Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, voorspellen we de vraag naar die producten en voeren we vervolgens MRP in om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een personal computer kocht. U koos een merk en model, maar van daaruit kreeg u waarschijnlijk opties te zien: welke CPU-snelheid wilt u? Hoeveel RAM wil je? Wat voor harde schijf en hoeveel ruimte? Als dat bedrijf deze computers binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type CPU, voor alle hoeveelheden RAM, voor alle soorten harde schijven, en ook alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Planning BOM emphasizing the large numbers of permutations Laptops Factory Components

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze computers kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

 

Planning BOM uitgelegd

Dit is waar Planning BOM's van pas komen. Misschien werkt het verkoopteam aan een grote b2b-opportuniteit voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen mogelijk componenten. De computerfabrikant weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 16 GB RAM, en veel minder mensen kiezen voor de upgrades naar 32 of 64. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugblazen naar de 16 GB-optie , 30% naar de 32GB-optie en 10% naar de 64GB-optie. Ze zouden hetzelfde kunnen doen voor CPU's, harde schijven of andere beschikbare aanpassingen.  

Planning BOM Explained with computer random access memory ram close hd

 

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix moet uitzoeken. Het is duidelijk dat het definiëren van deze verhoudingen enige denkkracht vereist, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

 

Het belang van een goede voorspelling

Natuurlijk nog steeds hebben een goede prognose nodig om in een ERP-systeem te laden. Zoals hierin uitgelegd artikelHoewel ERP een prognose kan importeren, kan het er vaak geen genereren en als dat wel het geval is, zijn er vaak veel moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bekeken, wat resulteert in onnauwkeurige prognoses. Het is daarom aan het bedrijf om met eigen prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren
  • Overmatig vertrouwen op klant- of verkoopprognoses
  • Gebrek aan nauwkeurigheid of prestatieregistratie

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘computerbedrijf’, zonder een systematische manier om belangrijke vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Breid ERP uit met Smart IP&O

Smart IP&O is ontworpen om uw ERP-systeem uit te breiden met een aantal geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

 

 

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten.

Wat is een digitale tweeling?

Hoewel er verschillende definities van digital twin zijn, is er een die goed werkt:

Een digitale tweeling is een dynamiek virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich identiek gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen dus dat kan mogelijke prestatieresultaten voorspellen en problemen die het echte product zou kunnen ondergaan. [Bron: Unity.com]. Voor meer achtergrondinformatie kunt u terecht op Mckinsey.com.

Wat is het verschil tussen een digital twin (hierna DT) en een model? In de eerste plaats wordt een ODC verbonden met realtime gegevens om het model te behouden als een actuele weergave van het systeem waarmee u werkt.

Onze huidige producten zouden we “slow-motion DT's” kunnen noemen, omdat ze meestal worden gebruikt met niet-realtime gegevens (maar geen verouderde gegevens, omdat deze van de ene op de andere dag worden bijgewerkt) en worden toegepast op problemen zoals het plannen van de grondstoffenaankopen voor het volgende kwartaal of het instellen van voorraadparameters voor een maand of langer.

Gebruiken mensen digital twins in mijn branche?

Mijn indruk is dat de penetratie van DT's wellicht het hoogst is in de lucht- en ruimtevaart- en nucleaire industrie. De meeste van onze klanten bevinden zich elders: in de productie, distributie en openbare voorzieningen zoals transport en energie. Binnenkort zullen we nieuwe producten aanbieden die dichter bij de strikte definitie van een DT komen die nauw verbonden is met het systeem dat hij vertegenwoordigt.

DT-voorbeeld

De meeste gebruikers van Smart Inventory Optimization (SIO) voer de applicatie periodiek uit, meestal maandelijks. SIO analyseert de huidige vraag naar voorraadartikelen en recente doorlooptijden van leveranciers en zet deze om in respectievelijk vraag- en aanbodscenario's. Vervolgens stellen gebruikers interactief (voor individuele artikelen) of automatisch (op schaal) parameters voor voorraadbeheer in die de gewenste gemiddelde prestaties op lange termijn opleveren, waarbij de concurrerende doelen van het minimaliseren van de voorraad in evenwicht worden gebracht en tegelijkertijd een voldoende niveau van artikelbeschikbaarheid wordt gegarandeerd.

Smart Supply Planner (SSP) reageert op een directere manier op onvoorziene gebeurtenissen. Elke dag kan er een abnormale bestelling plaatsvinden die de vraag doet toenemen, bijvoorbeeld wanneer een nieuwe klant een verrassende eerste voorraadbestelling plaatst. Of een belangrijke leverancier kan een probleem ervaren in zijn fabriek en gedwongen worden de verzending van uw geplande aanvullingsorders uit te stellen. Op de lange termijn worden deze onvoorziene omstandigheden gemiddeld en rechtvaardigen ze de aanbevelingen die uit SIO komen. SSP biedt u echter een manier om op de korte termijn te reageren en kansen te grijpen of kogels te ontwijken.

In de kern werkt SSP als SIO, in die zin dat het scenariogestuurd is. De verschillen zijn dat het korte planningshorizon gebruikt en real-time initiële omstandigheden gebruikt als basis voor zijn simulaties van de prestaties van voorraadsystemen. Vervolgens zal het realtime aanbevelingen doen voor interventies die de verstoring veroorzaakt door de onvoorziene gebeurtenissen compenseren. Dit omvat onder meer het annuleren of versnellen van aanvullingsorders.

Overzicht

Met Digital Twins kunt u plannen ‘in silico’ uitproberen voordat u ze in de fabriek of het magazijn implementeert. De kern bestaat uit wiskundige modellen van uw bedrijfsvoering, maar verbonden met realtime gegevens. Ze bieden een ‘digitale sandbox’ waarin u ideeën kunt uitproberen en direct voorspellingen kunt krijgen over hoe goed ze zullen werken. Veel meer dan een spreadsheet zullen DT's binnenkort het belangrijkste hulpmiddel zijn in uw gereedschapskist voor voorraadplanning.

 

Speel jij het voorraadraadspel?

Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

Hoe goed bent u in het aanvoelen van de juiste waarden? In deze blogpost wordt u uitgedaagd om de beste Min- en Max-waarden voor een notioneel voorraaditem te raden. We laten u de vraaggeschiedenis zien, geven u een paar relevante feiten, waarna u Min- en Max-waarden kunt kiezen en zien hoe goed ze zouden werken. Klaar?

De uitdaging

Figuur 1 toont de dagelijkse vraaggeschiedenis van het artikel. De gemiddelde vraag bedraagt 2 eenheden per dag. De doorlooptijd voor het aanvullen is constant 10 dagen (wat onrealistisch is maar in uw voordeel werkt). Bestellingen die niet direct uit voorraad leverbaar zijn, kunnen niet worden nabesteld en gaan verloren. U wilt minimaal een opvullingspercentage van 80% bereiken, maar niet tegen elke prijs. U wilt ook het gemiddelde aantal beschikbare eenheden minimaliseren en toch een opvullingspercentage van ten minste 80% bereiken. Welke Min- en Max-waarden zouden een 80%-opvullingspercentage opleveren met het laagste gemiddelde aantal beschikbare eenheden? [Neem uw antwoorden op, zodat u ze later kunt controleren. De oplossing staat hieronder aan het einde van het artikel.]

Are You Playing the Inventory Guessing Game-1

Berekening van de beste min- en max-waarden

De manier om de beste waarden te bepalen is door een digitale tweeling te gebruiken, ook wel een Monte Carlo-simulatie genoemd. De analyse creëert een groot aantal vraagscenario's en passeert deze door de wiskundige logica van het voorraadbeheersysteem om te zien welke waarden zullen worden overgenomen door de belangrijkste prestatie-indicatoren (KPI's).

We hebben voor dit probleem een digitale tweeling gebouwd en deze systematisch getest met 1.085 paar Min- en Max-waarden. Voor elk paar hebben we in totaal 100 keer 365 bedrijfsdagen gesimuleerd. Vervolgens hebben we het gemiddelde van de resultaten genomen om de prestaties van het Min/Max-paar te beoordelen in termen van twee KPI's: opvullingspercentage en gemiddelde voorraad.

Figuur 2 toont de resultaten. De inherente afweging tussen voorraadomvang en opvullingspercentage is duidelijk in de figuur: als je een hoger opvullingspercentage wilt, moet je een grotere voorraad accepteren. Op elk inventarisniveau is er echter een bereik aan opvullingspercentages, dus het is de bedoeling om het Min/Max-paar te vinden dat het hoogste opvullingspercentage oplevert voor een inventaris van een bepaalde grootte.

Een andere manier om Figuur 2 te interpreteren is door te focussen op de groene stippellijn die het beoogde 80%-opvullingspercentage aangeeft. Er zijn veel Min/Max-paren die in de buurt van het 80%-doel kunnen raken, maar ze verschillen qua voorraadgrootte van ongeveer 6 tot ongeveer 8 eenheden. Figuur 3 zoomt in op dat gebied van Figuur 2 en toont een behoorlijk aantal Min/Max-paren die competitief zijn.

We hebben de resultaten van alle 1.085 simulaties gesorteerd om te identificeren wat economen de efficiënte grens noemen. De efficiënte grens is de reeks meest efficiënte Min/Max-paren om de wisselwerking tussen opvullingspercentage en aanwezige eenheden te benutten. Dat wil zeggen, het is een lijst met Min/Max-paren die de goedkoopste manier bieden om elk gewenst opvullingspercentage te bereiken, niet alleen 80%. Figuur 4 toont de efficiënte grens voor dit probleem. Van links naar rechts kunt u de laagste prijs aflezen die u zou moeten betalen (gemeten aan de hand van de gemiddelde voorraadgrootte) om het beoogde opvullingspercentage te bereiken. Om bijvoorbeeld een opvullingspercentage van 90% te bereiken, zou u een gemiddelde voorraad van ongeveer 10 eenheden moeten hebben.

Figuren 2, 3 en 4 tonen resultaten voor verschillende Min/Max-paren, maar geven niet de waarden van Min en Max achter elk punt weer. Tabel 1 toont alle simulatiegegevens: de waarden van Min, Max, gemiddelde beschikbare eenheden en opvullingspercentage. Het antwoord op het raadspel is gemarkeerd in de eerste regel van de tabel: Min=7 en Max=131. Heb je het juiste antwoord gekregen, of iets dat in de buurt komt?2? Heb je misschien de efficiënte grens bereikt?

Conclusies

Misschien heb je geluk gehad, of misschien heb je inderdaad een Gouden Darm, maar de kans is groter dat je niet het juiste antwoord hebt gekregen, en nog waarschijnlijker dat je het niet eens hebt geprobeerd. Het vinden van het juiste antwoord is buitengewoon moeilijk zonder de digitale tweeling te gebruiken. Raden is onprofessioneel.

Een stap verder dan raden is ‘raden en zien’, waarbij u uw gok implementeert en vervolgens een tijdje (maanden?) wacht om te zien of de resultaten u bevallen. Die tactiek is op zijn minst ‘wetenschappelijk’, maar inefficiënt.

Denk nu eens aan de moeite om de beste (Min,Max) paren voor duizenden items te bepalen. Op die schaal is er zelfs nog minder reden om het inventarisraadspel te spelen. Het juiste antwoord is om het te spelen… Slim3.

1 Dit antwoord heeft een bonus, omdat het een opvullingspercentage van iets meer dan 80% behaalt bij een lagere gemiddelde voorraadgrootte dan de Min/Max-combinatie die precies 80% bereikte. Met andere woorden: (7,13) bevindt zich op de efficiënte grens.

2 Omdat deze resultaten afkomstig zijn van een simulatie in plaats van een exacte wiskundige vergelijking, is er een bepaalde foutmarge verbonden aan elk geschat opvullingspercentage en voorraadniveau. Omdat de gemiddelde resultaten echter gebaseerd waren op 100 simulaties over een periode van 365 dagen, zijn de foutmarges echter klein. Over alle experimenten heen waren de gemiddelde standaardfouten in het opvullingspercentage en de gemiddelde voorraad respectievelijk slechts 0,009% en 0,129 eenheden.

3 Mocht je dit nog niet weten: een van de oprichters van Smart Software was … Charlie Smart.

Are You Playing the Inventory Guessing Game-111

Are You Playing the Inventory Guessing Game-Table 1

 

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Ik begin met een bekentenis: ik ben een algoritme-man. Mijn hart leeft in de ‘machinekamer’ van onze software, waar razendsnelle berekeningen heen en weer gaan door de AWS-cloud, waardoor vraag- en aanbodscenario’s worden gegenereerd die worden gebruikt als leidraad voor belangrijke beslissingen over vraagvoorspelling en voorraadbeheer.

Maar ik erken dat het doelwit van al die mooie, woedende berekeningen het brein van de baas is, de persoon die verantwoordelijk is om ervoor te zorgen dat op de meest efficiënte en winstgevende manier aan de vraag van de klant wordt voldaan. Deze blog gaat dus over Smart Operational Analytics (SOA), waarmee rapportages voor het management worden gemaakt. Of, zoals ze in het leger worden genoemd, sit-reps.

Alle berekeningen die door de planners met behulp van onze software worden begeleid, worden uiteindelijk gedestilleerd in de SOA-rapporten voor het management. De rapporten richten zich op vijf gebieden: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Voorraadanalyse

Deze rapporten houden de huidige voorraadniveaus in de gaten en identificeren gebieden die verbetering behoeven. De nadruk ligt op de huidige voorraadaantallen en hun status (voorhanden, onderweg, in quarantaine), voorraadwisselingen en excessen versus tekorten.

Voorraadprestaties

Deze rapporten houden Key Performance Indicators (KPI's) bij, zoals opvullingspercentages, serviceniveaus en voorraadkosten. De analytische berekeningen elders in de software begeleiden u bij het behalen van uw KPI-doelen door Key Performance Predictions (KPP's) te berekenen op basis van aanbevolen instellingen voor bijvoorbeeld bestelpunten en bestelhoeveelheden. Maar soms komen er verrassingen voor, of wordt het operationele beleid niet uitgevoerd zoals aanbevolen, waardoor er altijd enige discrepantie zal zijn tussen KPP's en KPI's.

Voorraadtrends

Weten waar de zaken er vandaag voor staan is belangrijk, maar zien waar de zaken zich ontwikkelen is ook waardevol. Deze rapporten onthullen trends in de vraag naar artikelen, voorraadgebeurtenissen, het gemiddelde aantal beschikbare dagen, de gemiddelde verzendtijd en meer.

Prestaties van leveranciers

Uw bedrijf kan niet optimaal presteren als uw leveranciers u naar beneden halen. Deze rapporten monitoren de prestaties van leveranciers op het gebied van de nauwkeurigheid en snelheid van het invullen van aanvullingsorders. Als u meerdere leveranciers voor hetzelfde artikel heeft, kunt u deze met elkaar vergelijken.

Vraagafwijkingen

Uw gehele voorraadsysteem is vraaggestuurd en alle voorraadbeheerparameters worden berekend na het modelleren van de artikelvraag. Dus als er iets vreemds gebeurt aan de vraagzijde, moet u waakzaam zijn en u voorbereiden op het herberekenen van zaken als min- en max-waarden voor artikelen die zich vreemd beginnen te gedragen.

Overzicht

Het eindpunt van alle enorme berekeningen in onze software is het dashboard dat het management laat zien wat er aan de hand is, wat de toekomst biedt en waar de aandacht op moet worden gevestigd. Smart Inventory Analytics is het onderdeel van ons software-ecosysteem gericht op de C-Suite van uw bedrijf.

 Smart Reporting Studio Inventory Management Supply Software

Figuur 1: Enkele voorbeeldrapportages in grafische vorm

 

Je moet samenwerken met de algoritmen

Ruim veertig jaar geleden bestond Smart Software uit drie vrienden die in de kelder van een kerk een bedrijf begonnen te starten. Tegenwoordig is ons team uitgebreid en opereert vanuit meerdere locaties in Massachusetts, New Hampshire en Texas, met teamleden in Engeland, Spanje, Armenië en India. Net als velen van u in uw functie hebben wij manieren gevonden om gedistribueerde teams voor ons en voor u te laten werken.

Deze notitie gaat over een ander soort teamwerk: de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. Ik schrijf vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is mijn onderwerp hoe je het beste met de software kunt samenwerken.

Onze softwaresuite, Smart Inventory Planning and Optimization (Smart IP&O™) is in staat tot zeer gedetailleerde berekeningen van de toekomstige vraag en de voorraadcontroleparameters (bijvoorbeeld bestelpunten en bestelhoeveelheden) die die vraag het meest effectief zouden beheren. Maar om al die kracht optimaal te kunnen benutten, is uw inbreng nodig. Je moet samenwerken met de algoritmen.

Die interactie kan verschillende vormen aannemen. U kunt beginnen door simpelweg te beoordelen hoe het nu met u gaat. De rapportschrijffuncties in Smart IP&O (Smart Operational Analytics™) kunnen al uw transactiegegevens verzamelen en analyseren om uw Key Performance Indicators (KPI's) te meten, zowel financieel (bijvoorbeeld voorraadinvesteringen) als operationeel (bijvoorbeeld opvullingspercentages).

De volgende stap zou kunnen zijn om SIO (Smart Inventory Optimization™), de inventarisanalyse binnen SIP&O, te gebruiken om ‘wat-als’-spelletjes met de software te spelen. U kunt zich bijvoorbeeld afvragen: 'Wat als we de bestelhoeveelheid voor artikel 1234 verlagen van 50 naar 40?' De software vermaalt de cijfers om u te laten weten hoe dat zou uitpakken, waarna u reageert. Dit kan handig zijn, maar wat als u 50.000 items moet overwegen? Je zou wat-als-spellen willen doen voor een paar cruciale items, maar niet voor allemaal.

De echte kracht zit hem in het gebruik van de automatische optimalisatiemogelijkheden in SIO. Hier kunt u op grote schaal samenwerken met de algoritmen. Op basis van uw zakelijke oordeel kunt u “groepen” creëren, dat wil zeggen verzamelingen van items die enkele cruciale kenmerken gemeen hebben. U kunt bijvoorbeeld een groep maken voor 'kritieke reserveonderdelen voor klanten van elektriciteitsbedrijven', bestaande uit 1.200 onderdelen. Vervolgens kunt u, opnieuw op basis van uw zakelijk oordeel, specificeren welke standaard voor de beschikbaarheid van artikelen moet gelden voor alle artikelen in die groep (bijvoorbeeld: “minstens 95% kans dat de voorraad binnen een jaar niet op voorraad is”). Nu kan de software het overnemen en automatisch de beste bestelpunten en bestelhoeveelheden voor elk van deze artikelen berekenen om de gewenste artikelbeschikbaarheid tegen de laagst mogelijke totale kosten te bereiken. En dat, beste lezer, is krachtig teamwerk.