Hoe weet u dat het Min/Max-beleid goed voor u werkt?

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Wat is een Min/Max-polis? Hoe weet je of het goed voor je werkt? Smart IP&O krijgt Min/Max gelijk!

Het Min/Max-voorraadbeleid is een van de vier beschikbare aanvullingsmethoden in SIO. Wanneer het voorraadniveau daalt tot of onder de Min, wordt een aanvullingsorder gegenereerd. De bestelhoeveelheid is het aantal eenheden dat nodig is om de voorraad op te voeren tot de Max. Hoe weet u of uw min/max-instellingen goed werken en aanvullingsorders op het juiste moment en voor de juiste hoeveelheden activeren? Als u net als de meeste bedrijven bent, is het instellen van Min/Max-niveaus gebaseerd op vuistregels of eenvoudige middelingstechnieken die de ruilcurve tussen serviceniveau en voorraadkosten. Dit maakt het onmogelijk om te voorspellen welke artikelen in de toekomst waarschijnlijk overvoorraden en tekorten zullen hebben. In dit Videoblog gaan we hier dieper op in en beschrijven we hoe Smart Inventory Optimization kan helpen.

 

 

Laat een reactie achter

gerelateerde berichten

Daily Demand Scenarios

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Irregular Operations

Onregelmatige operaties

Deze blog gaat over ‘onregelmatige handelingen’. Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamheden. Dit is een voorproefje.

Finding Your Spot on the Inventory Tradeoff Curve

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Het testen van softwareoplossingen via een reeks empirische competities kan een aanzienlijke optie zijn. Voor prognoses/vraagplanning is dit een traditionele “hold out”-test waarbij gegevens voor 2014-2018 worden verstrekt aan softwareleveranciers en 2019 wordt aangehouden voor latere vergelijking met prognoses van concurrerende leveranciers. Het bedrijf meet vervolgens prognosefouten en vooringenomenheid. Deze benadering wordt bijna universeel aanbevolen voor het beoordelen van de nauwkeurigheid van prognoses. Het is een goede manier om de nauwkeurigheid van maandelijkse of wekelijkse prognoses te beoordelen, maar het is minimaal nuttig als u een ander doel heeft: voorraad optimaliseren.

      In onze vorige blog hebben we het erover gehad hoe u een gericht serviceniveau kiest. We hebben aangegeven dat het feit dat je een doel stelt (of een systeem een doel aanbeveelt) niet betekent dat je het doel ook daadwerkelijk zult bereiken. De juiste manier om nauwkeurigheid te meten als u geïnteresseerd bent in het optimaliseren van voorraadniveaus, is door u te concentreren op de nauwkeurigheid van de projectie van het serviceniveau. Dit houdt rekening met zowel de doorlooptijdvraag als de veiligheidsvoorraad.

      Een instellen beoogde serviceniveau is een strategische beslissing over voorraadrisicobeheer. Voorraadsoftware doet het tactische werk door herordeningspunten (ook wel minuten genoemd) te berekenen die bedoeld zijn om een door de gebruiker gedefinieerd doel te bereiken of om een door het systeem berekend optimaal doel te bereiken. Maar als de software het verkeerde vraagmodel gebruikt, kan de bereikte servicegraad zal het doel missen, soms aanzienlijk. Het resultaat van deze fout is ofwel een tekort ofwel een opgeblazen voorraad, afhankelijk van de richting van de misser.

      Graphic to approach is advocated nearly universally for assessing forecast accuracyPrognoses zijn een middel om een doel te bereiken. Het doel is om voorraadniveaus te optimaliseren. Omdat de vraag onzeker is, moeten bedrijven die zelfs maar een matig serviceniveau moeten bieden, meer voorraad hebben dan de prognose, vaak veel meer. Maar betekent een lage voorspellingsfout niet een lagere veiligheidsvoorraad? Hoe beter mijn prognoses, hoe lager mijn voorraad? Ja waar. Maar waar het bij het bepalen van de benodigde voorraad om gaat, zijn zowel nauwkeurige prognoses van de meest waarschijnlijke vraag als nauwkeurige schattingen van de variabiliteit rond de meest waarschijnlijke vraag.

      Vooral met een langdurige, intermitterende vraag, missen traditionele prognosenauwkeurigheidsbeoordelingen over een conventionele prognosehorizon van 12 maanden het punt op drie manieren.

      – Ten eerste is de relevante tijdschaal voor voorraadoptimalisatie de doorlooptijd voor aanvulling, die meestal veel korter is dan 12 maanden. Vraag tijdens doorlooptijden gemeten in dagen of weken heeft een volatiliteit die wordt gemiddeld over lange prognosehorizons. Dit is slecht omdat rekening houden met het effect van volatiliteit essentieel is voor de berekening van optimale bestelpunten.

      – Ten tweede richt de prognosenauwkeurigheid die wordt beoordeeld over een prognosehorizon van meerdere maanden zich op de typische fout in een typische maand binnen de horizon. Voorraadoptimalisatie vereist daarentegen een focus op de cumulatieve vraag, niet op de vraag per periode.

      – Ten derde, en het belangrijkste, is dat prognosefoutstatistieken gericht zijn op het midden van de vraagverdeling, met als doel de meest waarschijnlijke vraag in te schatten. Maar het instellen van bestelpunten omvat het schatten van hoge percentielen van de cumulatieve vraagverdeling over een doorlooptijd. Het midden iets beter inschatten, maar geen idee hebben van bijvoorbeeld het 95e percentiel, helpt niet.

      Beschouw dit hypothetische voorbeeld. Als leverancier A 20 eenheden voorspelt met een 110%-fout en leverancier B voorspelt 22 eenheden met een 105%-fout, dan heeft leverancier B een voordeel in het voorspellingsspel. Maar als u een hoog serviceniveau wilt en de vraag wisselvallig is, moet u veel meer dan 20 of 22 eenheden op voorraad hebben. Laten we aannemen dat u de technologie van leverancier B selecteert om voorraadniveaus te plannen. Je merkt dan dat bij het plannen van bestelpunten om een 95%-serviceniveau te bereiken, je vaak tekortschiet - veel vaker dan de verwachte 5% van die tijd. U komt tot het besef dat de benadering van leverancier B de veiligheidsvoorraad die nodig is om het beoogde servicedoel te bereiken, volledig onderschat. Focussen op de voorspellingsfout van leveranciers zal niet helpen. U zult gaan wensen dat u de leveranciers A en B had geverifieerd nauwkeurigheid op serviceniveau. Nu zit u vast aan het willekeurig aanpassen van de serviceniveaudoelstellingen van leverancier B om het tekort te compenseren.

      Wat dus nodig is bij leverancierscompetities, is een beoordeling van het vermogen van hun systemen om nauwkeurig de voorraad te voorspellen die nodig is om te voldoen aan een bepaald serviceniveau gedurende de doorlooptijd van een artikel. Een beperkte focus op het meten van prognosefouten is niet gepast als de missie inventarisbeheer is. Dit geldt met name voor longtail-artikelen met intermitterende vraag of artikelen met een gemiddeld tot hoog volume maar zonder een vraagverdeling die lijkt op de klassieke "klokvormige curve" (normale verdeling).

      In de rest van deze blog wordt uitgelegd hoe u de nauwkeurigheid van de serviceniveauberekeningen van software kunt testen, zodat u het risico kunt bewaken dat u uw serviceniveaudoelen niet haalt. We raden deze nauwkeurigheidstest aan in plaats van traditionele "prognose versus werkelijke" tests, omdat deze veel meer inzicht geeft in hoe aanbevelingen voor bestelpunten voorraadniveaus en klantenservice zullen beïnvloeden.

      Office staff are analyzing The Right Forecast Accuracy Metric for Inventory Planning

      Kantoorpersoneel analyseert The Right Forecast Accuracy Metric voor voorraadplanning

      Serviceniveau gedefinieerd

      Overweeg een enkel inventarisitem. Wanneer de voorraad daalt tot of onder het bestelpunt, wordt een aanvullingsorder gegenereerd. Hiermee begint een risicoperiode die net zo lang duurt als de doorlooptijd van de aanvulling. Tijdens de risicoperiode kunnen er voldoende aanvragen binnenkomen om naleveringen of verloren verkopen te creëren. Het serviceniveau is de waarschijnlijkheid dat er geen backorders of stockouts zijn tijdens de doorlooptijd van de aanvulling. Kritieke items kunnen zeer hoge doelserviceniveaus krijgen, bijvoorbeeld 99%, terwijl andere items mogelijk meer ontspannen doelen hebben, zoals 75%. Wat het beoogde serviceniveau ook is, het is het beste om dat doel te halen.

      Serviceniveau berekenen

      Het serviceniveau voor een individueel artikel kan alleen worden geschat door de waargenomen doorlooptijdvraag herhaaldelijk te vergelijken met het berekende bestelpunt. Deze schattingen kosten veel tijd: zeker tientallen doorlooptijden. Maar het serviceniveau van het wagenpark kan worden geschat met behulp van gegevens die over een enkele doorlooptijd zijn verzameld.

      Laten we een voorbeeld doen. Stel dat u een vraaggeschiedenis heeft voor 1.000 artikelen gedurende 365 dagen en dat (voor de eenvoud) alle artikelen een doorlooptijd van 45 dagen hebben. Volg voor elk artikel de volgende stappen om het voor het wagenpark bereikte serviceniveau te schatten:

      Stap 1: Zet de meest recente 45 dagen aan vraag opzij ('houd uit') (of het aantal dagen dat het dichtst bij uw typische doorlooptijden ligt). Bereken hun som, wat de meest recente waarde is van de werkelijke doorlooptijdvraag. Dit is de grondwaarheid die wordt gebruikt om het bereikte serviceniveau in te schatten.

      Stap 2: Gebruik de voorafgaande 320 dagen aan vraaggeschiedenis om te voorspellen hoeveel voorraad nodig is om een reeks serviceniveaudoelen te bereiken, bijvoorbeeld 90%, 95%, 97% en 99%.

      Stap 3: Controleer of de waargenomen doorlooptijdvraag kleiner is dan of gelijk is aan het bestelpunt. Als dat zo is, tel dit dan als een overwinning; reken het anders als een verlies. Als het bestelpunt bijvoorbeeld 15 eenheden is, maar de meest recente doorlooptijdvraag 10 eenheden is, dan is dit een overwinning, aangezien het bestelpunt hoog genoeg is om een doorlooptijdvraag van 10 te dekken zonder enig tekort. Als de meest recente doorlooptijdvraag echter 18 eenheden is, zou er sprake zijn van een voorraaduitval en zouden 3 eenheden worden nabesteld of als verloren verkoop worden geteld.

      Stap 4: Tel voor alle items en alle serviceniveaudoelen het percentage tests voor elk serviceniveaudoel dat tot een overwinning heeft geleid. Dit is het behaalde serviceniveau. Als het doel 90% was en 853 van de 1.000 eenheden winnen, dan is het bereikte serviceniveau 85.3%.

      Voorbeeld

      Overweeg een voorbeeld uit de echte wereld. De gegevens zijn dagelijkse vraaggeschiedenissen van 590 medische artikelen die worden gebruikt in een internationaal bekende kliniek. Voor de eenvoud gaan we ervan uit dat elk artikel een levertijd heeft van 45 dagen. We evalueren beoogde serviceniveaus van 70%, 90%, 95% en 99%.
      We vergelijken twee vraagmodellen. Het "Normale" model gaat ervan uit dat de dagelijkse vraag een normale ("klokvormige") verdeling heeft. Dit is de klassieke aanname die wordt gebruikt in de meeste inleidende leerboeken over voorraadbeheer en in veel softwareproducten. Hoe klassiek het ook mag zijn, het is vaak een ongepast model van de vraag naar reserveonderdelen of voorraden. Het “Probability Forecast”-model houdt expliciet rekening met de intermitterende aard van de vraag.

      Bijlage 1 toont de resultaten. Kolom J toont de werkelijke vraag over de laatste 45 waarnemingen. De berekende bestelpunten voor het geavanceerde model worden weergegeven in kolommen LO. De berekende bestelpunten voor het model Normaal worden niet weergegeven. De kolommen QT en VY bevatten de resultaten van de tests om na te gaan of de bestelpunten hoog genoeg waren om de doorlooptijdvereisten in kolom J aan te kunnen.

      De uiteindelijke resultaten (gele cellen) laten een duidelijk verschil zien tussen de vraagmodellen Normal en Probability (Advanced). Beiden hebben het 70%-serviceniveaudoel goed bereikt, maar het schatten van hogere serviceniveaus is een meer delicate berekening en het waarschijnlijkheidsmodel doet het veel beter. Het veronderstelde 99%-serviceniveau van het Normal-model bleek bijvoorbeeld slechts 94.4% te zijn, terwijl het Probability-model het doel bereikte met een 98.5% bereikt serviceniveau.

      Implicaties

      Met de meer nauwkeurige methode werd het beoogde serviceniveau bereikt, terwijl dat met de minder nauwkeurige methode niet het geval was. Als de minder nauwkeurige methode wordt gebruikt, zullen echte en kostbare zakelijke beslissingen worden genomen in de valse veronderstelling dat een hoger serviceniveau zal worden bereikt. Als er bijvoorbeeld een Service Level Agreement (SLA) is gebaseerd op deze resultaten en een 99%-serviceniveau is vastgelegd, is de kans dat de leverancier een voorraad oploopt vijf keer groter dan gepland (beloofd serviceniveau = 99%- of 1%-voorraadrisico vs. serviceniveau bereikt = 94.5% of 5.5% stock out risico)! Dit betekent dat boetes vijf keer vaker worden opgelegd dan verwacht.

      Stel dat planners wisten dat het beoogde serviceniveau niet zou worden gehaald, maar vast kwamen te zitten met een onnauwkeurig model. Ze zouden nog steeds een manier nodig hebben om de voorraad te vergroten en het gewenste serviceniveau te bereiken. Wat zouden ze kunnen kiezen om te doen? We hebben situaties waargenomen waarin de planner een hoger doel voor het serviceniveau invoert dan nodig is om het systeem te "misleiden" om het vereiste serviceniveau te leveren. In het bovenstaande voorbeeld moest het Normal-model een 99.99%-serviceniveau hebben ingevoerd voordat het een doelserviceniveau van 99% kon bereiken. Deze wijziging resulteerde in het bereiken van een 99%-service, maar meer dan een verdubbeling van de voorraadinvestering in vergelijking met het geavanceerde model.

      Het implementeren van een nauwkeurigheidstest op serviceniveau

      Bij Smart Software hebben we veel van onze klanten aangemoedigd om de test van de nauwkeurigheid van het serviceniveau uit te voeren als een manier voor hen om onze claims en die van andere leveranciers te beoordelen tijdens het softwareselectieproces. Het niet halen van de service level target heeft uiterst kostbare implicaties, resulterend in substantiële over- of ondervoorraden. Test dus de nauwkeurigheid van het serviceniveau voordat u een oplossing implementeert om situaties te identificeren waarin de modellering mislukt. Ga er niet vanuit dat u het serviceniveau bereikt dat u besluit te targeten (of dat het systeem aanbeveelt). Als u een Excel-spreadsheet wilt aanvragen die dient als sjabloon voor een nauwkeurigheidstest op serviceniveau, e-mailt u uw contactgegevens naar info@smartcorp.com en voert u "Nauwkeurigheidssjabloon" in de onderwerpregel in.

      Laat een reactie achter

      gerelateerde berichten

      Daily Demand Scenarios

      Dagelijkse vraagscenario's

      In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

      Irregular Operations

      Onregelmatige operaties

      Deze blog gaat over ‘onregelmatige handelingen’. Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamheden. Dit is een voorproefje.

      Finding Your Spot on the Inventory Tradeoff Curve

      Vind uw plek op de voorraadafwegingscurve

      Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          "Kiezen en bereiken van een doelserviceniveau" door medeoprichter van Smart Software, geprofileerd in uitgave van Foresight voorjaar 2018

          Belmont, Massachusetts, 17 mei 2018 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het voorjaar 2018 nummer van Foresight Magazine het artikel van Dr. Thomas Willemain "Choosing and Achieving a Target Service Level" bevat. Len Tashman, redacteur van Foresight stelt: "Tom Willemain beschrijft de belangrijkste overwegingen voor het stellen van doelen op serviceniveau, legt uit hoe software een waardevol hulpmiddel kan zijn bij dit streven en biedt een casestudy om een relatief eenvoudige aanpak te illustreren - wat hij noemt" service level winsten en verliezen” – waarmee een bedrijf kan evalueren hoe goed het zijn service level doelen bereikt. De casestudy laat ook zien hoe belangrijk het is om geschikte waarschijnlijkheidsmodellen te gebruiken in plaats van te vertrouwen op traditionele standaarden zoals de normale verdeling van de vraag.”

          Ga naar om het hele artikel te lezen en om meer te weten te komen over foresight https://foresight.forecasters.org/

          Over Smart Software, Inc.
          Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.


          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
          Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

          Schone, toegankelijke en bruikbare gegevens onder één dak

          De slimme voorspeller

          Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Zijn uw gegevens geïsoleerd in Excel-silo's? Heeft u gegevens in veel verschillende systemen? Smart IP&O Solution brengt schone, toegankelijke en bruikbare gegevens onder één dak.

          Het verspreiden van al uw gegevens over meerdere spreadsheets staat u in de weg. Door alle gegevens samen te brengen in het Smart Platform in de cloud, vernieuw je de gegevens automatisch elke dag en zie je altijd het volledige plaatje. Vervolgens kunt u analyses uitvoeren in de Smart Inventory Optimization-app om te zien hoe u het doet in termen van meerdere kosten- en prestatiestatistieken en hoe die statistieken zouden veranderen als u belangrijke drijfveren zou wijzigen, zoals doorlooptijden van leveranciers.

          Laat een reactie achter

          gerelateerde berichten

          Daily Demand Scenarios

          Dagelijkse vraagscenario's

          In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

          Irregular Operations

          Onregelmatige operaties

          Deze blog gaat over ‘onregelmatige handelingen’. Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamheden. Dit is een voorproefje.

          Finding Your Spot on the Inventory Tradeoff Curve

          Vind uw plek op de voorraadafwegingscurve

          Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Een controle op prognoseautomatisering met de aandachtsindex

              De slimme voorspeller

              Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Een nieuwe maatstaf die we de "Attentie-index" noemen, helpt voorspellers situaties te identificeren waarin "gegevens die zich slecht gedragen" automatische statistische voorspellingen kunnen verstoren (zie hiernaast). Het identificeert snel die items die waarschijnlijk de meeste kans hebben om prognoses te negeren, wat een efficiëntere manier biedt om zakelijke ervaring en andere menselijke intelligentie aan het werk te zetten om de nauwkeurigheid van prognoses te maximaliseren. Hoe werkt het?

              Klassiek voorspellingsmethoden, zoals de verschillende smaken van exponentiële afvlakking en voortschrijdende gemiddelden, dringen aan op een sprong in het diepe. Ze vereisen dat we erop vertrouwen dat de huidige omstandigheden in de toekomst blijven bestaan. Als de huidige omstandigheden aanhouden, is het verstandig om deze extrapolatieve methoden te gebruiken - methoden die het huidige niveau, de trend, de seizoensgebondenheid en "ruis" van een tijdreeks kwantificeren en projecteren in de toekomst.

              Maar als ze niet aanhouden, kunnen extrapolatieve methoden ons in de problemen brengen. Wat omhoog ging, kan ineens omlaag gaan. Wat vroeger rond het ene niveau was gecentreerd, kan plotseling naar een ander niveau springen. Of er kan iets heel vreemds gebeuren dat volledig uit het patroon is. In deze verrassende omstandigheden verslechtert de nauwkeurigheid van de prognoses, gaan voorraadberekeningen verkeerd en ontstaat er algemene onvrede.

              Een manier om met dit probleem om te gaan, is te vertrouwen op complexere voorspellingsmodellen die rekening houden met externe factoren die de variabele bepalen die wordt voorspeld. Verkooppromoties proberen bijvoorbeeld kooppatronen te verstoren en in een positieve richting te bewegen, dus het opnemen van promotieactiviteiten in het prognoseproces kan de verkoopprognoses verbeteren. Soms kunnen macro-economische indicatoren, zoals het starten van huizen of inflatiepercentages, worden gebruikt om de nauwkeurigheid van prognoses te verbeteren. Maar complexere modellen vereisen meer gegevens en meer expertise, en ze zijn misschien niet bruikbaar voor sommige problemen, zoals het beheer van onderdelen of subsystemen, in plaats van afgewerkte goederen.

              Als iemand vastloopt met behulp van eenvoudige extrapolatieve methoden, is het handig om een manier te hebben om items te markeren die moeilijk te voorspellen zijn. Dit is de Aandachtsindex. Zoals de naam al doet vermoeden, vereisen items die moeten worden voorspeld met een hoge Attention Index een speciale behandeling - op zijn minst een beoordeling en meestal een soort van prognoseaanpassing.

               

               

              De Aandachtsindex detecteert drie soorten problemen:

              Een uitbijter in de vraaggeschiedenis van een artikel.
              Een abrupte verandering in het niveau van een item.
              Een abrupte verandering in de trend van een artikel.
              Met behulp van software zoals SmartForecasts™ kan de voorspeller omgaan met een uitbijter door deze te vervangen door een meer typische waarde.

              Een abrupte verandering in niveau of trend kan worden verholpen door alle gegevens van vóór de "breuk" in het vraagpatroon uit de prognoseberekeningen weg te laten, ervan uitgaande dat het item is overgeschakeld naar een nieuw regime dat de oudere gegevens irrelevant maakt.

              Hoewel geen enkele index perfect is, slaagt de Aandachtsindex er goed in om de aandacht te vestigen op de meest problematische vraaggeschiedenissen. Dit wordt aangetoond in de twee onderstaande figuren, die zijn gemaakt met gegevens van de M3 Competition, bekend in de prognosewereld. Figuur 1 toont de 20 items (van de 3.003 van de wedstrijd) met de hoogste Attention Index-scores; al deze hebben groteske uitschieters en breuken. Figuur 2 toont de 20 items met de laagste Attention Index-scores; de meeste (maar niet alle) items met lage scores hebben relatief goedaardige patronen.

              Als u duizenden items te voorspellen heeft, zal de nieuwe Aandachtsindex zeer nuttig zijn om uw aandacht te richten op die items die het meest waarschijnlijk problematisch zijn.

              Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

              Laat een reactie achter

              gerelateerde berichten

              Creating and Exploiting Probabilistic Forecasting Scenarios

              Probabilistische voorspellingsscenario's creëren en exploiteren

              Probabilistische scenario's zijn reeksen gegevenspunten die worden gegenereerd om potentiële situaties uit de echte wereld weer te geven. In tegenstelling tot scenario's in oorlogsspellen of andere simulaties zijn dit synthetische tijdreeksen die worden gebruikt als input voor systeemmodellen of als intuïtiebouwers voor besluitvormers.

              A Rough Map of Forecasting-Related Terms

              Een ruwe kaart van termen die verband houden met prognoses

              Mensen die nieuw zijn in de functie van “vraagplanner” of “aanbodplanner” zullen waarschijnlijk vragen hebben over de verschillende prognosetermen en -methoden die in hun baan worden gebruikt. Deze notitie kan helpen door deze termen uit te leggen en te laten zien hoe ze verband houden.

              How Are We Doing? KPI’s and KPP’s

              Hoe gaat het met ons? KPI's en KPP's

              Het dagelijkse voorraadbeheer kan u bezig houden. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

              recente berichten

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]