Smart Software President en CEO presenteert op Microsoft Dynamics NAV 2019

Smart Software leidt Microsoft Dynamics NAV Summit Session over voorraadoptimalisatie en intermitterende vraag

Belmont, Massachusetts, oktober 2019 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, voorraadplanning en voorraadoptimalisatie, heeft vandaag aangekondigd dat CEO Greg Hartunian een presentatie zal geven op de Microsoft Dynamics NAV Summit van 15-18 oktober in Kissimmee, FL.

Greg Hartunian en Bruce Kennedy, Senior Consultant bij ArcherPoint presenteren "Voorraadoptimalisatie en intermitterende vraag - Waarom voorspellen niet genoeg is." De sessie beschrijft hoe u optimale voorraadniveaus kunt plannen voor duizenden artikelen wanneer de vraag intermitterend is. Schijnbaar willekeurige, sporadische vraag is het slechtste scenario voor het nauwkeurig voorspellen van vraag en voorraadvereisten. Typische planningsbenaderingen, zoals het vertrouwen op verkoopprognoses en vuistregels, waarom ze vaak mislukken en hoe probabilistische prognosemethoden een groot verschil kunnen maken voor het bedrijfsresultaat, zullen worden besproken. Ze zullen praktische voorbeelden demonstreren, werken met een op serviceniveau gebaseerde methodologie om risico's te beheren en de optimale balans te vinden tussen voorraadinvestering en beschikbaarheid, en sturen vervolgens de bijbehorende aanvullingsdrivers naar Business Central 365/NAV om dit te bewerkstelligen.

De presentatie staat gepland op 16 oktober, 13.00-14.00 uur. Smart Software zal ook aanwezig zijn op de conferentie met Smart Inventory Planning & Optimization en bidirectionele integraties met Microsoft Dynamics NAV, Microsoft Dynamics 365 Business Central en Microsoft Dynamics AX.

 

Summit Group America Smart Software

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is Microsoft Dynamics Gold Partner en full-serviceprovider voor Dynamics NAV en Dynamics 365, een leider in het leveren van oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

2019 Microsoft Dynamics NAV User Group Summit

Slimme software presenteert op NESCON 2019

Smart Software leidt NESCON keynote-toespraak over Planning for the "Un-Plannable".

Belmont, Massachusetts, 8 juli 2019 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op de NESCON 2019, New England Supply Chain Conference & Exhibition Keynote in Malborough, MA. De presentatie staat gepland op 7 oktober, 12:15-13:30 uur.

Greg Hartunian, CEO van Smart Software, zal onder de titel "Planning for the Un-Plannable" presenteren hoe u optimale voorraadniveaus en inkoophoeveelheden voor duizenden artikelen kunt plannen, wanneer de vraag intermitterend is, voortdurend verandert of wordt beïnvloed door onverwachte gebeurtenissen. Willekeurige, sporadische vraag is het slechtste scenario voor planning en inkoop en leidt tot overtollige voorraadniveaus en kostbare voorraden. Greg bespreekt traditionele benaderingen van voorraadplanning en prognoses, geeft praktische voorbeelden van hoe ze kunnen mislukken en deelt hoe probabilistische modelleringsmethoden een groot verschil kunnen maken voor uw bedrijfsresultaten. De Keynote is een goede gelegenheid om te leren hoe u voorraadtekorten en voorraadkosten kunt verminderen door gebruik te maken van gegevensgestuurde beslissingen die de financiële afwegingen identificeren die samenhangen met veranderingen in de vraag, doorlooptijden, serviceniveaudoelen en kosten.

Greg_Hartunian_CEO_President_Smart_Software

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Webinar: 10 vragen die het ware voorraadbeleid van uw bedrijf onthullen
Weet u hoe uw organisatie haar voorraadplanningsbeleid bepaalt en in hoeverre u dit ook daadwerkelijk toepast? En dat ze het werk doen? Vraagplanning, prognoses en voorraadplanning moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd. Er zou nul mysterie moeten zijn.
Neem deel aan ons webinar met Greg Hartunian, CEO van Smart Software, die de top 10 vragen zal bespreken die u zou moeten stellen om het werkelijke planningsbeleid van uw bedrijf te onthullen. Als u dit doet, wordt uw planningsproces ontrafeld en kunt u belangrijke kansen voor financiële besparingen en procesverbeteringen identificeren.
REGISTREER dinsdag 23 juli, 13:00 – 14:00 EST

We bieden dit webinar aan vanwege de populariteit van onze blog "Onthul uw Real Inventory Planning and Forecasting Process door deze 10 vragen te stellen." Greg legt het belang van elke vraag uit en beschrijft hoe hij de verscheidenheid aan antwoorden die u waarschijnlijk zult krijgen, moet interpreteren. Gewapend met deze informatie kunt u uw proces duidelijker documenteren en mogelijkheden voor financiële besparingen en procesverbetering identificeren. We zullen tijd voorzien voor vragen en antwoorden en kijken uit naar een stevige discussie.
Meld u dan aan om het webinar bij te wonen. Als je geïnteresseerd bent maar niet kunt komen, schrijf je dan toch in - we zullen onze sessie opnemen en je een link naar de herhaling sturen.
We hopen dat je erbij kunt zijn!

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.

 


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Bescherm uw vraagplanningsproces tegen regimeverandering

De slimme voorspeller

  Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nee, niet dat soort regimewisseling: niets over kruisraketten en stealth-bommenwerpers. En nee, we hebben het niet over het andere soort regimeverandering dat dichter bij huis komt: het door elkaar schuiven van de C-Suite bij uw bedrijf.

"Regimeverandering" heeft een derde betekenis die relevant is voor uw beroep als vraagplanner of voorraadbeheerder. Voor onderzoekers in economie en financiën betekent regimeverandering plotselinge verschuivingen in het karakter van een tijdreeks van willekeurige waarnemingen. De willekeurige tijdreeks in kwestie is hier de volgorde van dagelijkse (of wekelijkse of maandelijkse) vraagtellingen voor uw producten en voorraaditems.

De meeste prognosesoftware gebruikt statistische algoritmen om de historische vraag te verwerken. Het kan extra stappen toevoegen, zoals het opnemen van veldinformatie van verkopers, maar alles begint met de vraaggeschiedenis van welk item u ook moet beheren.

De vraag die opkomt bij regime change is: welke gegevens gebruikt u? Het simpele antwoord is "Alles", want dat leidt tot de meest nauwkeurige voorspellingen - maar alleen als uw datawereld stabiel is. Als uw datawereld turbulent is, betekent het gebruik van alle data dat u prognoses baseert op vervlogen omstandigheden. Op zijn beurt, het invoeren van verouderde gegevens in uw voorspellende algoritmen leidt onvermijdelijk tot verminderde prognosenauwkeurigheid.

Merk op dat omgaan met regimeverandering niet hetzelfde is als omgaan met uitschieters. Uitschieters zijn meestal eenmalige uitzonderingen die worden veroorzaakt door voorbijgaande gebeurtenissen, zoals een knik in uw toeleveringsketen veroorzaakt door een enorme sneeuwstorm die alle doorvoerpaden verstikt. Regime change houdt daarentegen aan over een langere periode en kan daarom meer schade toebrengen aan uw prognoses. Hier is een analogie: uitschieters gaan over het weer en regimeverandering gaat over het klimaat.

De meest ingrijpende vormen van regimeverandering zijn existentieel. Figuur 1 toont een voorbeeld van een existentiële verandering: er was lange tijd helemaal geen vraag, toen was er opeens vraag. Als u geen vraag naar een artikel had omdat het niet bestond, maar u behoudt nul vraagwaarden in uw database, en vervolgens gaat het artikel live en heeft u verkopen, dan is de overgang van niets naar iets een extreme verandering van regime. Het opnemen van al die nulvraagwaarden van vóór "Dag één" zal de statistische prognoses zeker naar beneden vertekenen waar ze zouden moeten zijn. Hetzelfde gebeurt als u een product doodt maar geen vraag blijft registreren: het opnemen van al die recente nullen verslechtert uw vraagprognoses.

In principe zou een zorgvuldige administratie deze problemen moeten elimineren. U dient alleen zinvolle nulwaarden op te nemen. Als je een nieuw item hebt, begin dan met opnemen wanneer het live gaat. Als je geen vraag meer hebt naar een item en er ook geen verwacht, verwijder het dan uit je database, of voorspel in ieder geval nul vraag.

Helaas is er een verschil tussen principe en praktijk. We zien veel gevallen waarin de gegevensrecords voor zowel nieuwe als slapende items niet correct worden bijgehouden, met "nepnullen" verward met "echte nullen". Dit probleem is niet noodzakelijkerwijs het gevolg van incompetentie: meestal is het een bijproduct van de omvang van het probleem, waarbij te weinig mensen proberen om te veel items bij te houden.

Deze existentiële regimeveranderingen zijn relatief gemakkelijk te hanteren in vergelijking met meer subtiele vormen, die meer items lijken te treffen. Figuur 2 toont twee voorbeelden van regimeveranderingen in een patroon van lopende verkopen. Er zijn een aantal factoren die de vraag naar een artikel kunnen veranderen: prestaties van het verkooppersoneel, marketing- en reclame-inspanningen, acties van concurrenten en leveranciers, nieuwe klanten die ontstaan of oude klanten die verdwijnen, enz. Als de vraag naar een artikel gestaag doorgaat 1 eenheid per dag maar ineens verdubbelt (of vice versa), dat is een verandering van regime. In de nieuwe wereldorde is de vraag 2 eenheden/dag en de prognoses zouden dat moeten weerspiegelen. In plaats daarvan zullen algoritmen voor statistische prognoses te weinig vraag voorspellen als ze alle gegevens krijgen, ook die van vóór de regimewisseling.

Hoe bescherm je jezelf tegen regimeverandering? Het antwoord is hetzelfde voor de wreedste dictator of de meest onschuldige eisenplanner: Intelligentie. En omdat er veel bedreigingen zijn, kan de intelligentie het beste worden geautomatiseerd. Moderne softwaresystemen hebben de mogelijkheid om tienduizenden items te screenen op tekenen van regimeverandering. Vervolgens kan de software uw aandacht vestigen op de problematische items en u vragen aan te geven welke recente gegevens u in berekeningen wilt gebruiken. Of de software kan automatisch detecteren en corrigeren voor verandering van regime, snel werkend op een schaal die elke drukbezette persoon die "met de hand" werkt gemakkelijk zou verslaan.

 

Laat een reactie achter

gerelateerde berichten

The Next Frontier in Supply Chain Analytics

De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong.

Overcoming Uncertainty with Service and Inventory Optimization Technology

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Word geen slachtoffer van uw prognosemodellen

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Quants en financiële meltdowns

      Ik besteed veel van mijn tijd aan het ontwikkelen van nieuwe kwantitatieve methoden voor statistische prognoses, vraagvoorspellingen en voorraadoptimalisatie. Voor mij is dit een boeiende manier om een bijdrage te leveren aan de samenleving. Maar ik weet dat de meest voorzichtige manier om aan de ontwikkeling van algoritmen te doen, is door een beetje aan de kant te gaan staan en een sceptische blik te werpen op mijn eigen werk.

      De noodzaak van dit scepticisme werd mij onlangs duidelijk gemaakt toen ik het boek van Scott Patterson las The Quants: hoe een nieuw ras van wiskundige suizen Wall Street veroverde en bijna vernietigde (Kroon publiceren, 2010). Dit boek besprak de "quants" wiens complexe financiële modellen grotendeels verantwoordelijk waren voor de financiële ineenstorting in 2007. Terwijl ik verder las en dacht: "Wat was er mis met deze jongens?" Ik begon me af te vragen of wij supply chain quants schuldig waren aan een aantal van dezelfde zonden.

      Modellen versus instincten

      Over het algemeen is het supply chain-veld achtergebleven bij het gebruik van statistische modellen. Mijn universiteitscollega's en ik zijn daar mee bezig, maar we hebben nog een lange weg te gaan. Sommige toeleveringsketens zijn technisch behoorlijk geavanceerd, maar veel, misschien meer, worden in wezen net zo goed door onderbuikgevoel als door cijfers beheerd. Is dit vermijden van analyse veiliger dan te vertrouwen op modellen?

      Wat het onderbuikgevoel gevaarlijk maakt, is dat het zo amorf is. Iedereen die lang in een baan werkt, ontwikkelt instincten, maar een lang leven is niet hetzelfde als wijsheid. Het is mogelijk om tijdens een lange carrière alle verkeerde lessen te leren. Het is ook mogelijk de kans te missen om de juiste lessen te leren, omdat bepaalde informatieve scenario's zich misschien nooit zullen voordoen in iemands carrière. Het is ook mogelijk om goede dagen en slechte dagen te hebben; zelfs goeroes kunnen het verpesten. Onderbuikgevoel is ook antiproductief, aangezien alle beslissingen door dat ene onderbuikgevoel moeten gaan, wat een knelpunt voor de onderneming wordt. En Golden Guts bereiken uiteindelijk hun Golden Years en nemen hun Golden Watch en gaan weg in een Golden Sunset; op dat moment is alle expertise die aanwezig was de deur uitgelopen.

      Modellen hebben daarentegen bepaalde voordelen. Ten opzichte van buikgevoel zijn modellen:

      • Expliciet: de theorie van de supply chain-operatie wordt voor iedereen zichtbaar gemaakt.
      • Adaptief: omdat de theorie zichtbaar is, kan deze worden beoordeeld, bekritiseerd, getoetst aan gegevens en verder ontwikkeld.
      • Consistent: modellen kunnen min of meer waar zijn, maar ze zijn niet onderhevig aan dagelijkse variabiliteit.
      • Alomvattend: modellen kunnen in ieder geval in potentie een breed scala aan empirische ervaring verzamelen, inclusief scenario's die nooit zijn gezien tijdens iemands carrière.
      • Leerzaam: Modellen zijn verzamelingen van relaties tussen variabelen. Als de 'ingewanden' van het model zichtbaar worden gemaakt, kunnen gebruikers meer te weten komen over die relaties.

      Modelfout

      Ondanks al hun deugden kunnen modellen echter ook ongelijk hebben. In feite is dat een gegeven. Een constructieve manier om hiermee te leven is gecodeerd in het beroemde aforisme van Dr. George Box, een van de beste modelbouwers van de laatste halve eeuw: “All models are wrong. Sommige zijn nuttig.”

      De modellen van de financiële quants waren verkeerd omdat ze te simpel waren. Ze begonnen met een quasi-religieus geloof in de efficiëntie van markten en ontwikkelden statistische modellen die bepaalde veronderstellingen maakten die waarschijnlijker waren voor de fysieke wereld dan voor de financiële wereld. Onder deze waren normale verdelingen van veranderingen in activaprijzen en onafhankelijkheid van gebeurtenissen in verschillende hoeken van de markt. Ze gingen ook uit van menselijke rationaliteit.

      Het zou een beetje verontrustend moeten zijn dat de aannames van normale distributie en onafhankelijkheid ook ten grondslag liggen aan veel van de modellen in supply chain-software. In feite zijn er alternatieve modellen van supply chain-dynamiek waarvoor deze vereenvoudigende aannames niet nodig zijn, dus dit is een onnodig risico dat wordt gelopen door veel, misschien wel de meeste, gebruikers van supply chain-software.

      Maar zelfs met meer robuuste en realistische modelaannames valt niet te ontkennen dat modelfouten een constant risico vormen. Dus, kun je het slachtoffer worden van je modellen? Natuurlijk kan je dat.

      Zelfbescherming: kijk naar de gegevens

      Elke supply chain professional die modellen gebruikt, loopt dus het modelrisico. Maar in tegenstelling tot beslissingen op basis van onderbuikgevoel, kunnen beslissingen op basis van modelberekeningen worden blootgelegd en vergeleken met resultaten uit de echte wereld. Herhaalde controle is de beste manier om modelfouten te voorkomen, omdat niet alleen wordt getest of het model realistisch is, maar ook wordt aangegeven wanneer het tijd is om het model bij te werken.

      Zoals hierboven opgemerkt, is een model een reeks functionele relaties tussen sleutelvariabelen. Die relaties hebben parameters die het model afstemmen op de huidige operationele context. Supply chain-modellen zijn bijvoorbeeld vaak gedeeltelijk afhankelijk van schattingen van de volatiliteit van de vraag. Historische vraaggegevens worden gebruikt om numerieke waarden voor deze parameters te berekenen. Als de volatiliteit van de vraag verandert, raakt het model achterhaald en levert het waarschijnlijk ongeschikte aanbevelingen op. Daarom vereist een goede praktijk frequente updates van modelparameters.

      Zelfs als parameterwaarden actueel zijn, kunnen er nog steeds problemen zijn als gevolg van onjuiste functionele relaties. Denk bijvoorbeeld aan de relatie tussen het gemiddelde en de standaarddeviatie van de vraag naar reserveonderdelen. Over het algemeen geldt: hoe groter de gemiddelde vraag, hoe groter de volatiliteit van de vraag, gemeten aan de hand van de standaarddeviatie.

      Overweeg nu vereenvoudigde "old school"-modellen die de vraag naar reserveonderdelen beschrijven als een Poisson-proces. Het Poisson-proces is zeer nuttig en relatief eenvoudig, dus het komt vaak voor in Statistics 101-klassen. Vanwege hun relatieve eenvoud zijn Poisson-modellen de witte ratten van supply chain-analyses voor reserveonderdelen, dwz mensen doen computerexperimenten en theorie-ontwikkeling op basis van het gedrag van Poisson-vraagmodellen. Voor Poisson-modellen is de standaarddeviatie van de vraag gelijk aan de vierkantswortel van het gemiddelde. Wanneer we echter naar de werkelijke vraaggegevens van onze klanten kijken, ontdekken we dat de werkelijke relatie tussen het gemiddelde en de standaarddeviatie van de vraag beter kan worden beschreven door een meer algemene machtswetrelatie. Het eenvoudige model kan dus nauwkeurige schattingen van gemiddelde en standaarddeviatie gebruiken, maar hun relatie nog steeds niet nauwkeurig weergeven. Dit leidt op zijn beurt tot onjuiste aanbevelingen over bestelpunten voor reserveonderdelen. Het controleren van echte gegevens is het beste tegengif tegen arrogante aannames.

       

      Wat nu te doen

      Ik heb niet het gevoel dat de supply chain-modellen van vandaag op het punt staan om het soort ineenstorting te creëren dat we zagen in het begin van de Grote Recessie. Maar degenen onder ons die supply chain-kwants zijn, moeten meer professionele volwassenheid tonen dan onze financiële collega's. We moeten niet verliefd worden op onze modellen en we moeten onze klanten waarschuwen voor correcte modelhygiëne.

      Dus modelgebruikers, was regelmatig uw handen nu het griepseizoen begint en was uw modellen grondig door middel van harde gegevens om er zeker van te zijn dat de modellen waarop u vertrouwt zowel up-to-date als realistisch zijn. Beide stappen beschermen u tegen het slachtoffer worden van uw modellen en stellen u in staat hun voordelen ten opzichte van management te benutten op basis van onderbuikgevoel.

      Bijlage: Technische tips

      Supply chain analytics bieden verschillende soorten output. Op het gebied van prognoses en vraagplanning is de voor de hand liggende empirische controle het vergelijken van prognoses met de werkelijke vraagwaarden die zich uiteindelijk openbaren. Dit zelfde "voorspelling en dan controleren" benadering kan ook worden gebruikt bij het genereren van prognoses. Op het gebied van voorraadbeheer kunnen de modellen voortbouwen op prognoses om beleidskeuzes aan te bevelen, zoals bestelpunten en bestelhoeveelheden of min- en max-waarden. Er is een slimme manier om de juistheid van aanbevelingen van bestelpunten en min's te bevestigen. Zie onze blog De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

       

      Laat een reactie achter

      gerelateerde berichten

      The Next Frontier in Supply Chain Analytics

      De volgende grens in Supply Chain Analytics

      Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong.

      Overcoming Uncertainty with Service and Inventory Optimization Technology

      Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

      In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

      Centering Act: Spare Parts Timing, Pricing, and Reliability

      Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]