Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen

Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten:

Using Key Performance Predictions to Plan Stocking Policies Iventory

De Inventory Optimization-oplossing van Smart genereert kant-en-klare belangrijke prestatievoorspellingen die op dynamische wijze simuleren hoe uw huidige voorraadbeleid zal presteren ten opzichte van mogelijke toekomstige eisen. Het rapporteert hoe vaak u voorraad opslaat, de omvang van de voorraad, de waarde van uw voorraad, opslagkosten en meer. Hiermee kunt u problemen proactief identificeren voordat ze zich voordoen, zodat u op korte termijn corrigerende maatregelen kunt nemen. U kunt 'wat-als'-scenario's creëren door doelgerichte serviceniveaus in te stellen en doorlooptijden aan te passen, zodat u de voorspelde impact van deze wijzigingen kunt zien voordat u zich ertoe verbindt.

Bijvoorbeeld,

  • U kunt zien of een voorgestelde overstap van het huidige serviceniveau van 90% naar een gericht serviceniveau van 97% financieel voordelig is
  • U kunt automatisch vaststellen of een ander serviceniveaudoel nog winstgevender is voor uw bedrijf dan het voorgestelde doel.
  • U kunt precies zien hoeveel u nodig heeft om uw herbestelpunten te verhogen om een langere doorlooptijd mogelijk te maken.

 

Als u planners niet van de juiste tools voorziet, worden ze gedwongen voorraadbeleid en veiligheidsvoorraadniveaus in te stellen en vraagprognoses te maken in Excel of met verouderde ERP-functionaliteit. Als u niet weet hoe het beleid naar verwachting zal presteren, is uw bedrijf slecht uitgerust om de voorraad correct toe te wijzen. Neem vandaag nog contact met ons op en ontdek hoe wij u kunnen helpen!

 

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Wanneer u traditionele extrapolatieve voorspellingstechnieken moet gebruiken.

Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. 

Extrapolatieve methoden presteren goed wanneer de vraag een hoog volume heeft en niet te gedetailleerd is (dat wil zeggen, de vraag wordt maandelijks of driemaandelijks gespreid). Ze zijn ook erg snel en gebruiken niet zoveel computerbronnen als probabilistische en ML-methoden. Dit maakt ze zeer toegankelijk.

Zijn de traditionele methoden even nauwkeurig als nieuwere voorspellingsmethoden? Smart heeft ontdekt dat extrapolatieve methoden het zeer slecht doen als de vraag intermitterend is. Wanneer de vraag echter groter is, doen ze het slechts iets slechter dan onze nieuwe probabilistische methoden wanneer de vraag maandelijks wordt gesegmenteerd. Gezien hun toegankelijkheid, snelheid en het feit dat u prognoseoverschrijvingen gaat toepassen op basis van bedrijfskennis, zal het verschil in basislijnnauwkeurigheid hier niet materieel zijn.

Het voordeel van geavanceerdere modellen zoals de GEN2-probabilistische methoden van Smart is wanneer u patronen moet voorspellen met behulp van gedetailleerdere buckets zoals dagelijkse (of zelfs wekelijkse) gegevens. Dit komt omdat probabilistische modellen patronen van de dag van de week, de week van de maand en de maand van het jaar kunnen simuleren die met eenvoudigere technieken verloren zullen gaan. Heeft u ooit geprobeerd de dagelijkse seizoensinvloeden te voorspellen met een Wintermodel? Hier is een hint: het gaat niet werken en vereist veel techniek.

Probabilistische methoden bieden ook waarde die verder gaat dan de basisvoorspelling, omdat ze scenario's genereren die kunnen worden gebruikt bij stresstests voor voorraadbeheermodellen. Dit maakt ze geschikter om bijvoorbeeld te beoordelen hoe een verandering in het bestelpunt de voorraadkansen, opvullingspercentages en andere KPI's zal beïnvloeden. Door duizenden mogelijke aanvragen gedurende vele doorlooptijden te simuleren (die zelf in scenariovorm worden gepresenteerd), krijgt u een veel beter idee van hoe uw huidige en voorgestelde voorraadbeleid zal presteren. U kunt betere beslissingen nemen over waar u gerichte voorraadverhogingen en -verlagingen kunt doorvoeren.

Gooi dus nog niet het oude weg voor het nieuwe. Weet gewoon wanneer je een hamer nodig hebt en wanneer je een drilboor nodig hebt.

 

 

 

 

Smart Software is geëerd met de Epicor ISV Marketing Excellence Award

Belmont, Massachusetts, oktober 2023 – Smart Software is verheugd aan te kondigen dat het de ontvanger is van de Epicor ISV Marketing Excellence Award, een erkenning voor de uitstekende prestaties en bijdragen van Smart bij het stimuleren van succesvolle marketinginitiatieven, campagnes en innovatie.

Pete Reynolds, Vice President of Channel Sales van Smart Software, zal de Marketing Excellence Award ontvangen tijdens de ISV Partner Briefing bij Ignite. Het evenement vindt plaats in Dallas op maandag 23 oktober 2023, van 10.45 - 12.30 uur in het Gaylord Texan Convention Center.

Greg Hartunian, CEO van Smart Software, verklaarde: “Deze erkenning is een bewijs van de samenwerking tussen de Smart- en Epicor-teams. Samen hebben we veel bewustzijn gecreëerd over de voordelen van betere voorraadplanning en -prognoses. We kijken ernaar uit om het komende jaar meer klanten te helpen en onze samenwerking naar nieuwe hoogten te brengen.”

Smart Software is een Epicor Platinum Partner, de hoogste aanduiding in het ISV Partner Programma.

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Disney, Arizona Public Service, Ameren en het Amerikaanse Rode Kruis. Smart's Inventory Planning & Optimization Platform, Smart IP&O, biedt vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en onze website ook www.smartcorp.com.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

Vraagpatronen

Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

 

Zakelijke kennis

Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

 

Methoden voor MRO

In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

 

Betrouwbaarheidsmodellen

Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts function and its survival function

Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

 

Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts Increasing hazard function and survival function

Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

 

Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

 

Conditiegebaseerd onderhoud

Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

 

MRO and Spare Parts real-time monitoring for condition-based maintenance

Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

 

Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

 

Smart's aanpak
De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

MRO and Spare Parts simulation of demand and on-hand inventory

Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Probabilistische voorspellingsscenario's creëren en exploiteren

    Probabilistische scenario's zijn reeksen gegevenspunten die worden gegenereerd om potentiële situaties uit de echte wereld weer te geven. In tegenstelling tot scenario's in oorlogsspellen of andere simulaties zijn dit synthetische tijdreeksen die worden gebruikt als input voor systeemmodellen of als intuïtiebouwers voor besluitvormers.

    Scenario's van de toekomstige vraag naar artikelen kunnen bijvoorbeeld worden ingevoerd in Monte Carlo-simulatiemodellen van voorraadbeheersystemen, waardoor een virtueel laboratorium ontstaat waarin de gevolgen van managementbeslissingen kunnen worden onderzocht, zoals het wijzigen van bestelpunten en/of bestelhoeveelheden. Bovendien kunnen grafieken van meetgegevens, zoals voorhanden voorraad of stockouts, voorraadplanners helpen hun ‘gevoel’ voor de willekeur die inherent is aan hun activiteiten te verdiepen.

    Figuur 1 toont dagelijkse vraagscenario's die zijn gegenereerd op basis van een enkele waargenomen vraagreeks die gedurende één jaar is geregistreerd. Merk op dat hetzelfde proces voor het genereren van gegevens er in detail “heel anders uit kan zien” van monster tot monster. Dit bootst het echte leven na.

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 1

    Figuur 1: Een waargenomen vraagvolgorde en daarvan afgeleide vraagscenario’s.

     

    Figuur 2 toont twee vraagscenario's en hun gevolgen voor de voorraad in een bepaald voorraadbeheersysteem. Het verschil tussen de twee voorraadgrafieken illustreert de mate waarin de willekeur in de vraag het probleem domineert. Het bovenste plot toont twee afleveringen van stockout, terwijl het onderste plot negen toont. Door het gemiddelde te nemen over vele scenario's zullen de typische waarden van Key Performance Metrics (KPI's) worden verduidelijkt, zoals het gemiddelde aantal stockouts dat is gekoppeld aan elke keuze van het bestelpunt en de bestelhoeveelheid (die respectievelijk 10 en 25 zijn in figuur 2).

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 2

    Figuur 2: Twee vraagscenario's en hun gevolgen voor de voorhanden voorraad

     

    In deze notitie beschrijven we technieken voor het maken van scenario's en geven we criteria op voor het evalueren van scenariogeneratoren.

    Criteria voor scenario's

    Zoals we hieronder zullen zien, zijn er verschillende manieren om scenario's te maken. Ongeacht de bron, welke criteria definiëren een ‘goed’ scenario? Er zijn vier hoofdcriteria: trouw, variëteit, hoeveelheid en kosten. Trouw vat samen hoe nauwkeurig een scenario situaties uit de echte wereld imiteert. High-fidelity betekent dat de scenario's de werkelijke gebeurtenissen nauwkeurig weerspiegelen en een solide basis vormen voor analyse en besluitvorming. Verscheidenheid beschrijft de diversiteit aan scenario's die een generator kan creëren. Een veelzijdige generator kan een breed scala aan potentiële situaties simuleren, waardoor mogelijkheden en risico's grondig kunnen worden verkend. Hoeveelheid verwijst naar het aantal scenario's dat een generator kan produceren. Een generator die een groot aantal scenario's kan creëren, levert voldoende gegevens voor analyse. Kosten houdt rekening met zowel de computer- als de menselijke hulpbronnen die nodig zijn om de scenario's te produceren. Een efficiënte scenariogenerator brengt kwaliteit in evenwicht met het gebruik van hulpbronnen, zodat de inspanning wordt gerechtvaardigd door de waarde en nauwkeurigheid van de resultaten.

    Scenariogeneratie

    Denk opnieuw aan een scenario als een tijdreeks. Hoe komen scenario's tot stand?

    1. Gepetto's werkplaats: Deze aanpak omvat het handmatig vervaardigen van scenario's door experts. Hoewel het high-fidelity (realisme) kan opleveren, vergt het zeer veel middelen en kan het niet gemakkelijk variatie genereren, wat een groot aantal scenario's vereist.
    2. Groundhog-dag: Bij deze methode wordt herhaaldelijk één enkele praktijksituatie als input gebruikt. Hoewel het per definitie realistisch en kosteneffectief is (er worden geen andere middelen gebruikt dan het vastleggen van de gegevens), mist deze aanpak variatie en kan daarom de diversiteit van scenario's uit de echte wereld niet accuraat weerspiegelen.
    3. Parametrische modellen: Voorbeelden van parametrische modellen zijn de klassiekers die in de klassen van de Statistiek worden bestudeerd: Normaal, exponentieel, Poisson, enz. De vraagdiagrammen in Figuur 2 worden parametrisch gegenereerd, zijnde de kwadraten van willekeurige Poisson-variabelen. Deze modellen genereren een onbeperkt aantal goedkope scenario's met een goede variëteit, maar ze geven niet altijd de complexiteit van gegevens uit de echte wereld weer, waardoor de betrouwbaarheid mogelijk in gevaar komt. Wanneer de werkelijkheid ingewikkelder is, genereren deze modellen te vereenvoudigde scenario's.
    4. Niet-parametrische tijdreeksbootstraps: Deze aanpak kan goed scoren op alle criteria: trouw, variëteit, kwantiteit en kosten. Het is een veelzijdige methode die uitblinkt in het creëren van enorme aantallen realistische scenario's. De synthetische vraaggeschiedenissen in Figuur 1 zijn eenvoudige bootstrap-voorbeelden, gebaseerd op de waargenomen waarden in de bovenste grafiek. (Zie de onderstaande links voor enkele details over het genereren van scenario's.)

    Scenario's exploiteren

    Scenario's bewijzen hun waarde op twee manieren: als input voor besluitvorming en als intuïtiebouwers. Wanneer vraagscenario's bijvoorbeeld worden gebruikt als input voor simulatiemodellen, maken ze stresstests en prestatieschattingen voor systeemontwerp mogelijk. Scenario's kunnen ook dienen als intuïtiebouwers voor besluitvormers of systeembeheerders. Hun visuele weergave helpt bij het ontwikkelen van inzicht in en waardering voor de risico's die gepaard gaan met het nemen van operationele beslissingen, of het nu gaat om vraagvoorspelling of voorraadbeheer.

    Scenario-gebaseerde analyse is zeer computerintensief, vooral wanneer de scenario's worden gegenereerd door middel van bootstrapping. Bij Smart Software gebeurt het rekenen in de cloud. Stel je de rekenlast voor die gepaard gaat met het bepalen van bestelpunten en bestelhoeveelheden voor elk van de tienduizenden voorraadartikelen met behulp van honderden of duizenden vraagsimulaties voor elk artikel. Stel je verder voor dat de software niet alleen een specifiek voorgesteld paar van bestelpunten en bestelhoeveelheid evalueert, maar door de hele “ontwerpruimte” van paren dwaalt om het beste paar controleparameters voor elk item te vinden. Om dit praktisch te maken, profiteren we van de parallelle verwerkingskracht van de cloud. In wezen krijgt elk inventarisitem een eigen computer toegewezen die bij de berekeningen kan worden gebruikt, zodat al dat computerwerk tegelijkertijd kan plaatsvinden in plaats van opeenvolgend. Nu kunnen we losgaan en u echt de resultaten bezorgen die u nodig heeft.

    Meer leren

    Wie geïnteresseerd is in verdere technische details en referenties, kan hier meer informatie vinden.

    Wat maakt een probabilistische voorspelling?

    Probabilistische prognoses voor intermitterende vraag