Slimme software presenteert op NESCON 2019

Smart Software leidt NESCON keynote-toespraak over Planning for the "Un-Plannable".

Belmont, Massachusetts, 8 juli 2019 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op de NESCON 2019, New England Supply Chain Conference & Exhibition Keynote in Malborough, MA. De presentatie staat gepland op 7 oktober, 12:15-13:30 uur.

Greg Hartunian, CEO van Smart Software, zal onder de titel "Planning for the Un-Plannable" presenteren hoe u optimale voorraadniveaus en inkoophoeveelheden voor duizenden artikelen kunt plannen, wanneer de vraag intermitterend is, voortdurend verandert of wordt beïnvloed door onverwachte gebeurtenissen. Willekeurige, sporadische vraag is het slechtste scenario voor planning en inkoop en leidt tot overtollige voorraadniveaus en kostbare voorraden. Greg bespreekt traditionele benaderingen van voorraadplanning en prognoses, geeft praktische voorbeelden van hoe ze kunnen mislukken en deelt hoe probabilistische modelleringsmethoden een groot verschil kunnen maken voor uw bedrijfsresultaten. De Keynote is een goede gelegenheid om te leren hoe u voorraadtekorten en voorraadkosten kunt verminderen door gebruik te maken van gegevensgestuurde beslissingen die de financiële afwegingen identificeren die samenhangen met veranderingen in de vraag, doorlooptijden, serviceniveaudoelen en kosten.

Greg_Hartunian_CEO_President_Smart_Software

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Tien tips die gegevensproblemen bij software-implementatie vermijden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

We werken samen met veel klanten in veel sectoren om onze geavanceerde software voor analyse, prognoses en voorraadplanning te verbinden met hun ERP-systemen. Ondanks de verscheidenheid aan situaties die we tegenkomen, hebben sommige gegevensgerelateerde problemen de neiging om keer op keer de kop op te steken. In deze blog staan tien tips die je kunnen helpen om deze veelvoorkomende problemen te voorkomen.

 

Zodra een klant klaar is om software voor vraagplanning en/of voorraadoptimalisatie te implementeren, moet hij de analysesoftware aansluiten op zijn bedrijfsgegevensstroom. In ons geval verwerken we transactiegegevens rechtstreeks in de analytische software. Dit geeft onder meer informatie over de vraag naar artikelen en de doorlooptijden van leveranciers. We halen de rest van de gegevens uit het ERP-systeem zelf, dat metagegevens levert zoals de locatie van elk artikel, de kostprijs per eenheid en de productgroep.

 

Deze tips zijn belangrijk omdat het niet ongebruikelijk is dat implementatieprojecten met veel enthousiasme beginnen, maar al snel vastlopen door problemen met de gegevens die de analyse voeden. Deze vertragingen kunnen het teamenthousiasme verminderen, projectleiders in verlegenheid brengen en de ROI-uitbetaling vertragen (en daardoor verminderen) die uiteindelijk het implementatieproject rechtvaardigde.

demand planning data stream.

Het belang van het verbinden van de analysesoftware met de bedrijfsgegevensstroom

Hier is de lijst met tips, gegroepeerd op basis van de algemene thema's veilig omgaan met bestanden, waarborgen van gegevensintegriteit en omgaan met uitzonderingen.

 

Veilig omgaan met bestanden

 

  1. Zorg voor een testomgeving die u als 'sandbox' kunt gebruiken. Kopieer uw huidige gegevens naar een testomgeving waar u veilig kunt experimenteren met de software zonder de huidige bewerkingen te riskeren. Naast het helpen van gebruikers om de ins en outs van de nieuwe software te leren, stelt het hebben van de nieuwste gegevens in de software eindgebruikers in staat eventuele problemen met de gegevens te ontdekken.

 

  1. Bescherm uw regels voor gegevensextractie. Als u geen gebruik maakt van een kant-en-klare connector voor uw ERP-systeem dan moet u ervoor zorgen dat u bewaarbare uittrekregels kunt maken om gegevens van uw ERP naar een bestand te verplaatsen. Kolomvolgorde, gegevenstypen, datumnotaties, enz. mogen niet elke keer dat hetzelfde extract opnieuw wordt uitgevoerd, variëren. Anders loopt het project vast in handmatige fouten of verwarring bij het opnieuw uitpakken na fixes van de gegevens of wanneer nieuwe gegevens binnenkomen. Alle regels voor gegevensextractie moeten worden opgeslagen en beschikbaar zijn voor IT - we zijn situaties tegengekomen waarin bestanden werden geëxtraheerd. op ad hoc wijze resulterend in een iets ander formaat bij elk nieuw uittreksel. We hebben ook gezien dat klanten hard werkten aan het ontwikkelen van een complexe en nauwkeurige routine voor het extraheren van gegevens, waarna ze ontdekten dat al hun werk verloren was gegaan toen het niet goed was gearchiveerd. Beide situaties leidden tot verwarring en projectvertragingen.

 

  1. Gebruik geen native bestandsindelingen van Excel voor gegevensoverdracht. Als uw planningsoplossing geen directe integratie met uw ERP-systeem heeft, exporteer dan ERP-gegevens naar een platte bestandsindeling, zoals door komma's gescheiden bestanden (.csv) of door tabs gescheiden tekstbestanden. Gebruik geen MS Excel-indelingen zoals .xls of .xlsx als het exportbestandstype omdat Excel automatisch veldwaarden op onverwachte manieren opnieuw opmaakt. Veel gebruikers gaan ervan uit dat ze .xlsx-bestanden moeten gebruiken als ze ze handmatig willen bekijken, zich niet realiserend dat .csv- of .txt-bestanden net zo gemakkelijk kunnen worden geopend en niet het risico met zich meebrengen dat ze automatisch opnieuw worden geformatteerd.

 

Gegevensintegriteit verzekeren

Data Problems and solutions in Software Implementation

Gegevensproblemen en oplossingen bij software-implementatie. Hier is de lijst met tips, gegroepeerd op basis van de algemene thema's veilig omgaan met bestanden, waarborgen van gegevensintegriteit en omgaan met uitzonderingen.

  1. Bevestig de juistheid van uw catalogusgegevens. Exporteer uw catalogusgegevens (dwz lijst met producten, lijst met klanten, lijst met leveranciers) en al hun relevante attributen. Controleer op verkeerde of verdachte waarden in de attributen (vooral doorlooptijden en kosten van artikelen). Problematische waarden zijn spaties, nullen als u geen nul als gegevenswaarde verwacht, en tekenreeksen als u numerieke waarden verwacht (of vice versa). Het kan helpen om elk extractbestand in Excel te openen en op elk attribuutveld te filteren, kijkend naar de unieke waarden om te zien wat eruit springt als niet zoals de andere (bijv. "1", "2", "&&", "3" …).

 

  1. Bevestig de juistheid van uw groeperingsgegevens. Een andere nuttige activiteit die kan worden uitgevoerd tijdens het bekijken van de productcatalogusgegevens in Excel, is het controleren van belangrijke groeperings-/filtervelden zoals productfamilie, categorie of klasse om er zeker van te zijn dat er geen producten zijn toegewezen aan de verkeerde categorie, klasse of familie. Controleer ook alle velden voor productstatus/productlevenscyclus, zorg er bijvoorbeeld voor dat u alle stopgezette producten correct hebt geïdentificeerd.

 

  1. Controleer op valse controletekens in tekstvelden. Controleer of er geen ongebruikelijke tekens in uw productbeschrijvingen zijn geëxtraheerd, zoals regelterugloop of tabs in de beschrijvingswaarde zelf. Als dat het geval is, zorg er dan voor dat u die gegevens kunt extraheren door tussenvoegsels met dubbele aanhalingstekens rond de beschrijving te gebruiken, of herstel fouten bij het invoeren van gegevens rechtstreeks in het ERP-systeem.

 

  1. Controleer of de gegevens een standaardlay-out hebben. Controleer of uw uittreksels van transactiegegevens (bijv. klantorders, klantverzendingen, inkooporders, leveranciersbonnen) geen dubbele rijen bevatten. Als dat het geval is, identificeert u welke velden moeten worden toegevoegd om de rijen onderscheidend te maken of, als het echte duplicaten zijn, verwijdert u de extra exemplaren in de ERP-database.

 

Omgaan met uitzonderingen

 

  1. Detecteer en reageer op uitzonderingen. Identificeer alle kenmerken van transactiegegevens die zouden betekenen dat ze niet zouden moeten worden gebruikt, zoals geannuleerde bestellingen. Begrijp het proces rond verkeerd ingevoerde bestellingen of geannuleerde bestellingen om ervoor te zorgen dat dit soort transacties niet worden geteld of dubbel geteld. Let op andere gegevensattributen die zouden impliceren dat dat attribuut niet mag worden gebruikt, zoals dropshipping rechtstreeks van een leverancier naar de klant in plaats van het vanuit uw eigen bedrijf te verzenden. 

 

  1. Codificeer de afhandeling van uitzonderlijke interne overboekingen. Definieer het geïdealiseerde record van interne voorraadoverdrachten in noodgevallen en geef vervolgens regels voor het bewerken van transacties die op noodbasis zijn uitgevoerd en die afwijken van het ideale patroon. Als bijvoorbeeld product P1 zou moeten worden verzonden vanuit locatie A, maar er was een noodverzending vanuit locatie B, wordt de vraaggeschiedenis voor P1 op locatie A gekaapt en minder dan het had moeten zijn. Geef indien mogelijk een regel op voor de gewenste verzendlocatie voor elk product, zodat de geschiedenis kan worden gecorrigeerd door de voorraadoptimalisatiesoftware voor prognosedoeleinden.

 

  1. Bedenk een procedure om vervanging af te handelen. Vervangingen doen zich bijvoorbeeld voor bij het adopteren van een nieuw ERP-systeem dat de producten opnieuw indexeert, of een oud product wordt vervangen door een bijgewerkte versie, of een geheel nieuw product veroudert en het oude. Als product-ID's om welke reden dan ook in de afgelopen paar jaar zijn gewijzigd, identificeer dan een mapping van de oude product-ID naar de nieuwe. Deze regels moeten beschikbaar zijn voor het vraagplannings- en prognosesysteem en kunnen worden bewerkt binnen de applicatie.

 

Het niet anticiperen op dataproblemen vormt een grote belemmering voor een soepele implementatie van nieuwe analytische software. Geen enkele lijst kan alle vreemde dingen opsommen die fout kunnen gaan bij het verzamelen van gegevens, maar deze lijst belicht veelvoorkomende problemen en verstandige antwoorden.

 

Opmerking: voor meer informatie over hoe gegevensproblemen de toepassing van geavanceerde analytische software kunnen belemmeren, zie de uitstekende blog van Sean Snapp over hoe dit probleem de toepassing van kunstmatige intelligentie en machine learning belemmert.  https://www.brightworkresearch.com/demandplanning/2019/05/how-many-ai-projects-will-fail-due-to-a-lack-of-data/

Laat een reactie achter

gerelateerde berichten

Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Make AI-Driven Inventory Optimization an Ally for Your Organization

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Prognoses met de juiste gegevens

      De slimme voorspeller

      Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Om de efficiëntievoordelen van prognoses te benutten, hebt u de meest nauwkeurige prognoses nodig: prognoses die zijn gebaseerd op de meest geschikte historische gegevens. De meeste discussies over dit probleem richten zich meestal op de voordelen van het gebruik van vraag versus verzendgeschiedenis - en ik zal hier later op ingaan. Maar laten we het eerst hebben over het gebruik van netto- versus brutogegevens.

      Netto versus bruto geschiedenis

      Veel planners zijn geneigd om netto-omzetgegevens te gebruiken om hun prognoses te maken. Systemen die verkopen volgen, registreren transacties wanneer ze plaatsvinden en aggregeren de resultaten in wekelijkse of maandelijkse periodieke totalen. In sommige gevallen worden geretourneerde aankopen in verkooprecords als negatieve verkopen verantwoord en wordt een nettototaal berekend. Deze nettocijfers, die vaak echte verkooppatronen maskeren, worden ingevoerd in het prognosesysteem. De gebruikte historische gegevens geven eigenlijk een verkeerd beeld van wat de klant wilde en wanneer hij het wilde. Dit wordt meegenomen in de prognose, met minder dan optimale resultaten.

      (meer…)