoeveelheid Q=20. Voorbij is de deterministische zaagtand; in plaats daarvan is er iets complexer en realistischer (de probabilistische trap). Tijdens de 90 gesimuleerde werkingsdagen werden er 9 bestellingen geplaatst en de tijd tussen de bestellingen varieerde duidelijk.

Met behulp van het probabilistische model worden de antwoorden op de twee vragen (hoe lang tussen orders en hoeveel in een jaar) uitgedrukt als kansverdelingen die de relatieve waarschijnlijkheid van verschillende scenario's weerspiegelen. Figuur 3 toont de verdeling van het aantal dagen tussen orders na tien jaar gesimuleerde werking. Hoewel het gemiddelde ongeveer 8 dagen is, varieert het werkelijke aantal sterk, van 2 tot 17.

In plaats van uw leverancier te vertellen dat u volgend jaar X bestellingen zult plaatsen, kunt u nu X ± Y bestellingen projecteren, en uw leverancier kent de opwaartse en neerwaartse risico's beter. Beter nog, u kunt de volledige distributie als het meest uitgebreide antwoord geven.

Figure 2 A probabilistic scenario of on-hand inventory

Figuur 2 Een probabilistisch scenario van voorhanden voorraad

 

Figure 3 Distribution of days between orders

Figuur 3: Verdeling van dagen tussen bestellingen

 

De willekeurige trap beklimmen naar grotere efficiëntie

Door verder te gaan dan het deterministische inventarismodel, ontstaan nieuwe mogelijkheden voor het optimaliseren van de bedrijfsvoering. Ten eerste maakt het probabilistische model een realistische beoordeling van het voorraadrisico mogelijk. Het eenvoudige model in afbeelding 1 houdt in dat er nooit een stockout is, terwijl probabilistische scenario's de mogelijkheid toestaan (hoewel er in afbeelding 2 slechts één close call was rond dag 70). Zodra het risico bekend is, kan software optimaliseren door de "ontwerpruimte" (dwz alle mogelijke waarden van R en Q) te doorzoeken om een ontwerp te vinden dat voldoet aan een doelniveau van voorraadrisico tegen minimale kosten. De waarde van het deterministische model in deze meer realistische analyse is dat het een goed startpunt biedt voor de zoektocht door de ontwerpruimte.

Overzicht

Moderne software geeft antwoord op operationele vragen met verschillende gradaties van detail. Aan de hand van het voorbeeld van de tijd tussen aanvullingsorders hebben we laten zien dat het antwoord bij benadering maar snel kan worden berekend met een eenvoudig deterministisch model. Maar het kan ook veel gedetailleerder worden weergegeven, waarbij alle variabiliteit wordt blootgelegd door een probabilistisch model. Wij beschouwen deze alternatieven als complementair. Het deterministische model bundelt alle sleutelvariabelen in een gemakkelijk te begrijpen vorm. Het probabilistische model biedt extra realisme dat professionals verwachten en ondersteunt effectief zoeken naar optimale keuzes van bestelpunt en bestelhoeveelheid.

 

Laat een reactie achter
gerelateerde berichten
Daily Demand Scenarios

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Irregular Operations

Onregelmatige operaties

Deze blog gaat over ‘onregelmatige handelingen’. Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamheden. Dit is een voorproefje.

Finding Your Spot on the Inventory Tradeoff Curve

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

Beoordelen hoe leveranciers uw voorraadkosten beïnvloeden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Software voor voorraadoptimalisatie wordt meestal gebruikt om de analytische resultaten te verkrijgen die u nodig heeft om uw dagelijkse activiteiten uit te voeren, zoals bestelpunten (ook bekend als Mins) en bestelhoeveelheden. Deze gespecialiseerde software helpt u bij het vinden van de optimale balans tussen voorraadkosten en artikelbeschikbaarheid tijdens routinewerkzaamheden.

Voorraadoptimalisatiesoftware kan ook worden gebruikt om 'wat-als'-analyses uit te voeren op scenario's die wijzigingen in uw huidige bedrijfsomgeving beschrijven. Wat-als-analyse (ook wel "gevoeligheidsanalyse" genoemd) stelt u in staat uw denken te verheffen van tactisch naar strategisch. Het helpt u zich voor te stellen hoe u uw activiteiten moet aanpassen om u aan te passen aan mogelijke veranderingen in uw werkomgeving. Deze veranderingen kunnen negatieve druk zijn die van buitenaf op u wordt uitgeoefend, of ze kunnen het gevolg zijn van uw eigen positieve acties. In deze blog geven we een voorbeeld van hoe je “wat-analyse” kunt uitvoeren op doorlooptijden en bestelhoeveelheden. De resultaten van de analyse kunnen door het bedrijf worden gebruikt om de impact van deze wijzigingen op de voorraadkosten en de serviceniveauprestaties te beoordelen.

Hoe leveranciers uw bewegingsvrijheid beperken

 

Toen we met onze klanten de gegevensinvoer bespraken die nodig is voor voorraadoptimalisatiesoftware, merkten we dat leveranciers een prominente invloed hebben op hun activiteiten. Belangrijke onderwerpen als delen laten we voorlopig buiten beschouwing vraag prognoses met leveranciers en het uitwerken van reacties op verstoringen in de toeleveringsketen, zoals orkaan Matthew vorig jaar in het zuidoosten van de VS. In plaats daarvan richten we ons op twee meer gebruikelijke manieren waarop leveranciers de voorraadkosten van producenten beïnvloeden: doorlooptijden voor aanvulling en beperkingen op bestelhoeveelheden.

De doorlooptijd voor aanvulling is het aantal dagen dat verstrijkt tussen het bereiken of overschrijden van een bestelpunt door de voorraad en het verschijnen van aanvullingseenheden op voorraad. Een deel van de doorlooptijd is intern bij de producent, misschien als gevolg van trage reacties op een inkoopafdeling. De rest van de doorlooptijd is aan de leverancier. In deze discussie gaan we ervan uit dat de bijdrage van leveranciers aan doorlooptijden kan veranderen, ten goede of ten kwade. (Maar dezelfde resultaten kunnen van toepassing zijn op veranderingen in de bijdragen van producenten aan doorlooptijden.)

De beperkingen op bestelhoeveelheden die we beschouwen zijn bestelminima en bestelveelvouden. Misschien wilt u 3 eenheden van een artikel bestellen, maar de leverancier kan een minimale bestelgrootte van 6 eenheden opleggen, dus uw bestelling van 3 eenheden zou een bestelling van 6 eenheden moeten worden. Of misschien wilt u 21 eenheden bestellen, wat handig de minimale bestelgrootte van 6 eenheden overschrijdt, maar als de leverancier ook een veelvoud van 6 heeft, wat betekent dat elke bestelling een veelvoud van 6 eenheden moet zijn, dan moet uw bestelling van 21 eenheden worden verhoogd tot 24 eenheden.

Scenario-analyses

 

Om het gebruik van voorraadoptimalisatiesoftware voor wat-als-analyse te illustreren, onderzoeken we twee reeksen scenario's. In de eerste set variëren de doorlooptijden van -20% tot +20% van hun waarden in een basisscenario. In de tweede set worden de resultaten eerst berekend zonder leveranciersbeperkingen, vervolgens met alleen bestelminima en ten slotte met een combinatie van bestelminima en bestelveelvouden. Voor de berekeningen gebruiken we Smart Inventory Optimization software.

Het basisscenario maakt gebruik van real-world gegevens over 2.852 reserveonderdelen die worden beheerd door een vooruitstrevend openbaar vervoersbedrijf. Deze onderdelen hebben een zeer heterogene mix van attributen. Hun kosten per eenheid variëren van $1 tot $23.105, en hun doorlooptijden variëren tussen 1 dag en 300 dagen. Gedurende 24 maanden varieerde de gemiddelde vraag van minder dan 1 eenheid per maand tot 1.508 eenheden per maand, met variatiecoëfficiënten variërend van een beheersbare 10% tot een enge 2.171%. Bovendien is het leveranciersbeeld ook erg complex, met 293 unieke leveranciers die elk gemiddeld ongeveer 10 onderdelen leveren. Deze heterogeniteit houdt in dat een real-world optimalisatie zou kiezen tussen items en leveranciers. Voor de eenvoud van uiteenzetting en om basisinzichten te ontwikkelen, behandelen onze wat-als-scenario's in dit voorbeeld echter elk artikel en elke leverancier gelijk. Evenzo gingen we er in de basislijn van uit dat de bewaarkosten gelijk waren aan 20% van de dollarwaarde van een artikel en dat elke aanvullingsorder vaste kosten had van $40.

We hebben twee wat-als-experimenten uitgevoerd. In de eerste werd gekeken naar de effecten van veranderende doorlooptijden. De tweede onderzocht de effecten van het invoeren van beperkingen op bestelhoeveelheden. In elk experiment hebben we de effecten van de wijzigingen op twee operationele statistieken vastgelegd: gemiddeld aantal eenheden op voorraad en gemiddeld aantal bestellingen per jaar. Deze beïnvloedden op hun beurt vier financiële maatstaven: gemiddelde dollarwaarde van voorraad, gemiddelde voorraadkosten, gemiddelde bestelkosten en de som van de laatste twee, de totale bedrijfskosten van de voorraad.

In alle scenario's werden bestelpunten berekend om een waarschijnlijkheid van 95% te bereiken om stockouts te vermijden in afwachting van aanvulling. Bestelhoeveelheden, bij afwezigheid van leveranciersbeperkingen, werden berekend als wat we "haalbare EOQ" noemen. EOQ is de klassieke "economische bestelhoeveelheid" die wordt geleerd in inventaris 101; het wordt berekend op basis van de gemiddelde vraag, bewaarkosten en bestelkosten. Haalbare EOQ voegt een extra overweging toe: voorraaddynamiek. Als het bestelpunt erg laag is, is het mogelijk dat de EOQ te klein is om een stabiel, positief voorraadniveau te behouden. In deze gevallen verhoogt de haalbare EOQ de bestelhoeveelheid boven de EOQ om ervoor te zorgen dat de gemiddelde voorraad niet negatief wordt.

Effecten van veranderende doorlooptijden

Tabel 1 toont de resultaten van het wijzigen van de doorlooptijden. Rondom het basisscenario hebben we de doorlooptijd van elk artikel gewijzigd met -20%, -10%, +10% en +20%.

Het is geen verrassing dat het verkorten van de doorlooptijden het vereiste voorraadniveau verlaagde en het verhogen ervan het tegenovergestelde deed. Zowel het gemiddelde aantal eenheden als de bijbehorende dollarwaarde gedroeg zich zoals verwacht. Wat misschien verrassend is, is dat de effecten enigszins gedempt waren, dat wil zeggen dat een verandering van X procent in doorlooptijd een respons van minder dan X procent opleverde. Een verkorting van de doorlooptijd in 20% zorgde bijvoorbeeld voor slechts een vermindering van 7,9% in de voorhanden voorraad en slechts een vermindering van 12,0% in de dollarwaarde van die eenheden. Bovendien zijn de effecten van verlagingen en verhogingen asymmetrisch: een toename van de doorlooptijd met 20% leidde tot een toename van slechts 7,3% in eenheden (versus 7,9%) en slechts een stijging van de voorraadwaarde met 9,6% (versus 12.0%).

Vergelijkbare verzwakte en asymmetrische resultaten aangehouden voor bedrijfskosten. Een verkorting van de doorlooptijd in 20% verlaagde de totale bedrijfskosten met 7.0%, maar een toename in doorlooptijd in 20% veroorzaakte slechts een stijging van de bedrijfskosten met 5.1%.

Overweeg nu de implicaties van deze resultaten voor de praktijk. In een competitieve wereld zijn kostenbesparingen in de orde van grootte van 10% of zelfs 5% aanzienlijk. Dit betekent dat inspanningen om doorlooptijden te verkorten belangrijke voordelen kunnen hebben. Dit betekent op zijn beurt dat inspanningen om inkoopprocessen te stroomlijnen de moeite waard kunnen zijn. Evenzo is er reden om leveranciers te betrekken bij het verkorten van hun deel van de doorlooptijd, mogelijk door de besparingen te delen om hen te stimuleren.

 

Inventory Optimization - Effects of Changing Lead Times
Tabel 1: Effecten van veranderende doorlooptijden

Effect van beperkingen op bestelhoeveelheid

 

Tabel 2 toont het effect van het opleggen van leveranciersbeperkingen op bestelhoeveelheden. In het basisscenario zijn er geen beperkingen, dwz het bestelminimum is 0 en het bestelveelvoud is 1, wat inhoudt dat elke bestelhoeveelheid acceptabel is voor leveranciers. Weg van het basisscenario, hebben we eerst gekeken naar het opleggen van een bestelminimum van 5 eenheden voor alle artikelen, en vervolgens een bestelveelvoud van 5 toe te voegen voor alle artikelen.

Het forceren van bestellingen om groter te zijn dan ze anders zouden zijn, had de verwachte impact op het gemiddelde aantal beschikbare eenheden, door het met 0,9% te verhogen met alleen een minimumbestelling en met 3,4% met zowel een minimum als een veelvoud. De overeenkomstige veranderingen in de dollarwaarde van de inventaris waren dramatischer: 22.4% en 23.3%. Dit verschil in de grootte van het responspercentage is waarschijnlijk terug te voeren op het grote aantal vervangende onderdelen met een laag volume/hoge kosten dat door het openbaar vervoerbedrijf wordt beheerd.

Een andere verrassing was de netto verlaging van de bedrijfskosten toen leveranciersbeperkingen werden opgelegd. Terwijl de voorraadkosten stegen met 22,4% en 23,3% in de twee wat-als-scenario's, lieten de grotere bestelhoeveelheden minder bestellingen per jaar toe, wat resulteerde in een compenserende verlaging van de bestelkosten van respectievelijk -24,4% en -32,7%. De netto-effecten op de bedrijfskosten waren toen verlagingen van 3,7% en 7,9%.

Over het algemeen wordt verwacht dat het opleggen van beperkingen aan acties van producenten de prestaties vermindert. De resultaten in deze scenario's waren dus contra-intuïtief. De echte boodschap hier is echter dat het gebruik van EOQ, of zelfs verbeterde EOQ, om een bestelhoeveelheid in te stellen geen optimale resultaten oplevert. Paradoxaal genoeg lijken de door ons onderzochte beperkingen van de bestelhoeveelheid de bestelhoeveelheden dichter bij het optimale niveau te hebben gebracht.

 

Inventory Optimization - Effect of Order Quantity Restrictions
Tabel 2: Effect van beperkingen op bestelhoeveelheid

Conclusies

 

De hier getoonde wat-als-analyses leiden niet tot universele conclusies. Als u bijvoorbeeld de veronderstelde kosten per bestelling wijzigt van $40 naar een kleiner aantal, kan dit aantonen dat de leveranciersbeperkingen de voorraadkosten van de producent hebben verhoogd in plaats van verlaagd.

Bij het uitvoeren van wat-als-analyses in echte situaties, zouden gebruikers natuurlijk scenario's maken op een lager detailniveau. Ze kunnen bijvoorbeeld het effect van wijzigingen in de doorlooptijden van leveranciers per leverancier evalueren om diegene te vinden die de hoogste potentiële uitbetalingen zouden opleveren. Of ze kunnen ervoor zorgen dat bestelminima, als ze al voor alle artikelen bestaan, met een bepaald percentage veranderen in plaats van met een vast bedrag, wat misschien wat realistischer is.

De belangrijkste conclusie is dat software voor voorraadoptimalisatie kan worden gebruikt in de "wat-als-modus" om strategische kwesties te onderzoeken, naast het gebruikelijke gebruik om bestelpunten, veiligheidsvoorraden, bestelhoeveelheden en voorraadoverdrachten te berekenen.

Laat een reactie achter

gerelateerde berichten

Call an Audible to Proactively Counter Supply Chain Noise

Bel een Audible om proactief ruis in de supply chain tegen te gaan

U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

Managing the Inventory of Promoted Items

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Top 3 Most Common Inventory Control Policies

Top 3 meest voorkomende voorraadbeheerbeleid

Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Smart Software presenteert op Epicor Insights 2021
      Smart Software President en CEO presenteert Epicor Insights 2021 breakout-sessie over het creëren van concurrentievoordeel met slimme voorraadplanning en -optimalisatie   Belmont, MA, juni 2021 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op Epicor Insights 2021. Greg Hartunian, CEO van Smart Software, zal presenteren "Concurrentievoordeel creëren met slimme voorraadplanning en -optimalisatie." Greg zal uitleggen hoe planningsteams in staat kunnen worden gesteld om de voorraad te verminderen, de serviceniveaus te verbeteren en de operationele efficiëntie te verhogen. De meeste voorraadplanningsteams vertrouwen op traditionele prognosebenaderingen, vuistregels en verkoopfeedback op aanvraag. Onze breakout-sessie bij Epicor Insights bespreekt deze benaderingen, waarom ze vaak falen en hoe nieuwe probabilistische prognose- en optimalisatiemethoden een groot verschil kunnen maken voor uw bedrijfsresultaten.
      • De presentatie is gepland voor wo 14 juli 10:25-11:15 AM (PST) 
      1 Epicor Inventory Mangement Platinum Partner Epicor Insights 2021 brengt meer dan 2.000 gebruikers van Epicor's branchespecifieke ERP-oplossingen voor de productie-, distributie- en dienstverlenende sector samen. Ga voor meer informatie naar INZICHTEN 2021.

       Bezoek ons in Mandalay Bay in Las Vegas, in het Solution Pavilion, stand #1.

      3 Epicor Inventory Mangement Platinum Partner   2 Epicor Inventory Mangement Platinum Partner   Smart Software is een Epicor Platinum Partner en toonaangevende leverancier van oplossingen voor vraagplanning, prognoses, voorraadoptimalisatie en analyse. Ons webplatform, Smart IP&O, maakt gebruik van probabilistische prognosemodellering, machine learning en collaboratieve vraagplanning om de voorraadniveaus te optimaliseren en de nauwkeurigheid van de prognoses te vergroten. Je gebruikt Smart IP&O om nauwkeurige prognoses en optimaal voorraadbeleid te creëren die geautomatiseerde bestellingen in Epicor stimuleren. Het platform omvat bidirectionele integraties met zowel Epicor ERP als Prophet 21.     Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.  
      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com    
      De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Laten we beginnen met in te zien dat een hogere omzet een goede zaak voor u is, en dat het vergroten van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten.

      Maar laten we ook erkennen dat een toenemende beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad aanhoudt, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit tot een win-win te maken, als het maar kan worden herkend.

      Om hier de juiste beslissing te nemen, moet u systematisch over het probleem nadenken. Dat vereist dat u probabilistische modellen van het voorraadbeheerproces gebruikt.

       

      Een scenario

      Laten we eens kijken naar een specifiek, realistisch scenario. Heel wat factoren zijn van invloed op de resultaten:

      • Het artikel: een specifiek reserveonderdeel voor een klein volume.
      • Vraaggemiddelde: gemiddeld 0,1 eenheden per dag (dus zeer "intermitterend")
      • Standaardafwijking van de vraag: 0,35 eenheden per dag (dus zeer variabel of "oververspreid").
      • Gemiddelde doorlooptijd leverancier: 5 dagen.
      • Eenheidsprijs: $100.
      • Bewaarkosten per jaar als % van eenheidskosten: 10%.
      • Bestelkosten per PO-snede: $25.
      • Gevolgen stockout: omzetverlies (dus een competitieve markt, geen backorders).
      • Tekortkosten per verloren verkoop: $100.
      • Doelstelling serviceniveau: 85% (dus 15% kans op een stockout in elke aanvullingscyclus).
      • Voorraadbeheerbeleid: Periodieke beoordeling/Order-up-to (ook wel at (T,S)-beleid genoemd)

       

      Voorraadbeheerbeleid

      Een woord over het voorraadbeheerbeleid. Het (T,S)-beleid is een van de vele die in de praktijk gebruikelijk zijn. Hoewel er andere, efficiëntere beleidsregels zijn (ze wachten bijvoorbeeld niet tot T dagen zijn verstreken voordat ze de voorraad aanpassen), is (T,S) een van de eenvoudigste en daarom behoorlijk populair. Het werkt als volgt: elke T dagen controleer je hoeveel eenheden je op voorraad hebt, zeg X eenheden. Vervolgens bestelt u SX-eenheden, die verschijnen na de doorlooptijd van de leverancier (in dit geval 5 dagen). De T in (T,S) is het "bestelinterval", het aantal dagen tussen bestellingen; de S is het "order-up-to-niveau", het aantal eenheden dat u bij de hand wilt hebben aan het begin van elke aanvullingscyclus.

      Om het meeste uit dit beleid te halen, moet u verstandig waarden van T en S kiezen. Verstandig kiezen betekent dat u niet kunt winnen door te raden of door eenvoudige vuistregels te gebruiken, zoals "Houd een gemiddelde van 3 x de gemiddelde vraag bij de hand." Slechte keuzes van T en S schaden zowel uw klanten als uw bedrijfsresultaten. En te lang vasthouden aan keuzes die ooit goed waren, kan resulteren in slechte prestaties als een van de bovenstaande factoren aanzienlijk verandert, dus de waarden van T en S moeten zo nu en dan opnieuw worden berekend.

      De slimme manier om de juiste waarden van T en S te kiezen, is door probabilistische modellen te gebruiken die zijn gecodeerd in geavanceerde software. Het gebruik van software is essentieel wanneer u moet opschalen en waarden van T en S moet kiezen die geschikt zijn voor niet één item, maar voor honderden of duizenden.

       

      Analyse van scenario

      Laten we eens kijken hoe we in dit scenario geld kunnen verdienen. Wat is het voordeel? Als er geen kosten zouden zijn, zou deze post gemiddeld $3.650 per jaar kunnen genereren: 0,1 eenheden/dag x 365 dagen x $100/eenheid. Daarvan worden de bedrijfskosten afgetrokken, bestaande uit voorraad-, bestel- en tekortkosten. Elk van deze zal afhangen van uw keuzes van T en S.

      De software geeft specifieke getallen: het instellen van T = 321 dagen en S = 40 eenheden resulteert in gemiddelde jaarlijkse bedrijfskosten van $604, wat een verwachte marge oplevert van $3.650 – $604 = $3.046. Zie tabel 1, linkerkolom. Dit gebruik van software wordt 'voorspellende analyse' genoemd omdat het input van het systeemontwerp vertaalt in schattingen van een belangrijke prestatie-indicator, marge.

      Bedenk nu of u het beter kunt doen. Het doel van het serviceniveau in dit scenario is 85%, wat een enigszins ontspannen standaard is die geen aandacht zal trekken. Wat als u uw klanten een 99%-serviceniveau zou kunnen bieden? Dat klinkt als een duidelijk concurrentievoordeel, maar zou het uw marge verminderen? Niet als je de waarden van T en S goed aanpast.

      Door T = 216 dagen en S = 35 eenheden in te stellen, worden de gemiddelde jaarlijkse bedrijfskosten verlaagd tot $551 en wordt de verwachte marge verhoogd tot $3.650 – $551 = $3.099. Zie tabel 1, rechterkolom. Dit is de win-win die we wilden: hogere klanttevredenheid en ongeveer 2% meer omzet. Dit gebruik van de software wordt "gevoeligheidsanalyse" genoemd omdat het laat zien hoe gevoelig de marge is voor de keuze van het serviceniveaudoel.

      Software kan u ook helpen de complexe, willekeurige dynamiek van voorraadbewegingen te visualiseren. Een bijproduct van de analyse die tabel 1 vulde, zijn grafieken die de willekeurige paden laten zien die door de voorraad worden afgelegd terwijl deze afneemt gedurende een aanvullingscyclus. Figuur 1 toont een selectie van 100 willekeurige scenario's voor het scenario waarin de service level target 99% is. In de figuur resulteerde slechts 1 van de 100 scenario's in een stockout, wat de juistheid van de keuze voor order-up-to-level bevestigt.

       

      Overzicht

      Het beheer van voorraden reserveonderdelen wordt vaak lukraak gedaan met behulp van onderbuikgevoel, gewoonte of verouderde vuistregel. Op deze manier doorgaan is geen betrouwbaar en reproduceerbaar pad naar een hogere marge of hogere klanttevredenheid. Waarschijnlijkheidstheorie, gedestilleerd tot waarschijnlijkheidsmodellen en vervolgens gecodeerd in geavanceerde software, vormt de basis voor coherente, efficiënte richtlijnen voor het beheren van reserveonderdelen op basis van feiten: vraagkenmerken, doorlooptijden, serviceniveaudoelen, kosten en andere factoren. De hier geanalyseerde scenario's illustreren dat het mogelijk is om zowel een hoger serviceniveau als een hogere marge te realiseren. Een groot aantal scenario's die hier niet worden weergegeven, biedt manieren om hogere serviceniveaus te bereiken, maar marge te verliezen. Gebruik de software.

      Scenarios with different service level targets

      Stock on hand during one replenishment cycle

       

       

      Laat een reactie achter

      gerelateerde berichten

      Call an Audible to Proactively Counter Supply Chain Noise

      Bel een Audible om proactief ruis in de supply chain tegen te gaan

      U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

      Managing the Inventory of Promoted Items

      Beheer van de inventaris van gepromote artikelen

      In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

      Top 3 Most Common Inventory Control Policies

      Top 3 meest voorkomende voorraadbeheerbeleid

      Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Smart Software VP Research presenteert op het MORS Symposium en op het Emerging Techniques Forum
          Smart Software heeft vandaag aangekondigd dat zijn mede-oprichter en Senior VP of Research, Dr. Thomas Willemain, is geselecteerd om te presenteren op het prestigieuze Emerging Techniques Forum op 7-9 december 2021, en ook op het 89e MORS Symposium op 21 juni. 25, 2021. MORS is de Military Operations Research Society, gefinancierd door de marine, het leger, de luchtmacht, het Korps Mariniers, het kantoor van de minister van Defensie en het ministerie van Binnenlandse Veiligheid. Haar missie is het verbeteren van de kwaliteit van de analyse die de nationale en binnenlandse veiligheidsbeslissingen informeert. 1) MORS Virtual Symposium biedt de defensie-analytische gemeenschap uitgebreide inhoud over opkomende analytische onderwerpen en technieken. De focus voor het 89e MORS-symposium zal zijn "Analytics om de besluitvorming te verbeteren". Willemaine presenteert dit jaar vier sessies: Hoogdimensionale gegevensverkenning met behulp van slangen

          The Snake is een nieuwe analysetool die de aanwezigheid van clusters kan detecteren en hun aantal kan schatten. Slangen bieden een unieke en gemakkelijk te interpreteren visuele weergave van de structuur van hoogdimensionale gegevens.

          Toevalligheden: signaal of ruis?

          We willen weten of het gelijktijdig optreden van twee gebeurtenissen, dus een toeval, slechts een toevallige gebeurtenis is. Zo niet, dan is er mogelijk een exploiteerbaar verband tussen de gebeurtenissen. We stellen uitgebreidere tests voor op basis van modellen van gebeurtenissen die autocorrelatie, trend en seizoensgebondenheid verklaren. 

          Genereren van visuele scenario's voor gebruik in de opleiding van operators

          De training van operators wordt verbeterd door blootstelling aan scenario's die gegevensstromen uit de echte wereld weergeven. Goed afgestemde bootstraps voor tijdreeksen kunnen univariate en multivariate scenario's creëren die voldoen aan kwantiteits-, kosten-, betrouwbaarheids- en variëteitsnormen. 

          Testen op gelijkheid van meerdere distributies in hoge dimensies

          Een fundamentele test- en evaluatieanalysetaak is het zoeken naar verschillen tussen alternatieve systemen of processen. Verschillende nieuwe, op bomen gebaseerde statistieken werken goed voor effecten die meerdere effecten hebben op zowel MVN- als niet-MVN-gegevens.

            2) Het Forum voor opkomende technieken biedt de analytische gemeenschap op defensiegebied uitgebreide inhoud over opkomende analytische onderwerpen en technieken. Willemain zal als een van de weinige experts spreken in de Augmented Decision Making-track.  Het onderwerp van Dr. Willemain zal zijn "Omgaan met regimeveranderingen in logistieke operaties". Military Operations Research Society (MORS) Emerging Techniques Forum   Het onderzoek van Dr. Thomas Willemain bij Smart Software en Rensselaer Polytechnic Institute helpt bij het voortdurend innoveren van Smart IP&O, het multi-tenant webgebaseerde platform van het bedrijf voor prognoses, voorraadplanning en optimalisatie.     Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disneyland Resorts, Metro-North Railroad en het Amerikaanse Rode Kruis. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com. SmartForecasts en Smart IP&O zijn geregistreerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectieve eigenaars.
          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com