Reserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelen

Wat is het verschil en waarom het van belang is voor voorraadplanning.

Degenen die nieuw zijn in het onderdelenplanningsspel worden vaak in de war gebracht door de vele variaties in de namen van onderdelen. Deze blog wijst op onderscheidingen die wel of niet van operationele betekenis zijn voor iemand die een vloot reserveonderdelen beheert en hoe die verschillen van invloed zijn op de voorraadplanning.

Wat is bijvoorbeeld het verschil tussen "reserveonderdelen" en "vervangende" onderdelen? In dit geval is het verschil hun bron. Een reserveonderdeel zou worden gekocht bij de fabrikant van de apparatuur, terwijl een vervangend onderdeel bij een ander bedrijf zou worden gekocht. Voor iemand die een vloot reserveonderdelen beheert, zou het verschil twee verschillende items in zijn onderdelendatabase zijn: de bron zou anders zijn en de eenheidsprijs zou waarschijnlijk anders zijn. Het is mogelijk dat er ook een verschil is in de gebruiksduur van de onderdelen van de twee bronnen. De "OEM"-onderdelen zijn mogelijk duurzamer dan de goedkopere "aftermarket"-onderdelen. (Nu hebben we vier verschillende termen die deze onderdelen beschrijven.) Deze verschillen zouden van belang zijn voor het optimaliseren van een inventaris van reserveonderdelen. Software die optimale bestelpunten en bestelhoeveelheden berekent, zou tot verschillende antwoorden komen voor onderdelen met verschillende eenheidskosten en verschillende vervangingspercentages.

Misschien is het grootste onderscheid tussen "verbruiksgoederen" en "repareerbare" of "roteerbare" onderdelen. Het belangrijkste verschil tussen hen zijn hun kosten. Het is dwaas om te proberen een gestripte schroef te repareren; gewoon weggooien en een andere gebruiken. Maar het is ook dwaas om een onderdeel van $50.000 weg te gooien als het gerepareerd kan worden voor $5.000. Het optimaliseren van het voorraadbeheer voor vloten van elk type onderdeel vereist heel andere wiskunde. Bij verbruiksgoederen kunnen de onderdelen als anoniem en uitwisselbaar worden beschouwd. Bij "rotatables" moet elk onderdeel in wezen afzonderlijk worden gemodelleerd. We behandelen ze allemaal als cyclisch door de toestanden 'operationeel', 'in reparatie' en 'stand-by/reserve'. Beslissingen over repareerbare onderdelen worden vaak afgehandeld door middel van een kapitaalbegrotingsproces, en de belangrijkste analytische vraag is: "Hoe groot moet onze voorraad reserveonderdelen zijn?"

Er zijn andere onderscheidingen die tussen onderdelen kunnen worden gemaakt. Kritiek is een belangrijk kenmerk. De gevolgen van het uitvallen van een onderdeel kunnen variëren van "we kunnen de tijd nemen om een vervanging te krijgen" tot "dit is een noodgeval; zet die machines snel weer aan het werk”. Bij het uitzoeken hoe we onderdelen moeten beheren, moeten we altijd een evenwicht vinden tussen de voordelen van een grotere voorraad onderdelen en de dollarkosten. Kritiek verschuift de balans naar veilig spelen met grotere voorraden. Dit dicteert op zijn beurt hogere planningsdoelen voor statistieken over de beschikbaarheid van onderdelen, zoals serviceniveaus en opvullingspercentages, wat zal leiden tot grotere bestelpunten en/of bestelhoeveelheden.

Als u googelt op "soorten reserveonderdelen", ontdekt u andere classificaties en onderscheidingen. Vanuit ons perspectief bij Smart Software zijn de woorden minder belangrijk dan de getallen die bij onderdelen horen: eenheidskosten, gemiddelde tijd tot storing, gemiddelde tijd tot reparatie en andere technische input voor onze producten die bepalen hoe de onderdelen kunnen worden beheerd voor maximaal voordeel.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen

    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden).

    Hun maandelijkse proces bestond uit het bijwerken van een nieuwe maand met actuals naar het 'puntenoverzicht voor opnieuw bestellen'. Een ingebedde formule herberekende het Reorder Point (ROP) en order-up-to (Max) niveau. Het werkte als volgt:

    • ROP = LT Vraag + Veiligheidsvoorraad
    • LT-vraag = gemiddelde dagelijkse vraag x doorlooptijddagen (constant verondersteld om het simpel te houden)
    • Veiligheidsvoorraad voor onderdelen met een lange doorlooptijd = Standaardafwijking x 2,0
    • Veiligheidsvoorraad voor onderdelen met een korte doorlooptijd = Standaardafwijking x 1,2
    • Max = ROP + door de leverancier voorgeschreven minimale bestelhoeveelheid

    Historische gemiddelden en standaarddeviaties gebruikten 52 weken voortschrijdende geschiedenis (dwz de nieuwste week verving de oudste week in elke periode). De standaarddeviatie van de vraag werd berekend met behulp van de functie "stdevp" in Excel.

    Elke maand werd een nieuwe ROP opnieuw berekend. Zowel de gemiddelde vraag als de standaarddeviatie werden gewijzigd door de vraag van de nieuwe week, die op zijn beurt de ROP bijwerkte.

    De standaard ROP is altijd gebaseerd op de bovenstaande logica. Planners zouden echter onder bepaalde voorwaarden wijzigingen aanbrengen:

    1. Planners zouden de minimumprijs voor goedkope onderdelen verhogen om het risico op een on-time delivery hit (OTD) op een goedkoop onderdeel te verkleinen.

    2. Het Excel-blad identificeerde elk onderdeel met een nieuw berekende ROP die ± 20% verschilde van de huidige ROP.

    3. Planners beoordeelden onderdelen die de uitzonderingsdrempel overschreden, stelden wijzigingen voor en lieten een manager goedkeuren.

    4. Planners beoordeelden items met OTD-hits en verhoogden de ROP op basis van hun intuïtie. Planners bleven die onderdelen gedurende verschillende perioden monitoren en verlaagden de ROP wanneer ze dachten dat het veilig was.

    5. Nadat de ROP en de maximale hoeveelheid waren bepaald, werd het bestand met herziene resultaten naar IT gestuurd, die het in hun ERP uploadde.

    6. Het ERP-systeem beheerde vervolgens de dagelijkse bevoorrading en het orderbeheer.

    Objectief gezien was dit misschien een bovengemiddelde benadering van voorraadbeheer. Sommige bedrijven zijn zich bijvoorbeeld niet bewust van het verband tussen vraagvariabiliteit en veiligheidsvoorraadvereisten en vertrouwen uitsluitend op methodes of intuïtie. Er zijn echter problemen met hun aanpak:

    1. Handmatige gegevensupdates
    De spreadsheets moesten handmatig worden bijgewerkt. Om opnieuw te berekenen waren meerdere stappen nodig, elk met hun eigen afhankelijkheid. Eerst moest er een datadump worden uitgevoerd vanuit het ERP-systeem. Ten tweede zou een planner de spreadsheet moeten openen en bekijken om er zeker van te zijn dat de gegevens correct zijn geïmporteerd. Ten derde moesten ze de uitvoer beoordelen om er zeker van te zijn dat deze berekend was zoals verwacht. Ten vierde waren er handmatige stappen nodig om de resultaten terug te sturen naar het ERP-systeem.

    2. Eén maat voor alle veiligheidsvoorraad
    Of in dit geval "one of two sizes fit all". De keuze om 2x en 1,2x standaarddeviatie te gebruiken voor respectievelijk artikelen met een lange en korte doorlooptijd komt overeen met serviceniveaus van 97.7% en 88.4%. Dit is een groot probleem, aangezien het logisch is dat niet elk onderdeel in elke groep hetzelfde serviceniveau vereist. Sommige onderdelen hebben meer voorraadpijn dan andere en vice versa. Serviceniveaus moeten daarom dienovereenkomstig worden gespecificeerd en in overeenstemming zijn met het belang van het item. We ontdekten dat ze OTD-hits ondervonden op ongeveer 20% van hun kritieke reserveonderdelen, waardoor handmatige aanpassingen van de ROP nodig waren. De hoofdoorzaak was dat ze voor alle items met een korte doorlooptijd een serviceniveau van 88,4% hadden gepland. Dus het beste wat ze hadden kunnen krijgen, was om 12% van die tijd in voorraad te hebben, zelfs als ze 'volgens plan' waren. Het zou beter zijn geweest om serviceniveaudoelen te plannen op basis van het belang van het onderdeel.

    3. Veiligheidsvoorraad is onnauwkeurig.  De artikelen die voor dit bedrijf worden gepland, zijn reserveonderdelen ter ondersteuning van diagnostische apparatuur. De vraag naar de meeste van deze onderdelen is zeer intermitterend en sporadisch. De keuze om een gemiddelde te gebruiken om de vraag naar doorlooptijd te berekenen, was dus niet onredelijk als je de noodzaak accepteert om variabiliteit in doorlooptijden te negeren. Echter, het beroep op a Normale verdeling het bepalen van de veiligheidsvoorraad was een grote fout die resulteerde in onnauwkeurige veiligheidsvoorraden. Het bedrijf verklaarde dat het serviceniveau voor artikelen met een lange doorlooptijd in het 90%-bereik lag in vergelijking met hun doel van 97,7%, en dat ze het verschil goedmaakten met spoed. De bereikte serviceniveaus voor items met een kortere doorlooptijd bedroegen ongeveer 80%, ondanks het feit dat er werd gestreefd naar 88,4%. Ze berekenden de veiligheidsvoorraad verkeerd omdat hun vraag niet "klokvormig" is, maar ze kozen de veiligheidsvoorraad in de veronderstelling dat dit wel het geval was. Deze vereenvoudiging resulteert in het missen van serviceniveaudoelen, waardoor de handmatige beoordeling van veel items wordt gedwongen die vervolgens handmatig "gedurende meerdere perioden" moeten worden gecontroleerd door een planner. Zou het niet beter zijn om ervoor te zorgen dat het bestelpunt vanaf het begin precies het gewenste serviceniveau had? Dit zou ervoor zorgen dat u uw serviceniveau bereikt en onnodige handmatige tussenkomst minimaliseert.

    Er is een vierde probleem dat de lijst niet heeft gehaald, maar het vermelden waard is. De spreadsheet kon geen trend- of seizoenspatronen volgen. Historische gemiddelden negeren trend en seizoensgebondenheid, dus de cumulatieve vraag over de doorlooptijd die in de ROP wordt gebruikt, zal aanzienlijk minder nauwkeurig zijn voor trending of seizoensgebonden onderdelen. Het planningsteam erkende dit, maar vond het geen legitiem probleem, redenerend dat het grootste deel van de vraag onregelmatig was en niet seizoensgebonden. Het is belangrijk voor het model om trend en seizoensinvloeden op te pikken op intermitterende gegevens als die bestaan, maar we hebben niet gevonden dat hun gegevens deze patronen vertoonden. Dus we waren het erover eens dat dit geen probleem was voor hen. Maar naarmate het planningstempo toeneemt tot het punt dat de vraag in een emmer terechtkomt dagelijks, zelfs intermitterende vraag blijkt heel vaak seizoensgebonden te zijn per dag van de week en soms per week. Als je nu niet met een hogere frequentie rent, houd er dan rekening mee dat je misschien binnenkort gedwongen zult worden om de meer behendige concurrentie bij te houden. Op dat moment zal de verwerking op basis van spreadsheets het gewoon niet bij kunnen houden.

    Tot slot: gebruik geen spreadsheets. Ze zijn niet bevorderlijk voor zinvolle wat-als-analyses, ze zijn te arbeidsintensief en de onderliggende logica moet worden afgezwakt om snel genoeg te kunnen worden verwerkt om bruikbaar te zijn. Kortom, ga voor doelgerichte oplossingen. En zorg ervoor dat ze in de cloud draaien.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Hoe u de juiste prognosemethode selecteert met Epicor Smart IPO

      Smart Software introduceert met genoegen onze nieuwe reeks educatieve webinars, exclusief aangeboden voor Epicor-gebruikers. In dit webinar onthult Erik Subatis, Enterprise Solution Engineer bij Smart Software, de statistische modellen die Epicor Smart IP&O gebruikt om te voorspellen en hoe het automatische "best pick"-systeem werkt. Hoewel automatische modellering van onschatbare waarde is voor grootschalige prognoses, weerspiegelen deze prognoses af en toe niet onze verwachtingen en/of zakelijke kennis. Begrijpen hoe en wanneer de modelselectie moet worden overschreven, kan een waardevol hulpmiddel zijn in de gereedschapskist van een voorspeller. Ten slotte zal de presentatie worden afgesloten door te laten zien hoe de winstgevendheid kan worden verhoogd met software-ondersteunde voorraadplanningsprocessen in een live demo.

      Door dit webinar bij te wonen, leert u over de statistische modellen die Smart IP&O gebruikt om te voorspellen en hoe u de uitzonderingen kunt opvangen, zodat u het meeste uit uw prognosetool kunt halen.

      WEBINAR REGISTRATIEFORMULIER

       

      Meld u dan aan om het webinar bij te wonen. Als je geïnteresseerd bent maar niet kunt komen, schrijf je dan toch in - we zullen onze sessie opnemen en je een link naar de herhaling sturen.

      We hopen dat je erbij kunt zijn!

       

      SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

       

      Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

      Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

      CFO's vertellen ons dat ze minder aan voorraad moeten uitgeven zonder de verkoop te beïnvloeden. Een manier om dat te doen is om af te stappen van het gebruik van een gerichte leveringsdag om bestelpunten en veiligheidsvoorraadbuffers te bepalen. Hier is hoe een bevoorradingsdagenmodel werkt:

      1. Bereken de gemiddelde vraag per dag en vermenigvuldig de vraag per dag met de doorlooptijd van de leverancier in dagen om de doorlooptijdvraag te krijgen
      2. Kies een dagen voorraadbuffer (dwz 15, 30, 45 dagen, enz.). Gebruik grotere buffers voor belangrijkere items en kleinere buffers voor minder belangrijke items.
      3. Voeg de gewenste dagen aan voorraadbuffer toe aan de vraag over de doorlooptijd om het bestelpunt te krijgen. Bestel meer als de voorhanden voorraad onder het bestelpunt daalt

      Dit is wat er mis is met deze benadering:

      1. Het gemiddelde houdt geen rekening met seizoensinvloeden en trends – u zult duidelijke patronen missen, tenzij u er veel tijd aan besteedt om deze handmatig aan te passen.
      2. Het gemiddelde houdt geen rekening met hoe voorspelbaar een artikel is - u zult voorspelbare artikelen te veel in voorraad hebben en minder voorspelbare artikelen. Dit komt omdat dezelfde leveringsdagen voor verschillende artikelen een heel ander voorraadrisico opleveren.
      3. Het gemiddelde vertelt een planner niet hoe het voorraadrisico wordt beïnvloed door het voorraadniveau - u hebt geen idee of u ondervoorraad, overbevoorrading of net genoeg hebt. Je plant in wezen met oogkleppen op.

      Er zijn veel andere "vuistregel"-benaderingen die even problematisch zijn. Hierin kunt u meer over hen te weten komen na

      Een betere manier om de juiste hoeveelheid veiligheidsvoorraad te plannen, is gebruik te maken van waarschijnlijkheidsmodellen die precies aangeven hoeveel voorraad nodig is gezien het risico van voorraad die u bereid bent te accepteren. Hieronder ziet u een screenshot van Smart Inventory Optimization die precies dat doet. Ten eerste beschrijft het de voorspelde serviceniveaus (waarschijnlijkheid van niet bevoorraden) in verband met de huidige dagen van leveringslogica. De planner kan nu de onderdelen zien waar het voorspelde serviceniveau te laag of te duur is. Ze kunnen dan onmiddellijke correcties aanbrengen door zich te richten op de gewenste serviceniveaus en het niveau van voorraadinvesteringen. Zonder deze informatie zal een planner niet weten of de beoogde dagen veiligheidsvoorraad te veel, te weinig of precies goed zijn, wat resulteert in overvoorraden en tekorten die marktaandeel en inkomsten kosten. 

      Computing Safety Stocks 2

       

      Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

      Belmont, MA, – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Greg Hartunian, President en CEO van Smart Software, een webinar van 30 minuten zal leiden als onderdeel van de WERC Solutions Partner-programma 

      De presentatie zal focussen op hoe een toonaangevend elektriciteitsbedrijf Smart Inventory Planning and Optimization (Smart IP&O) implementeerde als onderdeel van het strategische supply chain-optimalisatie-initiatief (SCO) van het bedrijf. Smart IP&O werd in slechts 90 dagen geïmplementeerd, waardoor het nutsbedrijf zijn bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen kon optimaliseren. Tijdens de eerste fase van de implementatie hielp het platform het elektriciteitsbedrijf om de voorraad met $9.000.000 te verminderen, terwijl het serviceniveau behouden bleef.

      Tot slot wordt het webinar afgesloten met het tonen van Smart IP&O in een Live Demo.

       

      Warehousing Onderwijs- en Onderzoeksraad (WERC)

      WERC is een professionele organisatie gericht op logistiek management en haar rol in de supply chain. Sinds de oprichting in 1977 heeft WERC een strategische visie behouden om continu middelen aan te bieden die distributiebeoefenaars en leveranciers helpen aan de top te blijven in ons dynamische, variabele veld. In een steeds complexere wereld begrijpen distributielogistiek professionals dingen zodat mensen hun producten en diensten krijgen, bedrijven hun verplichtingen nakomen, economieën groeien en gemeenschappen bloeien.

      WERC geeft distributielogistieke professionals de kracht om hun werk te doen, uit te blinken in hun carrière en een verschil te maken in de wereld. WERC helpt haar leden en bedrijven te slagen door ongeëvenaarde leerervaringen te creëren, hoogwaardige netwerkmogelijkheden te bieden en toegang te krijgen tot onderzoeksgestuurde branche-informatie.

       

      Over Smart Software, Inc.
      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont,

       


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com