Problemen van elektriciteitsbedrijven met reserveonderdelen

Elke organisatie die apparatuur beheert, heeft reserveonderdelen nodig. Ze hebben allemaal te maken met algemene problemen, wat hun bedrijf ook is. Sommige problemen zijn echter branchespecifiek. Dit bericht bespreekt een universeel probleem dat zich manifesteerde in een kerncentrale en een probleem dat vooral acuut is voor elk elektriciteitsbedrijf.

Het universele probleem van gegevenskwaliteit

We posten vaak over de voordelen van het omzetten van gegevens over het gebruik van onderdelen in slimme beslissingen over voorraadbeheer. Geavanceerde waarschijnlijkheidsmodellering ondersteunt het genereren van realistische vraagscenario's die worden gebruikt in gedetailleerde Monte Carlo-simulaties die de gevolgen blootleggen van beslissingen zoals keuzes van Min en Max voor het aanvullen van reserveonderdelen.

Al die nieuwe en glanzende analytische technologie vereist echter kwaliteitsgegevens als brandstof voor de analyse. Voor sommige openbare nutsbedrijven is het bijhouden van gegevens geen sterke zaak, dus het ruwe materiaal dat wordt geanalyseerd, kan corrupt en misleidend zijn. We kwamen onlangs documentatie tegen van een sterk voorbeeld van dit probleem bij een kerncentrale (zie Scala, Needy en Rajgopal: Besluitvorming en afwegingen bij het beheer van de inventaris van reserveonderdelen bij nutsbedrijven. American Association of Engineering Management, 30e ASEM Nationale Conferentie, Springfield, MO. oktober 2009). Scala et al. documenteerde de gebruiksgeschiedenis van een kritiek onderdeel waarvan de afwezigheid zou resulteren in een verlaging van de faciliteit of een sluiting. Het gebruiksrecord van de fabriek voor dat onderdeel omvatte meer dan acht jaar aan gegevens. Gedurende die tijd rapporteerde de officiële gebruiksgeschiedenis negen gebeurtenissen waarin een positieve vraag optrad met groottes variërend van één tot zes eenheden elk. Er waren ook vijf gebeurtenissen gekenmerkt door negatieve eisen (dwz retouren naar het magazijn), variërend van één tot drie eenheden elk. Zorgvuldig speurwerk ontdekte dat het werkelijke gebruik plaatsvond in slechts twee gebeurtenissen, beide met een vraag naar twee eenheden. Het is duidelijk dat voor het berekenen van de beste min/max-waarden voor dit artikel nauwkeurige vraaggegevens nodig zijn.

Het speciale probleem van gezondheid en veiligheid

In de context van "gewone" bedrijven kunnen tekorten aan reserveonderdelen zowel de huidige omzet als de toekomstige omzet schaden (gerelateerd aan de reputatie als betrouwbare leverancier). Voor een elektriciteitsbedrijf echter, Scala et al. constateerde dat er veel grotere gevolgen verbonden waren aan de voorraad van reserveonderdelen. Deze omvatten niet alleen een verhoogd financieel en reputatierisico, maar ook risico's voor gezondheid en veiligheid: Gevolgen van het niet op voorraad hebben van een onderdeel zijn onder meer de mogelijkheid om de productie te moeten verminderen of mogelijk zelfs een fabriek stil te leggen. Vanuit een langetermijnperspectief kan dit de kritieke stroomvoorziening aan residentiële, commerciële en/of industriële klanten onderbreken, terwijl het de reputatie, betrouwbaarheid en winstgevendheid van het bedrijf schaadt. Een elektriciteitsbedrijf maakt en verkoopt slechts één product: elektriciteit. Het verlies van het vermogen om elektriciteit te verkopen kan ernstige schade toebrengen aan de bedrijfsresultaten en de levensvatbaarheid op lange termijn.”

Des te meer reden voor elektriciteitsbedrijven om leiders te zijn in plaats van achterblijvers bij de inzet van de meest geavanceerde waarschijnlijkheidsmodellen voor vraagvoorspelling en voorraadoptimalisatie.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Welke gegevens zijn nodig om software-implementaties voor vraagplanning te ondersteunen

    We hebben onlangs een ontmoeting gehad met het IT-team bij een van onze klanten om de gegevensvereisten en de installatie van onze API-gebaseerde integratie te bespreken die gegevens zou halen uit hun lokale installatie van hun ERP-systeem. De IT-manager en de analist uitten allebei hun grote bezorgdheid over het verstrekken van deze gegevens en vroegen zich serieus af waarom ze überhaupt moesten worden verstrekt. Ze uitten zelfs hun bezorgdheid dat hun gegevens zouden kunnen worden doorverkocht aan hun concurrentie. Hun reactie was een grote verrassing voor ons. We hebben deze blog geschreven met hen in gedachten en om het voor anderen gemakkelijker te maken om te communiceren waarom bepaalde gegevens nodig zijn om een effectief vraagplanningsproces te ondersteunen. 

    Houd er rekening mee dat als u een prognoseanalist, vraagplanner of supply chain-professional bent, het meeste van wat u hieronder zult lezen voor de hand ligt. Maar wat deze bijeenkomst me heeft geleerd, is dat wat voor de ene groep specialisten vanzelfsprekend is, dat niet zal zijn voor een andere groep specialisten op een heel ander gebied. 

    De vier belangrijkste soorten gegevens die nodig zijn, zijn:  

    1. Historische transacties, zoals verkooporders en verzendingen.
    2. Taakgebruik transacties, zoals welke componenten nodig zijn om eindproducten te produceren
    3. Voorraadoverdrachttransacties, zoals welke inventaris van de ene locatie naar de andere is verzonden.
    4. Prijzen, kosten en attributen, zoals de eenheidskosten betaald aan de leverancier, de eenheidsprijs betaald door de klant en verschillende metagegevens zoals productfamilie, klasse, enz.  

    Hieronder volgt een korte uitleg waarom deze gegevens nodig zijn om de implementatie van software voor vraagplanning door een bedrijf te ondersteunen.

    Transactiegegevens van historische verkopen en verzendingen per klant
    Denk aan wat uit de inventaris werd gehaald als de "grondstof" die nodig is voor software voor vraagplanning. Dit kan zijn wat aan wie en wanneer is verkocht of wat u aan wie en wanneer hebt verzonden. Of welke grondstoffen of halffabrikaten zijn verbruikt in werkorders en wanneer. Of wat er wanneer vanuit een distributiecentrum aan een satellietmagazijn wordt geleverd.

    De geschiedenis van deze transacties wordt door de software geanalyseerd en gebruikt om statistische prognoses te produceren die waargenomen patronen extrapoleren. De gegevens worden geëvalueerd om patronen zoals trend, seizoensinvloeden, cyclische patronen bloot te leggen en om potentiële uitschieters te identificeren die zakelijke aandacht vereisen. Als deze gegevens niet algemeen toegankelijk zijn of onregelmatig worden bijgewerkt, is het bijna onmogelijk om een goede voorspelling van de toekomstige vraag te maken. Ja, je zou zakelijke kennis of onderbuikgevoel kunnen gebruiken, maar dat schaalt niet en introduceert bijna altijd vertekening in de prognose (dwz consequent te hoog of te laag voorspellen). 

    Er zijn gegevens nodig op transactieniveau om nauwkeurigere prognoses op wekelijks of zelfs dagelijks niveau te ondersteunen. Als een bedrijf bijvoorbeeld het drukke seizoen ingaat, wil het misschien beginnen met wekelijkse prognoses om de productie beter af te stemmen op de vraag. Dat lukt niet zonder de transactiegegevens in een goed gestructureerd datawarehouse te hebben. 

    Het kan ook zo zijn dat bepaalde soorten transacties niet in de vraaggegevens moeten worden opgenomen. Dit kan gebeuren wanneer de vraag het gevolg is van een forse korting of een andere omstandigheid waarvan het supply chain-team weet dat deze de resultaten zal vertekenen. Als de gegevens geaggregeerd worden verstrekt, is het veel moeilijker om deze uitzonderingen te scheiden. Bij Smart Software noemen we het proces om uit te zoeken welke transacties (en bijbehorende transactiekenmerken) in het vraagsignaal moeten worden meegeteld "vraagsignaalsamenstelling". Door toegang te hebben tot alle transacties kan een bedrijf zijn vraagsignaal in de loop van de tijd naar behoefte aanpassen binnen de software. Slechts het verstrekken van een deel van de gegevens resulteert in een veel rigidere vraagsamenstelling die alleen kan worden verholpen met extra implementatiewerk.

    Prijzen en kosten
    De prijs waarvoor u uw producten heeft verkocht en de kosten die u hebt betaald om ze (of grondstoffen) te kopen, zijn van cruciaal belang om inkomsten of kosten te kunnen voorspellen. Een belangrijk onderdeel van het vraagplanningsproces is het verkrijgen van zakelijke kennis van klanten en verkoopteams. Verkoopteams denken vaak aan de vraag per klant of productcategorie en spreken in de taal van dollars. Het is dus belangrijk om een prognose in dollars uit te drukken. Het vraagplanningssysteem kan dat niet als de prognose alleen in eenheden wordt weergegeven. 

    Vaak wordt de vraagprognose gebruikt om een groter planning- en budgetteringsproces aan te sturen of op zijn minst te beïnvloeden, en de belangrijkste input voor een budget is een omzetprognose. Wanneer vraagprognoses worden gebruikt om het S&OP-proces te ondersteunen, moet de software voor vraagplanning de gemiddelde prijs over alle transacties berekenen of "tijdgefaseerde" conversies toepassen die rekening houden met de op dat moment verkochte prijs. Zonder de onbewerkte gegevens over prijsstelling en kosten kan het vraagplanningsproces nog steeds functioneren, maar zal het ernstig worden belemmerd. 

    Productkenmerken, klantgegevens en locaties
    Productattributen zijn nodig zodat voorspellers prognoses kunnen verzamelen voor verschillende productfamilies, groepen, goederencodes, enz. Het is handig om te weten hoeveel eenheden en de totale geprojecteerde gedollariseerde vraag voor verschillende categorieën. Zakelijke kennis over wat de vraag in de toekomst zou kunnen zijn, is vaak niet bekend op productniveau, maar wel op productfamilieniveau, klantniveau of regionaal niveau. Met de toevoeging van productkenmerken aan uw datafeed voor vraagplanning, kunt u eenvoudig prognoses "oprollen" van artikelniveau naar familieniveau. U kunt prognoses op deze niveaus omzetten in dollars en beter samenwerken aan hoe de prognose moet worden aangepast.  

    Zodra de kennis is toegepast in de vorm van een prognose-override, zal de software de wijziging automatisch afstemmen op alle individuele items waaruit de groep bestaat. Zo hoeft een forecast analist niet elk onderdeel apart aan te passen. Ze kunnen op geaggregeerd niveau een wijziging aanbrengen en de software voor vraagplanning de afstemming voor hen laten doen. 

    Groepering voor gemakkelijke analyse is ook van toepassing op klantkenmerken, zoals een toegewezen verkoper of de voorkeurslocatie van een klant voor verzending. En locatieattributen kunnen handig zijn, zoals toegewezen regio. Soms hebben attributen betrekking op een product- en locatiecombinatie, zoals voorkeursleverancier of toegewezen planner, die voor hetzelfde product kan verschillen, afhankelijk van het magazijn.

     

    Een laatste opmerking over vertrouwelijkheid

    Bedenk dat onze klant bezorgd was dat we hun gegevens aan een concurrent zouden verkopen. Dat zouden we nooit doen. Al tientallen jaren gebruiken we klantgegevens voor trainingsdoeleinden en om onze producten te verbeteren. We zijn nauwgezet in het beschermen van klantgegevens en het anonimiseren van alles wat bijvoorbeeld kan worden gebruikt om een punt in een blogpost te illustreren.

     

     

     

    Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

    Deze conclusie is gebaseerd op honderden software-implementaties die we in de loop der jaren hebben geleid. Klanten die reserveonderdelen en serviceonderdelen beheren (de laatste voor intern verbruik/MRO), en in mindere mate aftermarket-onderdelen (voor doorverkoop aan geïnstalleerde bases), hebben onze software voor onderdelenplanning consequent sneller geïmplementeerd dan hun collega's in productie en distributie.

    De belangrijkste reden is de rol bij de productie en distributie van zakelijke kennis over wat er in de toekomst zou kunnen gebeuren. In een traditionele B2B-productie- en distributieomgeving zijn er klanten en verkoop- en marketingteams die aan die klanten verkopen. Er zijn verkoopdoelen, omzetverwachtingen en budgetten. Dit betekent dat er veel zakelijke kennis is over wat er zal worden gekocht, wat zal worden gepromoot, wiens meningen moeten worden verantwoord. Er is een complexe planningslus vereist. Bij het beheer van reserveonderdelen heb je daarentegen een onderhoudsteam dat apparatuur repareert wanneer deze kapot gaat. Hoewel er vaak onderhoudsschema's zijn als richtlijn, is wat er naast een standaardlijst met verbruiksartikelen nodig is, vaak onbekend totdat een onderhoudspersoon ter plaatse is. Met andere woorden, er is gewoon niet dezelfde soort zakelijke kennis beschikbaar voor onderdelenplanners bij het nemen van voorraadbeslissingen.

    Ja, dat is een nadeel, maar het heeft ook een voordeel: het is niet nodig om een periode-voor-periode consensusvraagprognose te maken met al het werk dat daarvoor nodig is. Bij het plannen van reserveonderdelen kunt u meestal veel stappen overslaan die nodig zijn voor een typische fabrikant, distributeur of detailhandelaar. Deze over te slaan stappen omvatten:  

    1. Prognoses maken op verschillende niveaus van het bedrijf, zoals productfamilie of regio.
    2. De vraagprognose delen met verkoop, marketing en klanten.
    3. Prognoseonderdrukkingen van verkoop, marketing en klanten beoordelen.
    4. Afspraken maken over een consensusprognose die statistieken en zakelijke kennis combineert.
    5. Het meten van "prognose toegevoegde waarde" om te bepalen of overschrijvingen de prognose nauwkeuriger maken.
    6. De vraagprognose aanpassen voor bekende toekomstige promoties.
    7. Rekening houden met kannibalisatie (dwz als ik meer van product A verkoop, verkoop ik minder van product B).

    Bevrijd van een consensusvormingsproces, kunnen planners van reserveonderdelen en voorraadbeheerders rechtstreeks op hun software vertrouwen om het gebruik en het vereiste voorraadbeleid te voorspellen. Als ze toegang hebben tot een in de praktijk bewezen oplossing die intermitterende vraag aanpakt, kunnen ze snel live gaan met nauwkeurigere vraagprognoses en schattingen van bestelpunten, veiligheidsvoorraden en bestelsuggesties. Hun aandacht kan worden gericht op het verkrijgen van nauwkeurige gebruiks- en doorlooptijdgegevens van leveranciers. Het "politieke" deel van de taak kan worden beperkt tot het verkrijgen van consensus binnen de organisatie over doelstellingen op het gebied van serviceniveaus en inventarisbudgetten.

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Servicegestuurde planning voor bedrijven met serviceonderdelen

      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

      Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, spoed, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

      Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Door stress testen uw huidige voorraadbeleid tegen alle plausibele scenario's van toekomstige vraag, weet u van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

      Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Door gebruik te maken van wat-als-scenario's in moderne software voor onderdelenplanning is het mogelijk om alternatief voorraadbeleid te vergelijken en het beleid te identificeren dat het beste aansluit bij de bedrijfsdoelstellingen. Spreek af welke mate van voorraadrisico acceptabel is voor elk onderdeel of elke klasse van onderdelen. Bepaal ook voorraadbudgetten en andere kostenbeperkingen. Zodra deze limieten zijn overeengekomen, moet u onmiddellijk actie ondernemen om stockouts en overtollige voorraad te voorkomen voordat ze zich voordoen. Gebruik uw software om gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters automatisch te uploaden naar uw Enterprise Resource Planning (ERP)- of Enterprise Asset Management (EAM)-systeem om de dagelijkse inkoop van onderdelen aan te passen.

      Stap 4. Maak het zo en houd het zo. Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten door uw bestelproces aan te sturen met behulp van geoptimaliseerde inputs (prognoses, bestelpunten, bestelhoeveelheden, veiligheidsvoorraden). Houd uw KPI's bij en gebruik uw software om uitzonderingen te identificeren en aan te pakken. Laat herordeningspunten niet muf en achterhaald worden.  Opnieuw kalibreren het voorraadbeleid elke planningscyclus (minstens één keer per maand) met behulp van up-to-date gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten. Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad.

      7 digitale transformaties voor nutsbedrijven die de MRO-prestaties zullen verbeteren

      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en afvalwater en telecommunicatie zijn allemaal activa-intensief. Opwekking, productie, verwerking, transmissie en distributie van elektriciteit, aardgas, olie en water zijn allemaal afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer.

      Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. Deze inspanningen worden belemmerd door verouderde IT-systemen, evoluerende beveiligingsbedreigingen, frequente verstoringen van de toeleveringsketen en extreme variabiliteit in de vraag. De convergentie van deze uitdagingen met volwassen cloudtechnologie en recente ontwikkelingen op het gebied van data-analyse, probabilistische prognoses en technologieën voor databeheer, bieden nutsbedrijven echter een generatiekans om hun onderneming digitaal te transformeren.

      Hier zijn zeven digitale transformaties die relatief kleine investeringen vooraf vereisen, maar een rendement van zeven cijfers zullen opleveren.

      1. Voorraadbeheer is de eerste stap in MRO-voorraadoptimalisatie. Het omvat het analyseren van de huidige voorraadniveaus en gebruikspatronen om mogelijkheden voor verbetering te identificeren. Dit moet ook het zoeken naar overstocked, understocked of verouderde items omvatten. Nieuwe probabilistische prognosetechnologie zal helpen door toekomstig gebruik van onderdelen te simuleren en te voorspellen hoe het huidige voorraadbeleid zal presteren. Pats-planners kunnen de simulatieresultaten gebruiken om proactief te identificeren waar beleid moet worden gewijzigd.

      2. Nauwkeurige prognoses en vraagplanning zijn erg belangrijk bij het optimaliseren van de voorraden van MRO-serviceonderdelen. Een nauwkeurige vraagprognose is een cruciale drijfveer voor de toeleveringsketen. Door inzicht te krijgen in vraagpatronen die het gevolg zijn van kapitaalprojecten en gepland en ongepland onderhoud, kunnen onderdelenplanners nauwkeuriger anticiperen op toekomstige voorraadbehoeften, een juiste begroting opstellen en de verwachte vraag beter communiceren met leveranciers. Software voor het voorspellen van onderdelen kan worden gebruikt om automatisch een nauwkeurige set van historisch gebruik te huisvesten met details over de vraag naar geplande versus ongeplande onderdelen.

      3. Beheer leveranciers en doorlooptijden zijn belangrijke componenten van MRO-voorraadoptimalisatie. Het omvat het selecteren van de beste leveranciers voor de klus, het hebben van back-upleveranciers die snel kunnen leveren als de voorkeursleverancier faalt, en het onderhandelen over gunstige voorwaarden. Het identificeren van de juiste doorlooptijd waarop het voorraadbeleid kan worden gebaseerd, is een ander belangrijk onderdeel. Probabilistische simulaties die beschikbaar zijn in software voor onderdelenplanning kunnen worden gebruikt om de waarschijnlijkheid te voorspellen voor elke mogelijke doorlooptijd die zal worden geconfronteerd. Dit zal resulteren in een nauwkeurigere aanbeveling van wat er op voorraad moet zijn in vergelijking met het gebruik van een offerte van een leverancier of de gemiddelde doorlooptijd.

      4. SKU-rationalisatie en beheer van masterdata verwijdert ineffectieve of verouderde SKU's uit de productcatalogus en ERP-database. Het identificeert ook verschillende onderdeelnummers die voor dezelfde SKU zijn gebruikt. Tijdens deze procedure worden de bedrijfskosten en winstgevendheid van elk product beoordeeld, wat resulteert in een gemeenschappelijke lijst met actieve SKU's. Master data management software kan productcatalogi en informatie die is opgeslagen in ongelijksoortige databases beoordelen om SKU-rationalisaties te identificeren en ervoor te zorgen dat voorraadbeleid gebaseerd is op het gemeenschappelijke onderdeelnummer.

      5. Voorraadcontrolesystemen zijn de sleutel tot het synchroniseren van voorraadoptimalisatie. Ze bieden nutsbedrijven een kostenefficiënte manier om hun inventaris bij te houden, te bewaken en te beheren. Ze helpen ervoor te zorgen dat het nutsbedrijf over de juiste benodigdheden en materialen beschikt waar en wanneer dat nodig is, terwijl de voorraadkosten worden geminimaliseerd.

      6. Continu verbeteren wel essentieel voor het optimaliseren van MRO-voorraden. Het omvat het regelmatig monitoren en aanpassen van voorraadniveaus en voorraadbeleid om het meest efficiënte gebruik van middelen te garanderen. Wanneer de bedrijfsomstandigheden veranderen, moet het nutsbedrijf de verandering detecteren en zijn activiteiten dienovereenkomstig aanpassen. Dit betekent dat planningscycli in een tempo moeten werken dat hoog genoeg is om gelijke tred te houden met veranderende omstandigheden. Door gebruik te maken van probabilistische prognoses om het voorraadbeleid voor serviceonderdelen elke planningscyclus opnieuw te kalibreren, zorgt u ervoor dat het voorraadbeleid (zoals min/max-niveaus) altijd up-to-date is en het nieuwste onderdelengebruik en doorlooptijden van leveranciers weerspiegelt.

      7. Planning voor intermitterende vraag met moderne planningssoftware voor reserveonderdelen. Het resultaat is een zeer nauwkeurige schatting van veiligheidsvoorraden, bestelpunten en bestelhoeveelheden, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. De gepatenteerde probabilistische prognosesoftware voor reserveonderdelen van Smart Software simuleert de waarschijnlijkheid voor elke mogelijke vraag en bepaalt nauwkeurig hoeveel er moet worden opgeslagen om de beoogde serviceniveaus van een nutsbedrijf te bereiken. Door gebruik te maken van software om de instroom en uitstroom van repareerbare reserveonderdelen nauwkeurig te simuleren, kunnen downtime, serviceniveaus en voorraadkosten in verband met elke gekozen poolgrootte voor repareerbare reserveonderdelen beter worden voorspeld.

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.