Iedereen maakt prognoses om de voorraadplanning te stimuleren. Het is alleen de vraag hoe.

Ontdek hoe prognoses worden gebruikt met deze 4 vragen.

Vaak zullen bedrijven volhouden dat ze "geen prognoses gebruiken" om voorraad te plannen. Ze gebruiken vaak methodes voor bestelpunten en worstelen met het verbeteren van tijdige levering, voorraadrotaties en andere KPI's. Hoewel ze niet denken dat wat ze doen expliciet voorspellen, gebruiken ze zeker schattingen van de toekomstige vraag om bestelpunten zoals min/max te ontwikkelen.

Ongeacht hoe het wordt genoemd, iedereen probeert de toekomstige vraag op de een of andere manier in te schatten en gebruikt deze schatting om voorraadbeleid te bepalen en bestellingen te stimuleren. Om de voorraadplanning te verbeteren en ervoor te zorgen dat u niet te veel of te weinig bestelt en grote voorraden en een opgeblazen gevoel creëert, is het belangrijk om precies te begrijpen hoe uw organisatie prognoses gebruikt. Als dit eenmaal is begrepen, kunt u beoordelen of de kwaliteit van de prognoses kan worden verbeterd.

Probeer antwoorden te krijgen op de volgende vragen. Het zal onthullen hoe prognoses in uw bedrijf worden gebruikt, zelfs als u denkt dat u geen prognoses gebruikt.

1. Is uw prognose een periode-voor-periode schatting in de loop van de tijd die wordt gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn en die bestelsuggesties in uw ERP-systeem activeert?

2. Of wordt uw prognose gebruikt om een bestelpunt af te leiden, maar niet expliciet gebruikt als drijfveer per periode om bestellingen te activeren? Hier kan ik voorspellen dat we er 10 per week zullen verkopen op basis van de geschiedenis, maar we laden niet 10, 10, 10, 10, etc. in het ERP. In plaats daarvan leid ik een bestelpunt of min af dat de doorlooptijd van twee perioden dekt + een hoeveelheid buffer om te helpen beschermen tegen voorraaduitval. In dit geval bestel ik meer wanneer de voorraad op 25 komt.

3. Wordt uw prognose gebruikt als leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Hier voorspel ik er 10 per week, en ik beoordeel de voorhanden inventaris periodiek, bekijk de verwachte doorlooptijd en besluit, gezien de 40 eenheden die ik vandaag bij de hand heb, dat ik "genoeg" heb. Dus ik doe nu niets, maar kom over een week weer terug.

4. Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Hier voorspel ik 10 per week en ga akkoord met een algemene inkooporder met de leverancier van 520 per jaar. De bestellingen worden vervolgens van tevoren geplaatst om eenmaal per week in hoeveelheden van 10 te arriveren totdat de algemene bestelling is verbruikt.

Zodra u de antwoorden heeft, kunt u vragen hoe de schattingen van de vraag tot stand komen. Is het een gemiddelde? Leidt het de vraag over de doorlooptijd af uit een verkoopprognose? Wordt er ergens een statistische prognose gegenereerd? Welke methodes worden overwogen? Het zal ook belangrijk zijn om te beoordelen hoe veiligheidsvoorraden worden gebruikt om te beschermen tegen variabiliteit in vraag en aanbod. Meer over dit alles in een toekomstig artikel.

 

Bereid uw reserveonderdelenplanning voor op onverwachte schokken

Wist je dat het Benjamin Franklin was die de bliksemafleider uitvond om gebouwen te beschermen tegen blikseminslag? Nu hoeven we ons niet elke dag zorgen te maken over blikseminslagen, maar in het onvoorspelbare zakenklimaat van vandaag moeten we ons wel zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken.

Planningsoplossingen voor reserveonderdelen
Optimalisatie van reserveonderdelen is een belangrijk aspect van supply chain management voor veel industrieën. Het omvat het beheer van de inventaris van reserveonderdelen om ervoor te zorgen dat ze beschikbaar zijn wanneer dat nodig is, zonder overtollige voorraad die kapitaal en ruimte in beslag kan nemen. Het optimaliseren van de inventaris van reserveonderdelen is een complex proces dat een grondige kennis van gebruikspatronen, doorlooptijden van leveranciers en de kritieke waarde van elk onderdeel voor het bedrijf vereist.

In deze blog zal onze primaire nadruk liggen op het cruciale aspect van voorraadoptimalisatie en vraagvoorspelling. Andere hieronder beschreven benaderingen voor het optimaliseren van reserveonderdelen, zoals voorspellend onderhoud en 3D-printen, Master Data Management en gezamenlijke planning, moeten echter worden onderzocht en waar nodig worden toegepast.

  1. Voorspellend onderhoud: Voorspellende analyses gebruiken om te anticiperen wanneer een onderdeel waarschijnlijk defect raakt en het proactief te vervangen, in plaats van te wachten tot het kapot gaat. Deze aanpak kan bedrijven helpen downtime en onderhoudskosten te verminderen en de algehele effectiviteit van apparatuur te verbeteren.
  2. 3d printen: Dankzij de vooruitgang in de 3D-printtechnologie kunnen bedrijven reserveonderdelen op aanvraag produceren, waardoor er minder voorraad nodig is. Dit bespaart niet alleen ruimte en kosten, maar zorgt er ook voor dat onderdelen beschikbaar zijn wanneer dat nodig is.
  3. Beheer van stamgegevens: Gegevensbeheerplatforms zorgen ervoor dat onderdeelgegevens correct worden geïdentificeerd, gecatalogiseerd, opgeschoond en georganiseerd. Maar al te vaak hebben MRO-organisaties hetzelfde onderdeelnummer onder verschillende SKU's. Deze dubbele onderdelen dienen hetzelfde doel, maar hebben verschillende SKU-nummers nodig om naleving van de regelgeving of veiligheid te garanderen. Een onderdeel dat wordt gebruikt ter ondersteuning van een overheidscontract, kan bijvoorbeeld nodig zijn van een Amerikaanse fabrikant om te blijven voldoen aan de "Buy America"-regelgeving. Het is van cruciaal belang dat deze onderdeelnummers worden geïdentificeerd en, indien mogelijk, worden geconsolideerd in één SKU om voorraadinvesteringen binnen de perken te houden.
  4. Gezamenlijke planning: Door samen te werken met leveranciers en klanten om gegevens, prognoses en vraagplanning te delen, kunnen bedrijven doorlooptijden verkorten, de nauwkeurigheid verbeteren en voorraadniveaus verlagen. Prognoses spelen een essentiële rol in samenwerking, aangezien het delen van inzichten over aankopen, vraag en koopgedrag ervoor zorgt dat leveranciers over de informatie beschikken die ze nodig hebben om ervoor te zorgen dat de voorraad voor klanten beschikbaar is.

Inventory Optimization
Abraham Lincoln werd ooit als volgt geciteerd: "Geef me zes uur om een boom om te hakken, en ik zal de eerste vier uur besteden aan het slijpen van de bijl"? Lincoln wist dat voorbereiding en optimalisatie de sleutel tot succes waren, net zoals organisaties over de juiste tools moeten beschikken, zoals software voor voorraadoptimalisatie, om hun toeleveringsketen te optimaliseren en voorop te blijven lopen in de markt. Met software voor voorraadoptimalisatie kunnen organisaties hun prognosenauwkeurigheid verbeteren, voorraadkosten verlagen, serviceniveaus verbeteren en doorlooptijden verkorten. Lincoln wist dat het slijpen van de bijl nodig was om de klus effectief te klaren zonder overmatige inspanning. Voorraadoptimalisatie zorgt ervoor dat voorraaddollars effectief worden toegewezen aan duizenden onderdelen, waardoor serviceniveaus worden gegarandeerd en overtollige voorraad wordt geminimaliseerd.

Reserveonderdelen spelen een doorslaggevende rol bij het handhaven van de operationele efficiëntie, en het ontbreken van kritieke onderdelen kan leiden tot uitvaltijd en verminderde productiviteit. Door de sporadische aard van de vraag naar reserveonderdelen is het moeilijk te voorspellen wanneer een specifiek onderdeel nodig zal zijn, wat resulteert in het risico van over- of onderbevoorrading, die beide kosten kunnen opleveren voor de organisatie. Bovendien brengt het beheren van doorlooptijden voor reserveonderdelen zijn eigen uitdagingen met zich mee. Sommige onderdelen kunnen lange levertijden hebben, waardoor het nodig is om voldoende voorraad aan te houden om tekorten te voorkomen. Het meenemen van overtollige voorraad kan echter kostbaar zijn en kapitaal en opslagruimte in beslag nemen.

Gezien de talloze uitdagingen waarmee materiaalbeheerafdelingen en planners van reserveonderdelen worden geconfronteerd, is het plannen van de vraag, voorraadniveaus en aanvulling van reserveonderdelen zonder een effectieve oplossing voor voorraadoptimalisatie vergelijkbaar met een poging om een boom om te hakken met een zeer botte bijl! Hoe scherper de bijl, hoe beter uw organisatie deze uitdagingen het hoofd kan bieden.

De bijl van Smart Software is de scherpste
Slimme software voor voorraadoptimalisatie en vraagplanning maakt gebruik van een unieke empirische probabilistische prognosebenadering die resulteert in nauwkeurige prognoses van voorraadbehoeften, zelfs wanneer de vraag met tussenpozen is. Aangezien bijna 90% aan reserve- en serviceonderdelen met tussenpozen is, is een nauwkeurige oplossing vereist om aan dit soort vraag te voldoen. De oplossing van Smart werd gepatenteerd in 2001 en aanvullende innovaties werden onlangs gepatenteerd in mei 2023 (aankondigingen volgen binnenkort!). De oplossing werd bekroond als finalist in de APICS Technological Innovation Category voor zijn rol bij het helpen transformeren van de resource management-industrie.

De rol van intermitterende vraag
Intermitterende vraag komt niet overeen met een simpele normale of klokvormige verdeling die het onmogelijk maakt om nauwkeurig te voorspellen met traditionele, op afvlakking gebaseerde prognosemethoden. Onderdelen en items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden van service- en reserveonderdelen beheren in sectoren zoals luchtvaart, ruimtevaart, energie- en watervoorziening en nutsbedrijven, automobielindustrie, beheer van zware activa, hightech, evenals in MRO (Maintenance, Repair, en revisie).

Scenario analyse
De gepatenteerde en bekroonde technologie van Smart genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulatieve vraagwaarden over de doorlooptijd van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de geobserveerde gegevens van het artikel en ze leggen de relevante details vast van de intermitterende vraag zonder te vertrouwen op de aannames die gewoonlijk worden gedaan over de aard van vraagverdelingen door traditionele prognosemethoden. Het resultaat is een uiterst nauwkeurige voorspelling van de volledige verdeling van de cumulatieve vraag over de doorlooptijd van een artikel. Het komt erop neer dat bedrijven met de informatie die deze vraagdistributies bieden, eenvoudig veiligheidsvoorraad en voorraadvereisten op serviceniveau kunnen plannen voor duizenden periodiek gevraagde artikelen met een nauwkeurigheid van bijna 100%.

Benefits
Door innovatieve oplossingen van Smart Software te implementeren, zoals SmartForecasts voor statistische prognoses, Demand Planner voor consensusplanning van onderdelen en Inventory Optimization voor het ontwikkelen van nauwkeurige aanvullingsfactoren zoals min/max en veiligheidsvoorraadniveaus, krijgen vooruitstrevende leidinggevenden en planners betere controle over hun bedrijfsvoering van de organisatie. Het zal resulteren in de volgende voordelen:

  1. Verbeterde prognosenauwkeurigheid: Nauwkeurige vraagprognoses zijn van fundamenteel belang voor elke organisatie die zich bezighoudt met voorraadbeheer van reserveonderdelen. Voorraadoptimalisatiesoftware maakt gebruik van geavanceerde algoritmen om historische gebruikspatronen te analyseren, trends te identificeren en toekomstige vraag met een hoge mate van nauwkeurigheid te voorspellen. Met dit niveau van precisie bij prognoses kunnen organisaties het risico van over- of onderbevoorrading van hun reserveonderdelenvoorraad vermijden.
  2. Lagere voorraadkosten: Een grote uitdaging waarmee leiders in de toeleveringsketen worden geconfronteerd bij het beheer van de voorraad van reserveonderdelen, zijn de kosten die gepaard gaan met het te allen tijde aanhouden van een optimale voorraad reserveonderdelen. Door voorraadniveaus te optimaliseren met behulp van moderne technologiesystemen zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses, kunnen organisaties de transportkosten verlagen en er tegelijkertijd voor zorgen dat ze voldoende voorraden beschikbaar hebben wanneer dat nodig is.
  3. Verbeterde serviceniveaus: Als het gaat om reparatie- en onderhoudsdiensten, is tijd geld! Downtime als gevolg van de onbeschikbaarheid van kritieke reserveonderdelen kan leiden tot verloren productiviteit en inkomsten voor bedrijven in verschillende sectoren, zoals fabrieken, energieopwekkingsfaciliteiten of datacenters die IT-infrastructuurapparatuur beheren. Het optimaliseren van uw reserveonderdelenvoorraad zorgt ervoor dat u altijd de juiste hoeveelheid bij de hand hebt, waardoor de uitvaltijd die wordt veroorzaakt door het wachten op leveringen van leveranciers wordt verminderd.
  4. Kortere doorlooptijden: Een ander voordeel dat voortvloeit uit nauwkeurige vraagprognoses door middel van moderne magazijntechnologieën, is een kortere doorlooptijd bij levering, wat leidt tot een betere klanttevredenheid, aangezien klanten hun bestellingen sneller zullen ontvangen dan voorheen, waardoor de merkloyaliteit wordt verbeterd. Daarom creëert de toepassing van nieuwe strategieën die worden aangestuurd door AI/ML-tools waarde binnen supply chain-operaties, wat leidt tot meer efficiëntie, niet alleen beperkte reductiekosten, maar ook stroomlijning van processen met betrekking tot onder andere productieplanning en logistieke transportplanning

Conclusie
Door gebruik te maken van software voor voorraadoptimalisatie en vraagplanning kunnen organisaties verschillende uitdagingen overwinnen, zoals verstoringen in de toeleveringsketen, stijgende rentetarieven en volatiele vraag. Hierdoor kunnen ze de kosten verlagen die gepaard gaan met overtollige opslagruimte en verouderde inventarisitems. Door gebruik te maken van geavanceerde algoritmen, verbetert software voor voorraadoptimalisatie de nauwkeurigheid van prognoses, waardoor organisaties kunnen voorkomen dat ze te veel of te weinig voorraad hebben in hun voorraad reserveonderdelen. Bovendien helpt het de voorraadkosten te verlagen door niveaus te optimaliseren en technologieën zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses te gebruiken. Verbeterde serviceniveaus worden bereikt doordat organisaties de juiste hoeveelheid reserveonderdelen direct beschikbaar hebben, waardoor downtime als gevolg van het wachten op leveringen wordt verminderd. Bovendien leidt nauwkeurige vraagprognose tot kortere doorlooptijden, waardoor de klanttevredenheid toeneemt en merkloyaliteit wordt bevorderd. Het toepassen van dergelijke strategieën, aangestuurd door AI/ML-tools, verlaagt niet alleen de kosten, maar stroomlijnt ook processen, waaronder productieplanning en logistieke transportplanning, waardoor uiteindelijk de efficiëntiewinst binnen de toeleveringsketen toeneemt.

 

Wit papier:

Wat u moet weten over prognoses en planning van serviceonderdelen

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning

    Ik wed dat uw onderhouds- en reparatieteams het goed zouden vinden om een grotere voorraad te lopen sommige reserveonderdelen als ze wisten dat de besparingen op voorraadvermindering zouden worden gebruikt om de voorraadinvestering effectiever te spreiden ander onderdelen en verhoogt het algehele serviceniveau.

    Ik verdubbel dat uw Finance-team, ondanks dat het altijd wordt uitgedaagd met het verlagen van de kosten, een gezonde voorraadverhoging zou ondersteunen als ze duidelijk konden zien dat de inkomsten profiteren van een hogere uptime, minder versnellingen en verbeteringen op het serviceniveau duidelijk opwegen tegen de extra voorraadkosten en risico.

    A ruilcurve voor reserveonderdelen stelt planningsteams voor serviceonderdelen in staat om de risico's en kosten van elke voorraadbeslissing correct te communiceren. Het is essentieel voor de planning van onderdelen en de enige manier om voorraadparameters proactief en nauwkeurig aan te passen voor elk onderdeel. Zonder dit "plannen" planners, in alle opzichten, met oogkleppen op, omdat ze niet in staat zullen zijn om de echte afwegingen te communiceren die verband houden met opslagbeslissingen.

    Als bijvoorbeeld een voorgestelde verhoging van de min/max-niveaus van een belangrijke productgroep van serviceonderdelen wordt aanbevolen, hoe weet u dan of de verhoging te hoog of te laag of precies goed is? Hoe kun je de verandering voor duizenden reserveonderdelen verfijnen? Je wilt niet en je kunt het niet. Uw voorraadbeslissingen zullen afhangen van reactieve, onderbuikgevoelens en algemene beslissingen, waardoor de serviceniveaus eronder lijden en de voorraadkosten de pan uit rijzen.

    Dus, wat is eigenlijk een afwegingscurve voor reserveonderdelen?

    Het is een op feiten gebaseerde, numerieke voorspelling die beschrijft hoe veranderingen in voorraadniveaus de voorraadwaarde, bewaarkosten en serviceniveaus zullen beïnvloeden. Voor elke eenheidswijziging in voorraadniveau zijn er kosten en baten. De uitruilcurve voor reserveonderdelen identificeert deze kosten en baten voor verschillende voorraadniveaus. Hiermee kunnen planners het voorraadniveau ontdekken dat de kosten en baten voor elk afzonderlijk item het beste in evenwicht houdt.

    Hier zijn twee vereenvoudigde voorbeelden. In afbeelding 1 laat de ruilcurve voor reserveonderdelen zien hoe het serviceniveau (waarschijnlijkheid dat er geen voorraad is) verandert afhankelijk van het bestelniveau. Hoe hoger het bestelniveau, hoe lager het voorraadrisico. Het is van cruciaal belang om te weten hoeveel service u krijgt gezien de voorraadinvestering. Hier kunt u misschien rechtvaardigen dat een voorraadtoename van een bestelpunt van 35 naar 45 de investering van 10 extra voorraadeenheden meer dan waard is, omdat het serviceniveau springt van iets minder dan 70% naar 90%, waardoor uw voorraadrisico voor het reserveonderdeel afneemt van 30% tot 10%!

     

    Cost vs Service Levels for inventory planning

    Afbeelding 1: kosten versus serviceniveau

     

    Size of Inventory vs Service Levels for MRO

    Afbeelding 2: serviceniveau versus voorraadomvang

    In dit voorbeeld (Afbeelding 2) legt de afwegingscurve een veelvoorkomend probleem bloot met de inventaris van reserveonderdelen. Vaak zijn de voorraadniveaus zo hoog dat ze een negatief rendement opleveren. Na een bepaalde voorraadhoeveelheid koopt elke extra voorraadeenheid niet meer voordeel in de vorm van een hoger serviceniveau. Voorraadverminderingen kunnen worden gerechtvaardigd wanneer duidelijk is dat het voorraadniveau het punt van afnemende opbrengsten ver voorbij is. Een nauwkeurige afwegingscurve zal het punt blootleggen waar het niet langer voordelig is om voorraad toe te voegen.

    Door gebruik te maken van #probabilistischevoorspelling om de planning van onderdelen te stimuleren, kunt u deze afwegingen nauwkeurig communiceren, dit op schaal doen voor honderdduizenden onderdelen, slechte voorraadbeslissingen vermijden en serviceniveaus en kosten in evenwicht brengen. Bij Smart Software zijn we gespecialiseerd in het helpen van planners van reserveonderdelen, directeuren van materiaalbeheer en financiële leidinggevenden die MRO, reserveonderdelen en aftermarket-onderdelen beheren om deze relaties te begrijpen en te exploiteren.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Smart Software-klant, Arizona Public Service presenteert op USMA 2023

      Belmont, MA, – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat zijn klant, Arizona Public Service (APS), een presentatie zal geven op USMA 2023.

      Joseph Neuheisel, Inventory & Logistics Manager bij APS, zal de sessie leiden USMA 2023. De presentatie zal zich richten op de manier waarop APS Smart Inventory Planning and Optimization (Smart IP&O) implementeerde als onderdeel van het strategische supply chain-optimalisatie-initiatief van het bedrijf. De heer Neuheisel zullen hun eerdere proces, implementatie, uitdagingen waarmee ze werden geconfronteerd, resultaten en geleerde lessen gedetailleerd beschrijven. Smart IP&O werd in slechts 90 dagen geïmplementeerd en stelt APS nu in staat zijn bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen te optimaliseren, waardoor de voorraad wordt verminderd en het serviceniveau op peil blijft.

       

      De Utility Supply Management Alliance (USMA)
      De USMA is een multinationale vereniging van individuen die de elektriciteits-, gas- en waterbedrijven bedienen. Met de deregulering en herregulering van de elektriciteits- en gasbedrijven veranderen ook de eisen van de klant, waardoor het voor de elektriciteits- en gasbedrijven noodzakelijk wordt om aanzienlijke aandacht te besteden aan kosten en concurrentie. De toeleveringsketen voor materiaal- en uitrustingsdiensten heeft een aanzienlijke impact op de kosten van elektriciteit en gas. Er zijn dus geweldige mogelijkheden om bij te dragen aan het bedrijfsresultaat door middel van lagere kosten als gevolg van een verbeterde reorganisatie en beheer van het supply chain-proces. De rol van de USMA is het begrijpen van de geavanceerde werking van de toeleveringsketen om haar klanten (nutsbedrijven, leveranciers, fabrikanten, enz.) te voorzien van vaardigheden en hulpmiddelen om winstmogelijkheden in de toeleveringsketen te realiseren. Deze vaardigheden en hulpmiddelen zullen aan de USMA-klant worden aangeboden via workshops op zijn jaarlijkse conferentie.

       

      Over Smart Software, Inc.
      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Arizona Public Service, Ameren en het Amerikaanse Rode Kruis. Smart's Inventory Planning & Optimization Platform, Smart IP&O, geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en onze website is www.smartcorp.com.

       

      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

       

       

      Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt

      Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft.

      Uw keuzes zijn meestal gecentreerd rond een paar opties:

      Optie 1: Rond elke maand af naar 1, dus uw jaarprognose is 12.

      Optie 2: Rond elke maand naar beneden af op 0, zodat uw jaarprognose 0 is.

      Optie 3: Prognose "hetzelfde als dezelfde maand vorig jaar", zodat de prognose overeenkomt met de werkelijke waarde van vorig jaar.

      Er zijn duidelijke nadelen aan elke optie en niet veel voordeel aan een van hen. Optie 1 resulteert vaak in een forse overprognose. Optie 2 resulteert vaak in een aanzienlijke ondervoorspelling. Optie 3 resulteert in een prognose die bijna gegarandeerd de werkelijke aanzienlijk zal missen, aangezien het niet waarschijnlijk is dat de vraag in exact dezelfde periode een piek zal bereiken. Als u het item MOET voorspellen, raden we normaal gesproken optie 3 aan, aangezien dit het meest waarschijnlijke antwoord is dat de rest van het bedrijf zal begrijpen. 

      Maar een betere manier is om het helemaal niet te voorspellen in de gebruikelijke zin en in plaats daarvan een "voorspellend bestelpunt" te gebruiken dat is afgestemd op het door u gewenste serviceniveau. Om een voorspellend bestelpunt te berekenen, kunt u het gepatenteerde Markov-bootstrap-algoritme van Smart Software gebruiken om alle mogelijke eisen die tijdens de doorlooptijd kunnen optreden te simuleren en vervolgens het bestelpunt te identificeren dat uw beoogde serviceniveau zal opleveren.

      Vervolgens kunt u uw ERP-systeem configureren om meer te bestellen wanneer de voorhanden voorraad het bestelpunt overschrijdt in plaats van wanneer u naar verwachting nul bereikt (of welke veiligheidsvoorraadbuffer dan ook wordt ingevoerd). 

      Dit zorgt voor meer logische bestellingen zonder de onnodige aannames die nodig zijn om een af en toe gevraagd onderdeel met een laag volume te voorspellen.

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.