Top 4 bewegingen wanneer u vermoedt dat software de voorraad opdrijft

Er wordt ons vaak gevraagd: "Waarom drijft de software de voorraad op?" Het antwoord is dat Smart het in geen van beide richtingen stuurt - de inputs sturen het aan en die inputs worden beheerd door de gebruikers (of beheerders). Hier zijn vier dingen die u kunt doen om de resultaten te krijgen die u verwacht.

1. Bevestig dat uw serviceniveaudoelen in overeenstemming zijn met wat u wilt voor dat artikel of die groep artikelen. Het instellen van zeer hoge doelen (95% of meer) zal waarschijnlijk de inventaris verhogen als je op een lager niveau hebt rondgereden en het goed vindt om daar te zijn. Het is mogelijk dat u het nieuwe, hogere serviceniveau nog nooit heeft bereikt, maar klanten hebben niet geklaagd. Zoek uit welk serviceniveau heeft gewerkt door historische prestatierapporten te evalueren en stel uw doelen dienovereenkomstig vast. Houd er echter rekening mee dat concurrenten u kunnen verslaan op het gebied van artikelbeschikbaarheid als u de serviceniveaudoelstellingen van uw vader blijft gebruiken.

2. Zorg ervoor dat uw begrip van "serviceniveau" overeenkomt met de definitie van het softwaresysteem. Mogelijk meet u de prestaties op basis van hoe vaak u verzendt binnen een week na ontvangst van de bestelling van de klant, terwijl de software zich richt op bestelpunten op basis van uw vermogen om meteen te verzenden, niet binnen een week. Het is duidelijk dat de laatste meer inventaris nodig heeft om hetzelfde "serviceniveau" te bereiken. Een 75%-serviceniveau voor dezelfde dag kan bijvoorbeeld overeenkomen met een 90%-serviceniveau voor dezelfde week. In dit geval ben je echt appels met peren aan het vergelijken. Als dit de reden is voor de overtollige voorraad, bepaal dan welk serviceniveau "dezelfde dag" nodig is om u op het door u gewenste serviceniveau "dezelfde week" te krijgen en voer dat in de software in. Het gebruik van het minder strikte doel voor dezelfde dag zal de inventaris doen dalen, soms zeer aanzienlijk.

3. Evalueer de invoer van de doorlooptijd. We hebben gevallen gezien waarin doorlooptijden waren opgeblazen om oude software te misleiden om de gewenste resultaten te produceren. Moderne software houdt de prestaties van leveranciers bij door hun werkelijke doorlooptijden over meerdere bestellingen vast te leggen, en houdt vervolgens rekening met de doorlooptijdvariabiliteit in simulaties van dagelijkse activiteiten. Pas op als uw doorlooptijden zijn vastgesteld op een waarde die in het verre verleden is bepaald en niet actueel is.

4. Controleer uw vraagsignaal. U heeft veel historische transacties in uw ERP-systeem die op veel manieren kunnen worden gebruikt om de vraaghistorie te bepalen. Als u signalen gebruikt zoals overboekingen, of als u retouren niet uitsluit, overdrijft u mogelijk de vraag. Besteed wat tijd aan het definiëren van "vraag" op de manier die het meest logisch is voor uw situatie.

Problemen van elektriciteitsbedrijven met reserveonderdelen

Elke organisatie die apparatuur beheert, heeft reserveonderdelen nodig. Ze hebben allemaal te maken met algemene problemen, wat hun bedrijf ook is. Sommige problemen zijn echter branchespecifiek. Dit bericht bespreekt een universeel probleem dat zich manifesteerde in een kerncentrale en een probleem dat vooral acuut is voor elk elektriciteitsbedrijf.

Het universele probleem van gegevenskwaliteit

We posten vaak over de voordelen van het omzetten van gegevens over het gebruik van onderdelen in slimme beslissingen over voorraadbeheer. Geavanceerde waarschijnlijkheidsmodellering ondersteunt het genereren van realistische vraagscenario's die worden gebruikt in gedetailleerde Monte Carlo-simulaties die de gevolgen blootleggen van beslissingen zoals keuzes van Min en Max voor het aanvullen van reserveonderdelen.

Al die nieuwe en glanzende analytische technologie vereist echter kwaliteitsgegevens als brandstof voor de analyse. Voor sommige openbare nutsbedrijven is het bijhouden van gegevens geen sterke zaak, dus het ruwe materiaal dat wordt geanalyseerd, kan corrupt en misleidend zijn. We kwamen onlangs documentatie tegen van een sterk voorbeeld van dit probleem bij een kerncentrale (zie Scala, Needy en Rajgopal: Besluitvorming en afwegingen bij het beheer van de inventaris van reserveonderdelen bij nutsbedrijven. American Association of Engineering Management, 30e ASEM Nationale Conferentie, Springfield, MO. oktober 2009). Scala et al. documenteerde de gebruiksgeschiedenis van een kritiek onderdeel waarvan de afwezigheid zou resulteren in een verlaging van de faciliteit of een sluiting. Het gebruiksrecord van de fabriek voor dat onderdeel omvatte meer dan acht jaar aan gegevens. Gedurende die tijd rapporteerde de officiële gebruiksgeschiedenis negen gebeurtenissen waarin een positieve vraag optrad met groottes variërend van één tot zes eenheden elk. Er waren ook vijf gebeurtenissen gekenmerkt door negatieve eisen (dwz retouren naar het magazijn), variërend van één tot drie eenheden elk. Zorgvuldig speurwerk ontdekte dat het werkelijke gebruik plaatsvond in slechts twee gebeurtenissen, beide met een vraag naar twee eenheden. Het is duidelijk dat voor het berekenen van de beste min/max-waarden voor dit artikel nauwkeurige vraaggegevens nodig zijn.

Het speciale probleem van gezondheid en veiligheid

In de context van "gewone" bedrijven kunnen tekorten aan reserveonderdelen zowel de huidige omzet als de toekomstige omzet schaden (gerelateerd aan de reputatie als betrouwbare leverancier). Voor een elektriciteitsbedrijf echter, Scala et al. constateerde dat er veel grotere gevolgen verbonden waren aan de voorraad van reserveonderdelen. Deze omvatten niet alleen een verhoogd financieel en reputatierisico, maar ook risico's voor gezondheid en veiligheid: Gevolgen van het niet op voorraad hebben van een onderdeel zijn onder meer de mogelijkheid om de productie te moeten verminderen of mogelijk zelfs een fabriek stil te leggen. Vanuit een langetermijnperspectief kan dit de kritieke stroomvoorziening aan residentiële, commerciële en/of industriële klanten onderbreken, terwijl het de reputatie, betrouwbaarheid en winstgevendheid van het bedrijf schaadt. Een elektriciteitsbedrijf maakt en verkoopt slechts één product: elektriciteit. Het verlies van het vermogen om elektriciteit te verkopen kan ernstige schade toebrengen aan de bedrijfsresultaten en de levensvatbaarheid op lange termijn.”

Des te meer reden voor elektriciteitsbedrijven om leiders te zijn in plaats van achterblijvers bij de inzet van de meest geavanceerde waarschijnlijkheidsmodellen voor vraagvoorspelling en voorraadoptimalisatie.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Ontdek gegevensfeiten en verbeter de voorraadprestaties

    De beste voorraadplanningsprocessen zijn gebaseerd op statistische analyse om relevante feiten over de gegevens te ontdekken. Bijvoorbeeld:

    1. Het bereik van te verwachten vraagwaarden en doorlooptijden van leveranciers.
    2. De meest waarschijnlijke waarden van de vraag naar artikelen en de doorlooptijd van de leverancier.
    3. De volledige kansverdelingen van de artikelvraag en de doorlooptijd van de leverancier.

    Als u het derde niveau bereikt, beschikt u over de feiten die nodig zijn om belangrijke operationele vragen te beantwoorden, aanvullende vragen zoals:

    1. Hoeveel extra voorraad is er precies nodig om het serviceniveau met 5% te verbeteren?
    2. Wat gebeurt er met tijdige levering als de voorraad wordt verminderd met 5%?
    3. Zal een van de bovenstaande wijzigingen een positief financieel rendement opleveren?
    4. Meer in het algemeen, welk serviceniveaudoel en bijbehorend voorraadniveau is het meest winstgevend?

    Wanneer u over de feiten beschikt en uw zakelijke kennis toevoegt, kunt u beter geïnformeerde beslissingen nemen over opslag die een aanzienlijk rendement opleveren. Je schept ook de juiste verwachtingen bij interne en externe belanghebbenden, zodat er minder ongewenste verrassingen zijn.

    Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

    Deze conclusie is gebaseerd op honderden software-implementaties die we in de loop der jaren hebben geleid. Klanten die reserveonderdelen en serviceonderdelen beheren (de laatste voor intern verbruik/MRO), en in mindere mate aftermarket-onderdelen (voor doorverkoop aan geïnstalleerde bases), hebben onze software voor onderdelenplanning consequent sneller geïmplementeerd dan hun collega's in productie en distributie.

    De belangrijkste reden is de rol bij de productie en distributie van zakelijke kennis over wat er in de toekomst zou kunnen gebeuren. In een traditionele B2B-productie- en distributieomgeving zijn er klanten en verkoop- en marketingteams die aan die klanten verkopen. Er zijn verkoopdoelen, omzetverwachtingen en budgetten. Dit betekent dat er veel zakelijke kennis is over wat er zal worden gekocht, wat zal worden gepromoot, wiens meningen moeten worden verantwoord. Er is een complexe planningslus vereist. Bij het beheer van reserveonderdelen heb je daarentegen een onderhoudsteam dat apparatuur repareert wanneer deze kapot gaat. Hoewel er vaak onderhoudsschema's zijn als richtlijn, is wat er naast een standaardlijst met verbruiksartikelen nodig is, vaak onbekend totdat een onderhoudspersoon ter plaatse is. Met andere woorden, er is gewoon niet dezelfde soort zakelijke kennis beschikbaar voor onderdelenplanners bij het nemen van voorraadbeslissingen.

    Ja, dat is een nadeel, maar het heeft ook een voordeel: het is niet nodig om een periode-voor-periode consensusvraagprognose te maken met al het werk dat daarvoor nodig is. Bij het plannen van reserveonderdelen kunt u meestal veel stappen overslaan die nodig zijn voor een typische fabrikant, distributeur of detailhandelaar. Deze over te slaan stappen omvatten:  

    1. Prognoses maken op verschillende niveaus van het bedrijf, zoals productfamilie of regio.
    2. De vraagprognose delen met verkoop, marketing en klanten.
    3. Prognoseonderdrukkingen van verkoop, marketing en klanten beoordelen.
    4. Afspraken maken over een consensusprognose die statistieken en zakelijke kennis combineert.
    5. Het meten van "prognose toegevoegde waarde" om te bepalen of overschrijvingen de prognose nauwkeuriger maken.
    6. De vraagprognose aanpassen voor bekende toekomstige promoties.
    7. Rekening houden met kannibalisatie (dwz als ik meer van product A verkoop, verkoop ik minder van product B).

    Bevrijd van een consensusvormingsproces, kunnen planners van reserveonderdelen en voorraadbeheerders rechtstreeks op hun software vertrouwen om het gebruik en het vereiste voorraadbeleid te voorspellen. Als ze toegang hebben tot een in de praktijk bewezen oplossing die intermitterende vraag aanpakt, kunnen ze snel live gaan met nauwkeurigere vraagprognoses en schattingen van bestelpunten, veiligheidsvoorraden en bestelsuggesties. Hun aandacht kan worden gericht op het verkrijgen van nauwkeurige gebruiks- en doorlooptijdgegevens van leveranciers. Het "politieke" deel van de taak kan worden beperkt tot het verkrijgen van consensus binnen de organisatie over doelstellingen op het gebied van serviceniveaus en inventarisbudgetten.

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Servicegestuurde planning voor bedrijven met serviceonderdelen

      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

      Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, spoed, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

      Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Door stress testen uw huidige voorraadbeleid tegen alle plausibele scenario's van toekomstige vraag, weet u van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

      Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Door gebruik te maken van wat-als-scenario's in moderne software voor onderdelenplanning is het mogelijk om alternatief voorraadbeleid te vergelijken en het beleid te identificeren dat het beste aansluit bij de bedrijfsdoelstellingen. Spreek af welke mate van voorraadrisico acceptabel is voor elk onderdeel of elke klasse van onderdelen. Bepaal ook voorraadbudgetten en andere kostenbeperkingen. Zodra deze limieten zijn overeengekomen, moet u onmiddellijk actie ondernemen om stockouts en overtollige voorraad te voorkomen voordat ze zich voordoen. Gebruik uw software om gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters automatisch te uploaden naar uw Enterprise Resource Planning (ERP)- of Enterprise Asset Management (EAM)-systeem om de dagelijkse inkoop van onderdelen aan te passen.

      Stap 4. Maak het zo en houd het zo. Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten door uw bestelproces aan te sturen met behulp van geoptimaliseerde inputs (prognoses, bestelpunten, bestelhoeveelheden, veiligheidsvoorraden). Houd uw KPI's bij en gebruik uw software om uitzonderingen te identificeren en aan te pakken. Laat herordeningspunten niet muf en achterhaald worden.  Opnieuw kalibreren het voorraadbeleid elke planningscyclus (minstens één keer per maand) met behulp van up-to-date gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten. Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad.