Smart Software kondigt strategisch partnerschap aan met Sage voor voorraadoptimalisatie en vraagvoorspelling

Belmont, Massachusetts, februari 2024 –Smart Software, een wereldwijde leverancier van cloudgebaseerde voorraadoptimalisatie-, vraagplanning- en prognoseoplossingen van de volgende generatie, kondigt vandaag hun strategische samenwerking met Sage aan.

Deze samenwerking brengt Smart IP&O (Inventory Planning and Optimization) in de nieuwste cloud- en on-premise-versies van Sage X3, Sage 300 en Sage 100. Door strategische planning naadloos te integreren met operationele uitvoering kunnen gebruikers reactieve voorraadplanning elimineren en giswerk voorspellen door het nauwkeurig kalibreren van risico's, afwegingen en consequenties op schaal met Smart IP&O.

Sage is marktleider op het gebied van boekhoudkundige, financiële, HR- en salaristechnologie voor kleine en middelgrote bedrijven (MKB). Klanten vertrouwen op het uitgebreide pakket financiële, HR- en Supply Chain-software van Sage om processen te stroomlijnen en operationele taken te vereenvoudigen. Deze geïntegreerde aanpak voor het oplossen van zakelijke uitdagingen zorgt voor naadloze interacties en levert waardevolle inzichten op voor het MKB, waardoor de positie van Sage als leider in de branche wordt versterkt.

“Smart Software helpt onze klanten door inzichtelijke bedrijfsanalyses te leveren voor voorraadmodellering en prognoses die het bestellen en aanvullen stimuleren in de nieuwste versie van Sage. Met Smart IP&O krijgen onze klanten een manier om de voorraadstrategie zo vorm te geven dat deze aansluit bij de bedrijfsdoelstellingen, terwijl ze hun planningsteams in staat stellen de voorraad te verminderen en de service te verbeteren”, zegt Regina Crowshaw, directeur ISV Strategy, Sales en Programs bij Sage.

“Sage stimuleert innovatie en bevordert de bedrijfsgroei door inzichtelijke oplossingen te leveren die zijn ontworpen om organisaties in staat te stellen te schalen en succesvol te zijn. Door gebruik te maken van de mogelijkheden van Smart's in de praktijk bewezen oplossingen voor vraagvoorspelling en voorraadplanning, is Sage klaar om de nodige expertise te leveren om de behoeften te beoordelen, doelstellingen vast te stellen en de onderliggende bedrijfsstrategieën te ontwikkelen die van cruciaal belang zijn voor het garanderen van brede acceptatie en het behalen van maximaal voordeel. We kijken vooruit naar wat we samen kunnen bereiken, en we kijken uit naar ons gezamenlijke succes”, zegt Greg Hartunian, President en CEO van Smart Software.

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Disney, Arizona Public Service en Ameren. Smart's Inventory Planning & Optimization Platform, Smart IP&O, biedt vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en onze website ook www.smartcorp.com.

Over Sage Corporation

Sage is er om barrières weg te nemen, zodat iedereen kan gedijen, te beginnen met de miljoenen kleine en middelgrote bedrijven die door ons, onze partners en accountants worden bediend. Klanten vertrouwen op onze financiële, HR- en salarisadministratiesoftware om werk en geld te laten stromen. Door bedrijfsprocessen en relaties met klanten, leveranciers, werknemers, banken en overheden te digitaliseren, verbindt ons digitale netwerk het MKB, waardoor wrijving wordt weggenomen en inzichten worden geboden. Het slechten van barrières betekent ook dat we onze tijd, technologie en ervaring gebruiken om digitale ongelijkheid, economische ongelijkheid en de klimaatcrisis aan te pakken.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Head to Head: welk voorraadbeleid voor serviceonderdelen is het beste?

Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden.

De concurrenten

Het komt maar zelden voor dat bedrijven deze keuzes op lukrake manieren maken. Maar met moderne planningssoftware voor serviceonderdelen kunt u systematischer uw keuzes maken. Dit bericht demonstreert deze stelling door objectieve vergelijkingen te maken tussen drie populaire voorraadbeleidslijnen: Bestel tot aan, Bestelpunt/Bestelhoeveelheid en Min/Max. Ik heb elk van deze beleidsmaatregelen hierin besproken videoblog.

  • Bestel tot. Dit is een periodiek beoordelingsbeleid waarbij elke T dagen de voorhanden voorraad wordt opgeteld en een bestelling van willekeurige grootte wordt geplaatst om het voorraadniveau weer op S-eenheden te brengen.
  • Q, R of bestelpunt/bestelhoeveelheid. Q, R is een continu beoordelingsbeleid waarbij de voorraad elke dag wordt opgeteld. Als er Q of minder eenheden beschikbaar zijn, wordt een bestelling van vaste grootte geplaatst voor R meer eenheden.
  • Min, Max is een ander continu beoordelingsbeleid waarbij de inventaris elke dag wordt opgeteld. Als er Min of minder eenheden beschikbaar zijn, wordt er een bestelling geplaatst om het voorraadniveau weer op Max eenheden te brengen.

Volgens de inventaristheorie worden deze keuzes gerangschikt in oplopende volgorde van effectiviteit. De eerste optie, Order Up To, is duidelijk de eenvoudigste en goedkoopste om te implementeren, maar sluit de ogen voor wat er gedurende langere tijd gebeurt. Het opleggen van een bepaald tijdsverloop tussen bestellingen maakt het in theorie minder flexibel. De twee continue beoordelingsopties houden daarentegen voortdurend in de gaten wat er gebeurt, zodat ze sneller kunnen reageren op mogelijke voorraadtekorten. De Min/Max-optie is in theorie flexibeler dan de optie die gebruikmaakt van een vast bestelaantal, omdat de omvang van de bestelling dynamisch verandert om aan de vraag te voldoen.

Dat is de theorie. Dit artikel onderzoekt bewijsmateriaal uit onderlinge vergelijkingen om de theorie te controleren en concrete cijfers te geven over de relatieve prestaties van de drie beleidsmaatregelen.

De betekenis van “Beste”

Hoe moeten we de score bijhouden in dit toernooi? Als u een regelmatige lezer bent van dit Smart Forecaster-blog, weet u dat de kern van voorraadplanning een touwtrekken is tussen twee tegengestelde doelstellingen: de voorraad beperkt houden versus de beschikbaarheidsstatistieken van artikelen, zoals het serviceniveau, hoog houden.

Om de zaken te vereenvoudigen, zullen we ‘één getal berekenen dat alles regelt’: de gemiddelde bedrijfskosten. Het winnende beleid zal het beleid zijn met het laagste gemiddelde.

Dit gemiddelde is de som van drie componenten: de kosten van het aanhouden van voorraad (“voorraadkosten”), de kosten van het bestellen van aanvullingseenheden (“bestelkosten”) en de kosten van het mislopen van een verkoop (“tekortkosten”). Om het concreet te maken zijn we uitgegaan van de volgende aannames:

  • Elk serviceonderdeel heeft een waarde van $1.000.
  • De jaarlijkse bewaarkosten bedragen 10% van de artikelwaarde, of $100 per jaar per eenheid.
  • Het verwerken van elke aanvulorder kost $20 per bestelling.
  • Elke gevraagde maar niet geleverde eenheid kost de waarde van het onderdeel, $1.000.

Voor de eenvoud zullen we naar de gemiddelde bedrijfskosten verwijzen als eenvoudigweg “de kosten”.

Uiteraard kunnen de laagste gemiddelde kosten worden bereikt door uit het bedrijf te stappen. De concurrentie vereiste dus een prestatiebeperking op het gebied van de beschikbaarheid van artikelen: elke optie moest een opvullingspercentage van minimaal 99% behalen.

De alternatieven: laat het achterwege

Een belangrijk contextelement is of stockouts resulteren in verliezen of nabestellingen. Ervan uitgaande dat het betreffende serviceonderdeel cruciaal is, zijn we ervan uitgegaan dat niet-uitgevoerde bestellingen verloren gaan, wat betekent dat een concurrent de bestelling vervult. In een MRO-omgeving betekent dit extra downtime als gevolg van voorraadtekorten.

Om de alternatieven te vergelijken, hebben we onze voorspellende modelleringsengine gebruikt om er een groot aantal uit te voeren Monte Carlo-simulaties. Elke simulatie omvatte het specificeren van de parameterwaarden van elk beleid (bijvoorbeeld de Min- en Max-waarden), het genereren van een vraagscenario, het invoeren daarvan in de logica van het beleid en het meten van de resulterende kosten, gemiddeld over 365 dagen gebruik. Door dit proces 1000 keer te herhalen en het gemiddelde te nemen van de 1000 resulterende kosten, ontstond het eindresultaat voor elke polis.  

Om de vergelijking eerlijk te maken, moest elk alternatief worden ontworpen voor de beste prestaties. Daarom doorzochten we de ‘ontwerpruimte’ van elke polis om het ontwerp met de laagste kosten te vinden. Dit vereiste het herhalen van het proces dat in de vorige paragraaf is beschreven voor veel paren parameterwaarden en het identificeren van het paar dat de verloren gemiddelde jaarlijkse bedrijfskosten opleverde.

Met behulp van de algoritmen in Smart Inventory Optimization (SIOTM) hebben we onderlinge vergelijkingen gemaakt op basis van de volgende aannames over vraag en aanbod:

  • Er werd aangenomen dat de vraag naar artikelen intermitterend en zeer variabel was, maar relatief eenvoudig omdat er geen sprake was van trends of seizoensinvloeden, zoals vaak het geval is voor serviceonderdelen. De dagelijkse gemiddelde vraag bedroeg 5 eenheden met een grote standaardafwijking van 13 eenheden. Figuur 1 toont een voorbeeld van de vraag over een jaar. We hebben gekozen voor een zeer uitdagend vraagpatroon, waarbij op sommige dagen de vraag 10 tot zelfs 20 keer zo groot is als de gemiddelde vraag.

Daily part demand was assumed to be intermittent and very spikey.

Figuur 1: Er werd aangenomen dat de dagelijkse vraag naar onderdelen intermitterend en zeer piekerig was.

​​

  • De levertijden van leveranciers bedroegen destijds 14 dagen (75%) en anders 21 dagen. Dit weerspiegelt het feit dat er altijd onzekerheid bestaat in de toeleveringsketen.

 

En de winnaar is…

Klopte de theorie? Soort van'.

Tabel 1 toont de resultaten van de simulatie-experimenten. Voor elk van de drie concurrerende beleidsmaatregelen worden de gemiddelde jaarlijkse bedrijfskosten, de foutmarge (technisch gezien een betrouwbaarheidsinterval van ongeveer 95% voor de gemiddelde kosten) en de ogenschijnlijk beste keuzes voor parameterwaarden weergegeven.

Results of the simulated comparisons

Tabel 1: Resultaten van de gesimuleerde vergelijkingen

De gemiddelde kosten voor de (T,S)-polis wanneer T op 30 dagen is vastgesteld, bedroegen bijvoorbeeld $41.680. Maar de Plus/Minus houdt in dat de resultaten verenigbaar zijn met de “echte” kosten (dwz de schatting op basis van een oneindig aantal simulaties) van ergens tussen $39.890 en $43.650. De reden dat er zoveel statistische onzekerheid is, is de extreem piekerige aard van de vraag in dit voorbeeld.

Tabel 1 laat zien dat in dit voorbeeld de drie beleidsmaatregelen in lijn zijn met de verwachtingen. Nuttigere conclusies zouden echter zijn:

  1. Wat de gemiddelde kosten betreft, zijn de drie polissen opmerkelijk vergelijkbaar. Door een slimme keuze van parameterwaarden kan men goede resultaten behalen met elk van de drie beleidsmaatregelen.
  2. Niet weergegeven in Tabel 1, maar duidelijk uit de gedetailleerde simulatieresultaten, is dat slechte keuzes voor parameterwaarden rampzalig kunnen zijn voor elk beleid.
  3. Het is vermeldenswaard dat het beleid voor periodieke beoordeling (T,S) niet mocht optimaliseren ten opzichte van mogelijke waarden van T. We hebben T op 30 vastgesteld om na te bootsen wat in de praktijk gebruikelijk is, maar degenen die het beleid voor periodieke beoordeling gebruiken, moeten andere beoordelingen overwegen. periodes. Een aanvullend experiment stelde de beoordelingsperiode vast op T = 7 dagen. De gemiddelde kosten in dit scenario werden geminimaliseerd op $36.551 ± $1.668 met S = 343. Dit resultaat is beter dan dat met T = 30 dagen.
  4. We moeten voorzichtig zijn met het overgeneraliseren van deze resultaten. Ze zijn afhankelijk van de veronderstelde waarden van de drie kostenparameters (vasthouden, bestellen en tekort) en het karakter van het vraagproces.
  5. Het is mogelijk om experimenten zoals hier weergegeven automatisch uit te voeren Smart Inventory Optimization. Dit betekent dat ook jij ontwerpkeuzes op een rigoureuze manier kunt onderzoeken.

 

 

 

Het prognoseproces voor besluitvormers

In bijna elk bedrijf en elke sector hebben besluitvormers betrouwbare voorspellingen nodig van kritische variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector.

Er zijn veel soorten mensen die deze voorspellingen doen. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis.

Door de manier waarop we Smart Demand Planner hebben ontworpen, heeft het alle soorten voorspellers iets te bieden. Dit ontwerp komt voort uit verschillende observaties over het voorspellingsproces. Omdat we Smart Demand Planner met deze observaties in gedachten hebben ontworpen, zijn we van mening dat de stijl en inhoud ervan uniek geschikt zijn om van uw browser een effectief prognose- en planningshulpmiddel te maken:

Voorspellen is een kunst die een mix van professioneel oordeel en objectieve, statistische analyse vereist.

Het is vaak effectief om te beginnen met een objectieve statistische voorspelling die automatisch rekening houdt met trends, seizoensinvloeden en andere patronen. Pas vervolgens aanpassingen of prognoseoverschrijvingen toe op basis van uw zakelijke oordeel. Smart Demand Planner maakt het eenvoudig om grafische en tabelvormige aanpassingen aan statistische prognoses uit te voeren.

Het prognoseproces is doorgaans iteratief.

U zult waarschijnlijk besluiten uw oorspronkelijke prognose een aantal malen te verfijnen voordat u tevreden bent. Mogelijk wilt u oudere historische gegevens uitsluiten die u niet langer relevant vindt. U kunt verschillende gewichten op het voorspellingsmodel toepassen, waarbij verschillende accenten op de meest recente gegevens worden gelegd. U kunt trenddemping toepassen om agressief trendmatige statistische voorspellingen te verhogen of te verlagen. U kunt de Machine Learning-modellen de prognoseselectie voor u laten verfijnen en automatisch het winnende model selecteren. De verwerkingssnelheid van Smart Demand Planner geeft u voldoende tijd om meerdere keren te passen en slaat meerdere versies van de prognoses op als 'momentopnamen', zodat u de nauwkeurigheid van de prognoses later kunt vergelijken.

Voorspellen vereist grafische ondersteuning.

De patronen die in de gegevens zichtbaar zijn, kunnen door een scherp oog worden gezien. De geloofwaardigheid van uw prognoses zal vaak sterk afhangen van grafische vergelijkingen die andere zakelijke belanghebbenden maken wanneer zij de historische gegevens en prognoses beoordelen. Smart Demand Planner biedt grafische weergaven van prognoses, geschiedenis en rapportage van prognoses versus werkelijke cijfers.

Voorspellingen kloppen nooit helemaal.

Omdat zelfs in het beste voorspellingsproces altijd een fout sluipt, is een van de nuttigste aanvullingen op een voorspelling een eerlijke schatting van de foutmarge.

Smart Demand Planner presenteert zowel grafische als tabelvormige samenvattingen van de nauwkeurigheid van de prognoses, gebaseerd op de zuurtest van het voorspellen van gegevens die zijn achtergehouden bij de ontwikkeling van het voorspellingsmodel. 

Prognose-intervallen of betrouwbaarheidsintervallen zijn ook erg handig. Ze beschrijven het waarschijnlijke bereik van de mogelijke vraag die naar verwachting zal optreden. Als de werkelijke vraag bijvoorbeeld meer dan 10% van de tijd buiten het 90%-betrouwbaarheidsinterval valt, is er reden om verder onderzoek te doen.  

Voorspellen vereist een match tussen methode en gegevens.

Een van de belangrijkste technische taken bij het voorspellen is het afstemmen van de keuze van de voorspellingstechniek op de aard van de gegevens. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere.

De automatische prognosefunctie van Smart Demand Planner maakt deze match snel, nauwkeurig en automatisch.

Prognoses maken vaak deel uit van een groter plannings- of controleproces.

Prognoses kunnen bijvoorbeeld een krachtige aanvulling zijn op op spreadsheets gebaseerde financiële analyses, waardoor rijen met cijfers naar de toekomst kunnen worden uitgebreid. Bovendien zijn nauwkeurige prognoses van de verkoop en de vraag naar producten fundamentele input voor de productieplanning en voorraadcontroleprocessen van een fabrikant. Een objectieve statistische voorspelling van toekomstige verkopen helpt altijd bij het identificeren wanneer het budget (of het verkoopplan) te onrealistisch is. Gap-analyse stelt het bedrijf in staat corrigerende maatregelen te nemen voor hun vraag- en marketingplannen om ervoor te zorgen dat ze het gebudgetteerde plan niet missen.

Prognoses moeten worden geïntegreerd in ERP-systemen
Smart Demand Planner kan zijn resultaten snel en eenvoudig overbrengen naar andere applicaties, zoals spreadsheets, databases en planningssystemen inclusief ERP-applicaties. Gebruikers kunnen voorspellingen in verschillende bestandsformaten exporteren, hetzij via download, hetzij via beveiligde FTP-bestandslocaties. Smart Demand Planner omvat API-gebaseerde integraties met een verscheidenheid aan ERP- en EAM-systemen, waaronder Epicor Kinetic en Epicor Prophet 21, Sage X3 en Sage 300, Oracle NetSuite en elk van de Dynamics 365 ERP-systemen van Microsoft. Dankzij API-gebaseerde integraties kunnen klanten prognoseresultaten op verzoek rechtstreeks terugsturen naar het ERP-systeem.

Het resultaat is een efficiëntere verkoopplanning, budgettering, productieplanning, bestellingen en voorraadplanning.

 

 

 

 

Procon Pumps gebruikt Smart Demand Planner om de bedrijfsvoering draaiende te houden

Invoering:
Procon, een toonaangevende pompfabrikant, gebruikt de modules voor vraagplanning en voorraadoptimalisatie van Smart IP&O van Smart Software om ervoor te zorgen dat ze over de producten beschikken die hun klanten nodig hebben, wanneer ze die nodig hebben. Je hebt misschien nog nooit van hun producten gehoord, maar als je ooit bij McDonalds hebt gegeten of een kopje koffie hebt gedronken bij Starbucks, ben je bediend door Procon. Procon's brede portfolio van meer dan 7.000 SKU's wordt aan meer dan 70 landen over de hele wereld geleverd via hun directe verkoopkanaal en een uitgebreid distributeursnetwerk. Procon exploiteert productiefaciliteiten in de VS, Mexico, Ierland en via een erkende productiepartner in Japan. We spraken met Shankar Suman, verkoopdirecteur van Procon, en Emer Horan, Global Supply Chain Manager, voor meer informatie.

De uitdaging
Als Procon een benodigd product niet kan verzenden, kunnen hun klanten het hunne niet verzenden. Nauwkeurige prognoses zijn een belangrijke motor voor het succes van de supply chain en klanttevredenheid. De maandelijkse planning van Procon stelt het consensusvraagplan vast dat het inkoop-, productie- en voorraadbeleid aanstuurt. Maar ze ontdekten dat er een kloof bestond tussen verkoop en inkoop, wat historisch gezien leidde tot gemiste leveringen en overtollige voorraad. Wat Procon nodig had, was een robuuste tool voor vraagvoorspelling en voorraadoptimalisatie die eenvoudig te gebruiken was, samenwerkingsplanning met hun verkoopteam en partners mogelijk maakte en geïntegreerd was met hun ERP-systeem om de inkoop- en productieplanning aan te sturen.

De oplossing:
Ze vonden dit in Smart IP&O, een webgebaseerd platform voor statistische prognoses, vraagplanning en voorraadoptimalisatie.

  • Shankar Suman noemde een brede mix van mogelijkheden die hen ervan overtuigde Smart te gebruiken. De belangrijkste onder hen waren:
  •   Smart Demand Planner ondersteunt de eenvoudige, georkestreerde informatiestroom die een nauwkeurig consensusplan oplevert. Door de prestatiegeschiedenis en statistische prognoses per product, regio en partner te presenteren, biedt SDP het verkoopteam perspectief dat ze kunnen aanvullen – door zich aan te passen aan verwachte kansen of vraagverschuivingen.
  • Nauwkeurigheid van de voorspelling. Smart is marktleider op het gebied van statistische analyses en maakt gebruik van innovaties die in de ruim veertigjarige geschiedenis zijn ontwikkeld. Dit, gecombineerd met een robuuste analyse van prognoses versus werkelijke cijfers, helpt Procon de kwaliteit van hun prognoses voortdurend te verbeteren.
  • Transparante connectiviteit met Procon's bedrijfssoftware, Epicor Kinetic. Dagelijkse verkoop- en verzendgegevens worden automatisch naar het Smart-platform gehaald, waardoor de voorspellingsengine van Smart wordt gevoed, en de resultaten worden eenvoudig teruggestuurd naar de ERP (MRP) via een API-gebaseerde integratie om de bestellingen en productieplanning aan te sturen.

Resultaten:
Emer Horan legde uit hoe dit zich in de loop van elke maand afspeelt. Emer maakt prognoses voor elk van hun vijf verkoopmanagers, ze komen bijeen om statistische en verkoopprognoses te vergelijken en komen een herzien consensusplan voor twaalf maanden overeen. De verkoopmanagers hebben een goed gevoel voor de topaccounts die 80% aan omzet vertegenwoordigen, vaak inclusief directe input van klanten zelf, en de statistische prognose vult de gaten op. Volgende maand gebruiken ze de voorspelling versus daadwerkelijke analyses om de nauwkeurigheid te verbeteren, en herhalen ze vervolgens het proces.

“Ons verkoopteam wordt gestimuleerd om de nauwkeurigheid van verkoopprognoses te behouden en te verbeteren,” aldus Emer, “en we hebben de tools om hen te helpen slagen. Dit zorgt niet alleen voor een optimaal voorraadniveau, maar draagt ook bij aan een betere tijdige levering en een hogere klanttevredenheid.”

“Onze reis met Smart Software was behoorlijk opmerkelijk”, aldus Shankar. “We zijn begonnen met een eerste idee van de functionaliteit en interface, en van daaruit is het voortdurend verder ontwikkeld. Het Smart-team heeft enorme steun en geduld getoond bij onze scopewijzigingen en heeft het product precies geleverd zoals we het nodig hadden en wilden. We gebruiken Smart nu al meer dan drie jaar en deze reis is nog steeds gaande. We krijgen nog steeds uitstekende ondersteuning van het Smart-team en werken met veel plezier met hen samen.”

 

 

Breid Epicor BisTrack uit met Smart IP&O's dynamische planning en voorspelling van herbestellingspunten

In dit artikel zullen we de functionaliteit voor 'voorgestelde bestellingen' in Epicor BisTrack bekijken, de beperkingen ervan uitleggen en samenvatten hoe Smart Inventory Planning & Optimization (Smart IP&O) kan helpen de voorraad te verminderen en voorraadtekorten te minimaliseren door de afwegingen tussen voorraadrisico's nauwkeurig te beoordelen. en voorraadkosten.

Automatisering van bevoorrading in Epicor BisTrack
Epicor BisTrack's “Suggested Ordering” kan de aanvulling beheren door voor te stellen wat te bestellen en wanneer, via op punten gebaseerd beleid voor herbestelling, zoals min-max en/of handmatig gespecificeerde leveringsweken. BisTrack bevat een aantal basisfunctionaliteiten om deze parameters te berekenen op basis van gemiddeld gebruik of omzet, doorlooptijd van leveranciers en/of door de gebruiker gedefinieerde seizoensaanpassingen. Als alternatief kunnen nabestelpunten volledig handmatig worden opgegeven. BisTrack presenteert de gebruiker vervolgens een lijst met voorgestelde bestellingen door inkomend aanbod, huidige voorraad, uitgaande vraag en voorraadbeleid op elkaar af te stemmen.

Hoe Epicor BisTrack “Aanbevolen bestelling” werkt
Om een lijst met voorgestelde bestellingen te krijgen, specificeren gebruikers de methoden achter de suggesties, inclusief locaties waarvoor ze bestellingen moeten plaatsen en hoe ze het voorraadbeleid kunnen bepalen dat bepaalt wanneer een suggestie wordt gedaan en in welke hoeveelheid.

Extend Epicor BisTrack Planning and Forecasting

Eerst wordt het veld “methode” gespecificeerd uit de volgende opties om te bepalen welk soort suggestie wordt gegenereerd en voor welke locatie(s):

Aankoop – Aanbevelingen voor inkooporders genereren.

  1. Gecentraliseerd voor alle vestigingen – Genereert suggesties voor één locatie die inkopen doet voor alle andere locaties.
  2. Per individueel filiaal – Genereert suggesties voor meerdere locaties (leveranciers verzenden rechtstreeks naar elk filiaal).
  3. Per bronvertakking – Genereert suggesties voor een bronvertakking die materiaal zal overbrengen naar vertakkingen die deze bedient (“hub en sprak”).
  4. Individuele vestigingen met overdrachten – Genereert suggesties voor een individuele vestiging die materiaal zal overdragen naar vestigingen die zij bedient (“hub and spoke”, waarbij de “hub” geen bronfiliaal hoeft te zijn).

Vervaardiging – Genereer werkordersuggesties voor gefabriceerde goederen.

  1. Per productietak.
  2. Per individuele vestiging.

Overdracht van brontak – Genereer overdrachtssuggesties van een bepaalde vestiging naar andere vestigingen.

Extend Epicor BisTrack Planning and Forecasting 2222

Vervolgens wordt de “bestelling voorstellen aan” gespecificeerd uit de volgende opties:

  1. Minimum – Stelt bestellingen voor “tot” de minimale beschikbare hoeveelheid (“min”). Voor elk artikel waarvan de voorraad minder is dan de minimumhoeveelheid, zal BisTrack een bestelsuggestie voorstellen om aan te vullen tot dit aantal.
  2. Maximaal wanneer minder dan min – Stelt bestellingen voor “tot” een maximale voorhanden hoeveelheid wanneer de minimale voorhanden hoeveelheid wordt overschreden (bijvoorbeeld een min-max voorraadbeleid).
  1. Gebaseerd op dekking (gebruik) – Stelt bestellingen voor op basis van dekking voor een door de gebruiker gedefinieerd aantal leveringsweken met betrekking tot een opgegeven doorlooptijd. Intern gegeven gebruik Afhankelijk van de vraag zal BisTrack bestellingen aanbevelen waarbij het aanbod kleiner is dan de gewenste dekking om het verschil te dekken.
  1. Gebaseerd op meer dan (verkoop) – Stelt bestellingen voor op basis van dekking voor een door de gebruiker gedefinieerd aantal leveringsweken met betrekking tot een opgegeven doorlooptijd. Gegeven verkooporders Afhankelijk van de vraag zal BisTrack bestellingen aanbevelen waarbij het aanbod kleiner is dan de gewenste dekking om het verschil te dekken.
  1. Alleen maximum – Stelt bestellingen voor “tot” een maximale voorhanden hoeveelheid waarbij het aanbod minder is dan dit maximum.

Ten slotte kunnen gebruikers, als BisTrack de drempels voor herbestellingen kan bepalen, aanvullende voorraaddekking specificeren als buffervoorraad, doorlooptijden, hoeveel maanden historische vraag er rekening mee moet houden, en kunnen ze ook handmatig periode-voor-periode wegingsschema's definiëren om de seizoensinvloeden te benaderen. De gebruiker krijgt een lijst met voorgestelde bestellingen op basis van de gedefinieerde criteria. Een inkoper kan vervolgens met één klik op de knop inkooporders voor leveranciers genereren.

Extend Epicor BisTrack Planning and Forecasting

Beperkingen

Vuistregelmethoden

Hoewel BisTrack organisaties in staat stelt automatisch bestelpunten te genereren, zijn deze methoden gebaseerd op eenvoudige gemiddelden die geen rekening houden met seizoensinvloeden, trends of de volatiliteit in de vraag naar een artikel. Gemiddelden zullen altijd achterblijven bij deze patronen en zijn niet in staat trends te volgen. Overweeg een zeer seizoensgebonden product zoals een sneeuwschep. Als we een gemiddelde nemen van de vraag in de zomer/herfst wanneer we het winterseizoen naderen, in plaats van vooruit te kijken, dan zullen de aanbevelingen gebaseerd zijn op de langzamere periodes in plaats van te anticiperen op de komende vraag. Zelfs als we de geschiedenis van een heel jaar of langer in ogenschouw nemen, zullen de aanbevelingen zonder handmatige tussenkomst overcompenseren tijdens de langzamere maanden en het drukke seizoen onderschatten.

Vuistregelmethoden falen ook als ze worden gebruikt als buffer tegen de variabiliteit van vraag en aanbod. De gemiddelde vraag gedurende de doorlooptijd kan bijvoorbeeld 20 eenheden bedragen. Een planner wil echter vaak meer dan 20 eenheden op voorraad hebben om te voorkomen dat de voorraad uitvalt als de doorlooptijden langer zijn dan verwacht of de vraag hoger is dan gemiddeld. Met BisTrack kunnen gebruikers de bestelpunten specificeren op basis van veelvouden van de gemiddelden. Omdat de veelvouden echter geen rekening houden met de mate van voorspelbaarheid en variabiliteit in de vraag, zult u altijd voorspelbare artikelen overbevoorraden en onvoorspelbare artikelen te weinig hebben. Lees dit artikel voor meer informatie over waarom veelvouden van het gemiddelde falen als het gaat om het ontwikkelen van het juiste bestelpunt.

Handmatige invoer
Over de eerder genoemde seizoensinvloeden gesproken: BisTrack biedt de gebruiker de mogelijkheid om deze te benaderen door het gebruik van handmatig ingevoerde “gewichten” voor elke periode. Dit dwingt de gebruiker om voor elk item te beslissen hoe dat seizoenspatroon eruit ziet. Zelfs daarbuiten moet de gebruiker dicteren hoeveel extra weken aan voorraad hij moet meenemen om voorraadtekorten tegen te gaan. en moet specificeren rond welke doorlooptijd moet worden gepland. Is 2 weken extra aanvoer voldoende? Is 3 genoeg? Of is dat teveel? Er is geen manier om dit te weten zonder te raden, en wat logisch is voor één item is misschien niet de juiste aanpak voor alle items.

Intermittent Demand
Veel BisTrack-klanten kunnen bepaalde items als “onvoorspelbaar” beschouwen vanwege de periodieke of ‘klonterige’ aard van hun vraag. Met andere woorden, artikelen die worden gekenmerkt door een sporadische vraag, grote pieken in de vraag en periodes van weinig of helemaal geen vraag. Traditionele methoden – en vooral de vuistregels – zullen niet werken voor dit soort items. Twee extra weken aanvoer voor een zeer voorspelbaar, stabiel artikel kunnen bijvoorbeeld veel te veel zijn; voor een artikel met een zeer volatiele vraag is dezelfde regel mogelijk niet voldoende. Zonder een betrouwbare manier om deze volatiliteit voor elk item objectief te beoordelen, blijven kopers gissen wanneer ze moeten kopen en hoeveel.

Terugkeren naar spreadsheets
De realiteit is dat de meeste BisTrack-gebruikers de neiging hebben om het grootste deel van hun planning offline, in Excel, te doen. Spreadsheets zijn niet speciaal ontworpen voor prognoses en voorraadoptimalisatie. Gebruikers zullen vaak door de gebruiker gedefinieerd bakken vuistregel methoden die vaak meer kwaad dan goed doen. Eenmaal berekend, moeten gebruikers de informatie handmatig opnieuw in BisTrack invoeren. Het tijdrovende karakter van het proces brengt bedrijven ertoe zelden hun voorraadbeleid berekenen - Er gaan vele maanden en soms jaren voorbij tussen de massa-updates, wat leidt tot een reactieve aanpak van ‘instellen en vergeten’, waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van de bestelling. Wanneer beleid wordt herzien nadat het orderpunt al is geschonden, is het te laat. Wanneer het bestelpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, voorspellingen te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Het enorme volume aan bestellingen betekent dat kopers bestellingen gewoon vrijgeven in plaats van de tijd te nemen om alles te beoordelen, wat leidt tot een aanzienlijke overtollige voorraad. Als het bestelpunt te laag is, is het al te laat. Er kan nu een spoedactie nodig zijn, waardoor de kosten omhoog gaan, ervan uitgaande dat de klant niet zomaar ergens anders heen gaat.

Epicor is slimmer
Epicor werkt samen met Smart Software en biedt Smart IP&O aan als een platformonafhankelijke add-on voor zijn ERP-oplossingen, waaronder BisTrack, een gespecialiseerde ERP voor de hout-, hardware- en bouwmaterialenindustrie. De Smart IP&O-oplossing wordt compleet geleverd met een bidirectionele integratie met BisTrack. Hierdoor kunnen klanten van Epicor gebruik maken van speciaal voor dit doel gebouwde, beste voorraadoptimalisatietoepassingen. Met Epicor Smart IP&O kunt u prognoses genereren die trends en seizoensinvloeden vastleggen zonder handmatige configuraties. U kunt het voorraadbeleid automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische en probabilistische modellen die zijn ontworpen om nauwkeurig te plannen Intermittent demand. Veiligheidsvoorraden houden nauwkeurig rekening met variabiliteit in vraag en aanbod, zakelijke omstandigheden en prioriteiten. U kunt profiteren service level gestuurde planning zodat je net genoeg voorraad hebt of gebruik maken van optimalisatie methodes die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven, waarbij rekening wordt gehouden met de werkelijke kosten van het aanhouden van voorraad. U kunt grondstoffenaankopen ondersteunen met nauwkeurige vraagvoorspellingen over langere horizonten, en 'wat-als'-scenario's uitvoeren om alternatieve strategieën te beoordelen voordat het plan wordt uitgevoerd.

Slimme IP&O-klanten realiseren routinematig een jaarlijks rendement van zeven cijfers door verminderde snelheid, hogere verkopen en minder overtollige voorraden, terwijl ze tegelijkertijd een concurrentievoordeel verwerven door zich te onderscheiden door verbeterde klantenservice. Om een opgenomen webinar te zien, gehost door de Epicor Users Group, waarin het Demand Planning en Inventory Optimization-platform van Smart wordt geprofileerd, registreer u dan hier.