12 Causes of Overstocking and Practical Solutions

Inventory overstocking can harm both financial stability and operational efficiency. When an organization is overstocked, it ties up capital in excess inventory that might not sell, increasing storage costs and the risk of inventory obsolescence. Additionally, the funds used to purchase the excess inventory could have been better invested in other areas of the business, such as marketing or research and development. Overstocking also hampers cash flow, as money is locked in stock rather than available for immediate operational needs. Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions.

 

1 Inaccurate Demand Forecasting

One of the primary causes of overstocking is inaccurate demand forecasting. When businesses rely on outdated forecasting methods or insufficient data, they can easily overestimate demand, leading to overstocking. A prime example is the clothing industry, where fashion trends can change rapidly. A well-known fashion brand recently faced challenges after overestimating demand for a new clothing line based on flawed data analysis, leading to unsold inventory.

To address this issue, companies can implement new technologies that automatically select the best forecasting methods for the data, incorporating trends and seasonal patterns to ensure accuracy. By improving forecasting accuracy, businesses can better align their inventory with actual demand, leading to more precise inventory management and fewer overstock scenarios. For instance, a Hardware retailer using Smart Demand Planner reduced forecasting errors by 15%, demonstrating the potential for significant improvement in inventory management​​​​.

 

2 Improper Inventory Management

Effective inventory management is fundamental to prevent overstocking. Without accurate systems to track inventory levels, businesses might order excess stock and incur higher expenses. This issue often stems from reliance on spreadsheets or inefficient ERP systems that lack real-time data integration.

State-of-the-art technologies provide real-time visibility into inventory levels, allowing businesses to automate and optimize reordering processes.  A large electric utility company faced challenges in maintaining service parts availability without overstocking, managing over 250,000 part numbers across a diverse network of power generation and distribution facilities. The company replaced its outdated system with Smart IP&O and integrated it in real-time with their Enterprise Asset Management (EAM) system. Smart IP&O enabled the utility to use “what-if” scenarios, creating digital twins of alternate stocking policies and simulating performance across key performance indicators, such as inventory value, service levels, fill rates, and shortage costs. This allowed the utility to make targeted adjustments to their stocking parameters, which were then deployed to their EAM system, driving optimal replenishments of spare parts.

The outcome was significant: a $9 million reduction in inventory, freeing up cash and valuable warehouse space while sustaining target service levels of over 99%​

 

3 Overly Optimistic Sales Projections

Businesses, especially those in growth phases, may predict higher sales than they achieve, leading to excess inventory intended to meet anticipated demand that never materializes. An example of this is the recent case with an electric vehicle manufacturer that projected high sales for its truck but faced production delays and lower-than-expected demand, resulting in an overstock of components and parts. This miscalculation led to increased storage costs and strained financial resources.

Another automotive aftermarket company struggled to forecast intermittently demanded parts accurately, frequently resulting in overstocking and stockouts.  Using AI-driven technology enabled the company to significantly reduce backorders and lost sales, with fill rates improving from 93% to 96% within just three months. By leveraging Smart IP&O forecasting technologies, the company could generate accurate estimates of cumulative demand over lead times, providing better visibility of potential demand scenarios. This allowed for optimized inventory levels, reducing storage costs and improving financial efficiency by aligning inventory with actual demand​.

 

4 Bulk Purchasing Discounts

The appeal of cost savings from bulk purchases can prompt businesses to buy more than needed, tying up capital and storage space. This often leads to storage challenges when excess stock is ordered to secure a discount.

To address this challenge, businesses should weigh the benefits of bulk discounts against the costs of holding excess inventory. Next-generation technology can help identify the most cost-effective purchasing strategy by balancing immediate savings with long-term storage costs. By implementing Smart IP&O, MNR could accurately forecast inventory requirements and optimize its inventory management processes. This led to an 8% reduction in parts inventory, reaching a high customer service level of 98.7% and reducing inventory growth for new equipment from a projected 10% to only 6%.

 

5 Seasonal Demand Fluctuations

Difficulty in aligning inventory with seasonal demand can result in surplus stock once the peak sales period ends. Toy manufacturers, for example, might produce too many holiday-themed toys only to face low demand after the holidays. The fashion industry frequently experiences similar challenges, with certain styles becoming obsolete as seasons change. The latest technologies can help businesses anticipate seasonal demand shifts and adjust inventory levels accordingly. By analyzing past sales data and predicting future trends, businesses can better prepare for seasonal fluctuations, minimize overstocking risk, and improve inventory turnover.

 

6 Supplier Lead Time Variability

Unreliable supplier lead times can lead to overstocking as a buffer against delays. If lead times improve or demand decreases unexpectedly, businesses may have excess inventory. For example, an auto parts distributor might stockpile components to mitigate supplier delays, only to find lead times improving suddenly.

12 Causes of Overstocking and Practical Solutions

Advanced technology can help by providing real-time data and predictive analytics to manage lead time variability better. These tools allow companies to dynamically adjust their orders, reducing the need for excessive safety stock.

 

7 Inadequate Inventory Policies

Outdated or incorrect inventory policies, such as faulty Min/Max settings, can lead to over-ordering.  However, using Modern technology to regularly review and update inventory policies ensures they align with current business needs and market conditions. By keeping policies up-to-date, businesses can reduce the risk of overstocking due to procedural errors. A recent case study demonstrated how a major retailer used Smart IP&O to revise inventory policies, resulting in a 15% reduction in overstock​​.

 

 

8 Promotions and Marketing Campaigns

Misalignment between marketing efforts and actual customer demand can cause businesses to overestimate the impact of promotions, resulting in unsold inventory. For example, a cosmetics company might overproduce a limited edition product, expecting high demand that doesn’t materialize. Leveraging Smart IP&O can help align marketing initiatives with realistic demand expectations, avoiding excess stock. By integrating marketing plans with demand forecasts, businesses can optimize their promotional strategies to better match actual customer interest.

 

9 Fear of Stockouts

Companies often maintain higher inventory levels to avoid stockouts, which can lead to lost sales and unhappy customers. This fear can drive businesses to overstock as a safety net, especially in industries where customer satisfaction and retention are crucial. A notable example comes from a large retail chain that significantly increased its inventory of household goods to avoid stockouts. While this strategy initially helped meet customer demand, it later resulted in excess inventory as consumer purchasing patterns stabilized. This overstocking contributed to a profit drop of nearly 90% in the second quarter, largely due to markdowns and the clearing of excess stock.

To mitigate such situations, businesses can utilize advanced inventory planning and optimization tools to provide accurate demand forecasts. For instance, a leading electronics manufacturer used Smart IP&O solution to reduce inventory levels by 20% without impacting service levels, effectively reducing costs while maintaining customer satisfaction by ensuring they had the right amount of stock on hand​​​​.

 

10 Overcompensation for Supply Chain Issues

Businesses may overstock to safeguard against ongoing supply chain disruptions, but this can lead to storage issues. For instance, a tech company might stockpile components to avoid potential supply chain hiccups, resulting in surplus inventory and increased costs. Advanced systems can help businesses better anticipate and respond to supply chain challenges, balancing the need for safety stock with the risk of overstocking. A technology firm used Smart IP&O to streamline its inventory strategy, reducing excess stock by 20% while maintaining supply chain resilience​​.

 

11 Long Lead Times and Unreliable Suppliers

Prolonged lead times and unreliable suppliers can lead businesses to order more stock than needed to cover potential supply gaps. However, less critical Items that are forecasted to achieve very high service levels represent opportunities to reduce inventory.  By targeting lower service levels on less critical items, inventory will be “right size” over time to the new equilibrium, decreasing holding costs and the value of inventory on hand. A major public transit system reduced inventory by more than $4,000,000 while improving service levels using our cutting-edge technology.

 

12 Lack of Real-Time Inventory Visibility

Without real-time insights into inventory, businesses often order more stock than necessary, leading to inefficiencies and increased costs. Smart IP&O enabled Seneca companies to model demand at each stocking location and, using service level-driven planning, determine how much to stock to achieve the service level we require.  By running and comparing different scenarios, they can easily define and update optimal stocking policies for each tech support rep and stockrooms.

De software heeft veldtechnici bewijs geleverd dat ze voorheen niet hadden, door hun werkelijke verbruik, de frequentie van het gebruik van onderdelen en de reden voor het voorraadbeleid te tonen, waarbij 90% werd gebruikt als de beoogde serviceniveaunorm. Veldtechnici hebben het gebruik ervan omarmd, met significante resultaten: de voorraad "Zero Turns" is gedaald van $400K tot minder dan $100K, de "First Fix Rate" overschrijdt 90% en de totale voorraadinvestering is met meer dan 25% gedaald, van $11 miljoen tot $ 8 miljoen .

 

In conclusion, overstocking seriously threatens business profitability and efficiency, leading to increased storage costs, tied-up capital, and potential obsolescence of goods. These issues can strain resources and limit a company’s ability to respond to market changes. However, overstocking can be effectively managed by understanding its causes, such as inaccurate demand forecasting, prolonged lead times, and unreliable suppliers. Implementing robust AI-driven solutions like Smart IP&O can help businesses optimize inventory levels, reduce excess stock, and enhance operational efficiency. By leveraging advanced forecasting and inventory optimization tools, companies can find the right balance in meeting customer demand and minimizing inventory-related costs.

 

FAQ: Slimme IP&O voor beter voorraadbeheer.

Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O.

1. Wat is de doorlooptijdvraag?
De vraag zal naar verwachting optreden gedurende de aanvultijd. De vraag tijdens de aanvoertijd wordt bepaald door De voorspellingsmethoden van Smart. 

2. Wat is de Min en hoe wordt deze berekend?
De Min wordt weergegeven in het drivers-gedeelte van SIO is het bestelpunt en is de som van de doorlooptijdvraag en de veiligheidsvoorraad. Wanneer de voorraad onder het minimum zakt vanwege de vraag, moet u meer bestellen. Smart heeft ook een "min" in het veld "bestelregels" van SIO, dit is de minimale bestelhoeveelheid die u bij een leverancier kunt plaatsen. 

3. Wat is de Max en hoe wordt deze berekend?
Het maximum is de grootste hoeveelheid voorraad die op de plank zal liggen als u zich aan het bestelbeleid houdt. De Max is de som van de Min (herorderpunt) plus de gedefinieerde OQ. 

4. Hoe bepaal je de bestelhoeveelheid (OQ)?
De bestelhoeveelheid wordt in eerste instantie geïmporteerd uit uw ERP-systeem. Deze kan worden gewijzigd op basis van een aantal door de gebruiker gedefinieerde keuzes, waaronder:

Vraag naar meerdere doorlooptijden
Meerdere maandelijkse of wekelijkse vraag
Aanbevolen OQ van Smart

5. Wat is de economische bestelhoeveelheid?
Het is de volgorde hoeveelheid die zal minimaliseren de totale kosten, rekening houdend met de kosten voor het aanhouden en bestellen van de voorraad. 

6. Wat is de “aanbevolen OQ” die Smart berekent?
Het betreft de economische bestelhoeveelheid plus een aanpassing indien nodig om ervoor te zorgen dat de omvang van de bestelling groter is dan of gelijk is aan de vraag gedurende de doorlooptijd.

7. Waarom voorspelt het systeem dat we een lage Service Level?
Smart voorspelt het serviceniveau dat zal resulteren uit het opgegeven voorraadbeleid (Min/Max of Reorder Point/Order Quantity), ervan uitgaande dat dat beleid wordt nageleefd. Wanneer het voorspelde serviceniveau laag is, kan dit betekenen dat de verwachte vraag gedurende de doorlooptijd groter is dan het reorder point (Min). Wanneer de vraag gedurende de replenishment lead time groter is dan het reorder point, is de kans groter dat uw voorraad op is, wat resulteert in een laag serviceniveau. Het kan ook zijn dat uw lead time voor replenishment niet nauwkeurig is ingevoerd. Als de ingevoerde lead time langer is dan de werkelijkheid, dekt het reorder point mogelijk niet de vraag gedurende de doorlooptijd. Controleer uw lead time inputs.

8. Waarom wordt het serviceniveau weergegeven als nul, terwijl het bestelpunt (of minimum) niet nul is?
Smart voorspelt het serviceniveau die het gevolg zal zijn van het opgegeven voorraadbeleid (Min/Max of bestelpunt/bestelhoeveelheid), ervan uitgaande dat dit beleid wordt nageleefd. Wanneer het voorspelde serviceniveau laag is, kan dit betekenen dat de verwachte vraag gedurende de doorlooptijd groter is dan het bestelpunt (Min), soms vele malen groter, wat vrijwel zeker een voorraadtekort zou garanderen. Wanneer de vraag gedurende de aanvuldoorlooptijd groter is dan het bestelpunt, is de kans op voorraadtekort groter, wat resulteert in een laag serviceniveau. Het kan ook zijn dat uw doorlooptijd voor aanvulling niet nauwkeurig is ingevoerd. Als de ingevoerde doorlooptijd langer is dan de werkelijkheid, dekt het bestelpunt mogelijk niet de vraag gedurende de doorlooptijd. Controleer uw invoer voor de doorlooptijd.

9. Maar mijn werkelijke serviceniveau is niet zo laag als Smart voorspelt. Hoe kan dat?
Dat kan waar zijn omdat Smart uw serviceniveau voorspelt als u zich aan het beleid houdt. Het is mogelijk dat u zich niet aan het beleid houdt. het beleid waarop de voorspelling van het serviceniveau is gebaseerd.  Als uw on-hand inventory hoger is dan uw Max-hoeveelheid, houdt u zich niet aan het beleid. Controleer uw invoerveronderstellingen voor doorlooptijd. Uw werkelijke doorlooptijden kunnen veel korter zijn dan ingevoerd, wat resulteert in een voorspeld serviceniveau dat lager is dan u verwacht.

10. Smart lijkt te veel voorraad aan te bevelen, of in ieder geval meer dan ik zou verwachten. Waarom?
U moet overwegen om de inputs te evalueren, zoals serviceniveau en doorlooptijden. Misschien zijn uw werkelijke doorlooptijden niet zo lang als de doorlooptijd die Smart gebruikt. We hebben situaties gezien waarin leveranciers hun geoffreerde doorlooptijden kunstmatig opblazen om ervoor te zorgen dat ze altijd op tijd zijn. Als u die doorlooptijd gebruikt bij het berekenen van uw veiligheidsvoorraden, zult u onvermijdelijk te veel voorraad hebben. Bekijk daarom uw werkelijke doorlooptijdgeschiedenis (Smart levert hiervoor het leveranciersprestatierapport) om een idee te krijgen van de werkelijke doorlooptijden en pas deze dienovereenkomstig aan. Of het is mogelijk dat u vraagt om een zeer hoog serviceniveau dat verder kan worden verergerd door een zeer volatiel artikel met verschillende significante pieken in de vraag. Wanneer de vraag aanzienlijk fluctueert ten opzichte van het gemiddelde, zal het gebruik van een hoge serviceniveaudoelstelling (98%+) resulteren in voorraadbeleid dat is ontworpen om zelfs zeer grote pieken te dekken. Probeer een lagere serviceniveaudoelstelling of verkort de doorlooptijd (ervan uitgaande dat de opgegeven doorlooptijd niet langer realistisch is) en uw voorraad zal afnemen, soms zeer substantieel.

11. Smart maakt gebruik van pieken in de vraag. Ik wil niet dat het rekening houdt met de vraag en het vergroot de voorraad. Hoe kan ik dit oplossen?
Als u zeker weet dat de piek niet opnieuw zal optreden, kunt u deze verwijderen uit de historische gegevens via een override met behulp van Smart Demand Planner. U moet het prognoseproject openen dat dat item bevat, de geschiedenis aanpassen en de aangepaste geschiedenis opslaan. U kunt contact opnemen met de technische ondersteuning om u te helpen dit in te stellen. Als de pieken deel uitmaken van de normale willekeur die soms kan optreden, is het het beste om het met rust te laten. Overweeg in plaats daarvan een lagere serviceniveaudoelstelling. De lagere doelstelling betekent dat de bestelpunten niet zo vaak de extreme waarden hoeven te dekken, wat resulteert in een lagere voorraad.

12. Wanneer ik de bestelhoeveelheid of het maximum wijzig, veranderen mijn cyclusserviceniveaus niet. Waarom?
Smart rapporteert over "cycle service level" en "service level". Wanneer u uw bestelhoeveelheden en maximale hoeveelheden wijzigt, heeft dit geen invloed op het "cycle service level", omdat cycle service levels alleen rapporteren over prestaties tijdens de aanvullingsperiode. Dit komt omdat het enige dat u beschermt tegen een voorraadtekort nadat de bestelling is geplaatst (en u moet wachten tot de bestelling arriveert voor de aanvulling) het bestelpunt of Min is. Het wijzigen van de grootte van de bestelhoeveelheid of Max on hand (tot niveaus) heeft geen invloed op uw cycle service levels. Cycle service level wordt alleen beïnvloed door de grootte van de bestelpunten en de hoeveelheid veiligheidsvoorraad die wordt toegevoegd, terwijl het "service level" van Smart verandert wanneer u zowel bestelpunten als bestelhoeveelheden wijzigt.

13. Mijn voorspelling lijkt onjuist. Er worden geen ups en downs weergegeven die in de geschiedenis zijn waargenomen, waarom?
Een goede voorspelling is het getal dat het dichtst bij de werkelijkheid ligt in vergelijking met andere getallen die voorspeld hadden kunnen worden. Wanneer de historische ups en downs niet in voorspelbare intervallen plaatsvinden, is de beste voorspelling er vaak een die deze historische ups en downs gemiddeld of gladstrijkt. Een voorspelling die toekomstige ups en downs voorspelt die historisch gezien niet in duidelijke patronen voorkomen, is waarschijnlijk minder nauwkeurig dan een voorspelling die alleen een rechte lijn of trendlijn voorspelt.

14. Wat is optimalisatie? Hoe werkt het?
Optimalisatie is een optie voor het instellen van voorraadbeleid waarbij de software het voorraadbeleid kiest dat de laagste totale operationele kosten oplevert. Als een artikel bijvoorbeeld erg duur is om te bewaren, zou een beleid met meer stockouts, maar minder voorraad, lagere totale kosten opleveren dan een beleid met minder stockouts en meer voorraad. Aan de andere kant, als het artikel hoge stockout-kosten heeft, zou een beleid dat minder stockouts oplevert maar meer voorraad vereist, meer financieel voordeel opleveren dan een beleid met minder voorraad maar meer stockouts. Bij gebruik van de optimalisatiefunctie moet de gebruiker de service level floor (het minimale serviceniveau) opgeven. De software zal dan beslissen of een hoger serviceniveau een beter rendement oplevert. Als dat het geval is, zal het herorderbeleid zich richten op het hogere serviceniveau. Als dat niet het geval is, zal het herorderbeleid standaard de door de gebruiker gedefinieerde service level floor gebruiken. Deze webinar biedt details en uitleg over de wiskunde achter optimalisatie.  https://www.screencast.com/t/3CfKJoMe2Uj

15. Wat is een what-if-scenario?
Met what-if-scenario's kunt u verschillende door de gebruiker gedefinieerde keuzes van voorraadbeleid uitproberen en de voorspelde impact op statistieken zoals serviceniveaus, vulpercentages en voorraadwaarde testen. Om deze scenario's te verkennen, klikt u op het tabblad Drivers, op het samenvattingsniveau of op het niveau 'Artikelen', en voert u de gewenste aanpassingen in. U kunt vervolgens opnieuw berekenen hoe deze wijzigingen uw algehele voorraadprestaties zouden beïnvloeden. Hiermee kunt u verschillende strategieën vergelijken en de meest kosteneffectieve en efficiënte aanpak voor uw toeleveringsketen selecteren.

Door veelvoorkomende vragen en uitdagingen aan te pakken, hebben we bruikbare inzichten geboden om u te helpen uw voorraadbeheerpraktijken te verbeteren. Met Smart IP&O beschikt u over de tools die u nodig hebt om weloverwogen voorraadbeslissingen te nemen, kosten te verlagen en de algehele prestaties te verbeteren.

Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds.  Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs.

Deze blog onderzoekt hoe de nieuwste AI-gestuurde technologieën de OEM-aftermarket kunnen transformeren door grote datasets te analyseren om de toekomstige vraag nauwkeuriger te voorspellen, voorraadniveaus te optimaliseren, de nauwkeurigheid van prognoses te verbeteren en de klanttevredenheid te verbeteren, wat uiteindelijk leidt tot betere service en lagere kosten.

 

Verbetering van de nauwkeurigheid van voorspellingen met AI  

Met behulp van de modernste technologie kunnen organisaties de nauwkeurigheid van prognoses aanzienlijk verbeteren door historische gegevens te analyseren, patronen te herkennen en de toekomstige vraag te voorspellen. Onze nieuwste (IP&O) Inventory Planning & Optimization-technologie maakt gebruik van AI om realtime inzichten te bieden en besluitvormingsprocessen te automatiseren. Het maakt gebruik van adaptieve voorspellingstechnieken om ervoor te zorgen dat prognoses relevant blijven als de marktomstandigheden veranderen. Het systeem integreert geavanceerde algoritmen om intermitterende gegevens te beheren en realtime wijzigingen aan te brengen, terwijl complexe berekeningen worden verwerkt en rekening wordt gehouden met factoren als doorlooptijden, voorspellingsfouten, seizoensinvloeden en markttrends. Door gebruik te maken van betere gegevensinvoer en geavanceerde analyses kunnen bedrijven prognosefouten aanzienlijk verminderen en de kosten die gepaard gaan met overbevoorrading en stockouts minimaliseren. Ons IP&O-platform is ontworpen om de complexiteit en uitdagingen aan te kunnen die uniek zijn voor het beheer van serviceonderdelen, zoals een intermitterende vraag en grote assortimenten aan onderdelen.

Reparatie- en retourmodule: Het platform simuleert nauwkeurig de processen van het kapot gaan en repareren van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten die verband houden met de huidige roterende reserveonderdelenpool. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op de korte en lange termijn te voldoen en, in operationele omgevingen, of ze moeten wachten tot de reparaties zijn voltooid en weer in gebruik zijn genomen, of dat ze extra reserveonderdelen moeten kopen bij leveranciers, waardoor onnodige aankopen en reparaties worden vermeden. uitval van apparatuur.

 Intermitterende vraagvoorspelling: De gepatenteerde intermitterende vraagvoorspellingstechnologie van IP&O biedt zeer nauwkeurige voorspellingen voor artikelen met sporadische vraagpatronen die typisch zijn voor de vervangingsmarkt. Deze mogelijkheid is van cruciaal belang voor het optimaliseren van de voorraadniveaus en om ervoor te zorgen dat kritieke onderdelen beschikbaar zijn wanneer dat nodig is, zonder dat er sprake is van overbevoorrading.

Realtime voorraadoptimalisatie: Onze technologie past het voorraadbeleid dynamisch aan om het aan te passen aan veranderende vraagpatronen en marktomstandigheden. Het berekent optimale bestelpunten en bestelhoeveelheden, waarbij serviceniveaus in evenwicht worden gebracht met voorraadkosten. Dit zorgt ervoor dat OEM's een hoog serviceniveau kunnen handhaven en tegelijkertijd de overtollige voorraad en de bijbehorende transportkosten kunnen minimaliseren.

Scenarioplanning en What-If-analyse: Met IP&O kunnen gebruikers meerdere inventarisscenario's creëren om de impact van verschillende voorraadbeleidslijnen op serviceniveaus en kosten te evalueren. Deze mogelijkheid helpt OEM's weloverwogen beslissingen te nemen over voorraadstrategieën en proactief te reageren op marktveranderingen of verstoringen van de toeleveringsketen.

Naadloze ERP-integratie: Het platform biedt naadloze integratie met toonaangevende ERP-systemen, zoals Epicor en NetSuite, waardoor automatische synchronisatie van prognoses en voorraadgegevens mogelijk is. Deze integratie vergemakkelijkt de efficiënte uitvoering van aanvulorders en zorgt ervoor dat de voorraadniveaus voortdurend worden afgestemd op de meest recente vraagprognoses.

Nauwkeurigheid en rapportage van prognoses:  Ons geavanceerde systeem biedt gedetailleerde rapportage en dashboards die de nauwkeurigheid van de prognoses, de voorraadprestaties en de betrouwbaarheid van leveranciers bijhouden. Door deze statistieken te analyseren, kunnen OEM's hun voorspellingsmodellen voortdurend verfijnen en de algehele prestaties van de supply chain verbeteren.

 

Voorbeelden uit de praktijk illustreren de substantiële impact van AI-gestuurde forecasting en voorraadoptimalisatie op de OEM-aftermarket. Prevost Parts, een divisie van een toonaangevende Canadese fabrikant van streekbussen en touringcarbehuizingen, gebruikte IP&O om tegemoet te komen aan de periodieke vraag naar meer dan 25.000 actieve onderdelen. Door nauwkeurige verkoopprognoses en veiligheidsvoorraadvereisten in hun ERP-systeem te integreren, ondersteund door AI en realtime machine learning-aanpassingen, hebben ze het aantal backorders met 65% verminderd, de omzet met 59% verloren en de bezettingspercentages in slechts drie maanden verhoogd van 93% naar 96%. Deze transformatie verbeterde de voorraadallocatie aanzienlijk, waardoor de transport- en voorraadkosten daalden.

 

Het integreren van AI en ML in IP&O-processen is niet alleen een technologische upgrade, maar een strategische zet die de OEM-aftermarket kan transformeren. IP&O-technologie zorgt voor een betere servicekwaliteit en klanttevredenheid door de nauwkeurigheid van de prognoses te verbeteren, de voorraadniveaus te optimaliseren en de kosten te verlagen. Terwijl de aftermarket-sector blijft groeien en evolueren, zal het omarmen van AI de sleutel zijn om concurrerend te blijven en efficiënt aan de verwachtingen van de klant te voldoen.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Op prognoses gebaseerd voorraadbeheer voor een betere planning

    Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methodologie voor vooruitplanning voor het beheer van voorraad. Deze methode zorgt ervoor dat bedrijven aan de vraag kunnen voldoen zonder overbevoorrading, wat kapitaal vastlegt, of onderbevoorrading, wat kan leiden tot omzetverlies en ontevreden klanten.

    Door te anticiperen op de vraag en de voorraadniveaus dienovereenkomstig aan te passen, helpt deze aanpak het juiste evenwicht te behouden tussen het hebben van voldoende voorraad om aan de behoeften van de klant te voldoen en het minimaliseren van overtollige voorraadkosten. Bedrijven kunnen hun activiteiten optimaliseren, verspilling verminderen en de klanttevredenheid verbeteren door toekomstige behoeften te voorspellen. Laten we eens kijken hoe dit werkt.

     

    Kernconcepten van op prognoses gebaseerd voorraadbeheer

    Voorraaddynamiekmodellen: Voorraaddynamiekmodellen zijn van fundamenteel belang voor het begrijpen en beheren van voorraadniveaus. Het eenvoudigste model, bekend als het ‘zaagtandmodel’, laat zien dat voorraadniveaus afnemen naarmate de vraag toeneemt en zich net op tijd aanvult. Real-world scenario's vereisen echter vaak geavanceerdere modellen. Door stochastische elementen en variabiliteit op te nemen, zoals Monte Carlo-simulaties, kunnen bedrijven rekening houden met willekeurige schommelingen in de vraag en doorlooptijd, waardoor een realistischere voorspelling van de voorraadniveaus ontstaat.

    IP&O-platform verbetert de modellering van de voorraaddynamiek door middel van geavanceerde data-analyse en simulatiemogelijkheden. Door gebruik te maken van AI en machine learning-algoritmen kan ons IP&O-platform vraagpatronen nauwkeuriger voorspellen en modellen in realtime aanpassen op basis van de nieuwste gegevens. Dit leidt tot nauwkeurigere voorraadniveaus, waardoor het risico op voorraadtekorten en overbevoorrading wordt verminderd.

    Bestelhoeveelheid en timing bepalen: Effectief voorraadbeheer vereist dat u weet wanneer en hoeveel u moet bestellen. Dit omvat het voorspellen van de toekomstige vraag en het berekenen van de doorlooptijd voor het aanvullen van de voorraad. Door te voorspellen wanneer de voorraad het veiligheidsvoorraadniveau bereikt, kunnen bedrijven hun bestellingen plannen om een continue levering te garanderen.

    Onze nieuwste tools blinken uit in het optimaliseren van bestelhoeveelheden en timing door gebruik te maken van voorspellende analyses en AI. Deze systemen kunnen enorme hoeveelheden gegevens analyseren, inclusief historische verkopen en markttrends. Door dit te doen, bieden ze nauwkeurigere vraagprognoses en optimaliseren ze de bestelpunten, zodat de voorraad precies op tijd wordt aangevuld zonder dat er overtollige voorraad ontstaat.

    Doorlooptijd berekenen: Doorlooptijd is de periode vanaf het plaatsen van een bestelling tot het ontvangen van de voorraad. Het varieert afhankelijk van de beschikbaarheid van componenten. Als een product bijvoorbeeld uit meerdere componenten wordt samengesteld, wordt de doorlooptijd bepaald door het onderdeel met de langste doorlooptijd.

    Slimme AI-gestuurde oplossingen verbeteren de berekening van de doorlooptijd door te integreren met supply chain managementsystemen. Deze systemen volgen de prestaties van leveranciers en historische doorlooptijden om nauwkeurigere schattingen van de doorlooptijd te bieden. Bovendien kunnen slimme technologieën bedrijven waarschuwen voor mogelijke vertragingen, waardoor proactieve aanpassingen aan voorraadplannen mogelijk worden.

    Berekening van de veiligheidsvoorraad: De veiligheidsvoorraad fungeert als buffer om te beschermen tegen variabiliteit in vraag en aanbod. Het berekenen van de veiligheidsvoorraad omvat het analyseren van de variabiliteit van de vraag en het instellen van een voorraadniveau dat de meeste potentiële scenario's dekt, waardoor het risico op voorraadtekorten wordt geminimaliseerd.

    IP&O-technologie verbetert de berekening van de veiligheidsvoorraad aanzienlijk door middel van geavanceerde analyses. Door vraagpatronen en supply chain-variabelen voortdurend te monitoren, kunnen slimme systemen de veiligheidsvoorraadniveaus dynamisch aanpassen. Machine learning-algoritmen kunnen vraagpieken of -dalingen voorspellen en de veiligheidsvoorraad dienovereenkomstig aanpassen, waardoor optimale voorraadniveaus worden gegarandeerd en de voorraadkosten worden geminimaliseerd.

    Het belang van nauwkeurige prognoses bij voorraadbeheer

    Nauwkeurige prognoses zijn essentieel voor het minimaliseren van prognosefouten, die kunnen leiden tot overtollige voorraad of voorraadtekorten. Technieken zoals het gebruik van historische gegevens, het verbeteren van gegevensinvoer en het toepassen van geavanceerde voorspellingsmethoden helpen een betere nauwkeurigheid te bereiken. Voorspellingsfouten kunnen aanzienlijke financiële gevolgen hebben: te hoge prognoses resulteren in overtollige voorraad, terwijl te lage prognoses leiden tot gemiste verkoopkansen. Het beheren van deze fouten door middel van het systematisch volgen en aanpassen van prognosemethoden is cruciaal voor het handhaven van optimale voorraadniveaus.

    De veiligheidsvoorraad zorgt ervoor dat bedrijven aan de behoeften van de klant kunnen voldoen, zelfs als de werkelijke vraag afwijkt van de prognose. Dit kussen beschermt tegen onvoorziene vraagpieken of vertragingen bij de bevoorrading. Nauwkeurige prognoses, effectief foutenbeheer en strategisch gebruik van de veiligheidsvoorraad verbeteren het op prognoses gebaseerde voorraadbeheer. Bedrijven kunnen de voorraaddynamiek begrijpen, de juiste bestelhoeveelheden en timing bepalen, nauwkeurige doorlooptijden berekenen en de juiste veiligheidsvoorraadniveaus instellen.

    Het gebruik van state-of-the-art technologie zoals IP&O biedt aanzienlijke voordelen door het bieden van realtime data-inzichten, voorspellende analyses en adaptieve modellen. Dit leidt tot efficiënter voorraadbeheer, lagere kosten en verbeterde klanttevredenheid. Over het geheel genomen stelt IP&O bedrijven in staat beter te plannen en snel te reageren op marktveranderingen, waardoor ze de juiste voorraadbalans behouden om aan de behoeften van de klant te voldoen zonder onnodige kosten te maken.

     

     

    Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
    In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken. Met AI kunnen we de vraag nauwkeuriger voorspellen, overtollige voorraden verminderen, voorraadtekorten voorkomen en uiteindelijk de bedrijfsresultaten van onze organisatie verbeteren. Laten we eens kijken hoe deze aanpak niet alleen de verkoop- en operationele efficiëntie verhoogt, maar ook de klanttevredenheid verhoogt door ervoor te zorgen dat producten altijd beschikbaar zijn wanneer dat nodig is.

     

    Inzichten voor verbeterde besluitvorming in voorraadbeheer

    1. Verbeterde voorspellingsnauwkeurigheid Geavanceerde Machine Learning-algoritmen analyseren historische gegevens om patronen te identificeren die mensen mogelijk over het hoofd zien. Technieken als clustering, detectie van regimeveranderingen, detectie van afwijkingen en regressieanalyse bieden diepgaande inzichten in gegevens. Het meten van voorspellingsfouten is essentieel voor het verfijnen van voorspellingsmodellen; Technieken als Mean Absolute Error (MAE) en Root Mean Squared Error (RMSE) helpen bijvoorbeeld bij het kwantificeren van de nauwkeurigheid van voorspellingen. Bedrijven kunnen de nauwkeurigheid verbeteren door voortdurend prognoses te monitoren en aan te passen op basis van deze foutstatistieken. Zoals de Demand Planner bij een Hardware Retailer vermeld, “Met de verbeteringen aan onze prognoses en voorraadplanning die Smart Software mogelijk maakte, hebben we de veiligheidsvoorraad met 20% kunnen verminderen en tegelijkertijd de voorraadtekorten met 35% kunnen verminderen.”
    1. Realtime gegevensanalyse State-of-the-art systemen kunnen enorme hoeveelheden gegevens in realtime verwerken, waardoor bedrijven hun voorraadniveaus dynamisch kunnen aanpassen op basis van de huidige vraagtrends en marktomstandigheden. Afwijkingsdetectiealgoritmen kunnen plotselinge pieken of dalen in de vraag automatisch identificeren en corrigeren, zodat de voorspellingen accuraat blijven. Een opmerkelijk succesverhaal komt van Smart IP&O, waarmee een bedrijf de voorraad tegen 20% kon verminderen en tegelijkertijd de serviceniveaus kon handhaven door voortdurend realtime gegevens te analyseren en de prognoses dienovereenkomstig aan te passen. FedEx Tech's Manager Materials benadrukt, “Wat het verzoek ook is, we moeten aan onze serviceverplichtingen de volgende dag voldoen. Smart stelt ons in staat om onze voorraad aan te passen om er zeker van te zijn dat we de producten en onderdelen bij de hand hebben om de serviceniveaus te bereiken die onze klanten nodig hebben.”
    1. Verbeterde supply chain-efficiëntie Intelligente technologieplatforms kunnen de gehele supply chain optimaliseren, van inkoop tot distributie, door doorlooptijden te voorspellen en orderhoeveelheden te optimaliseren. Dit verkleint het risico op over- en onderbezetting. Met behulp van op prognoses gebaseerd voorraadbeheer heeft Smart Software bijvoorbeeld een fabrikant geholpen zijn toeleveringsketen te stroomlijnen, de doorlooptijden met 15% te verkorten en de algehele efficiëntie te verbeteren. De VP Operations bij Procon Pump verklaarde: “Een van de dingen die ik leuk vind aan deze nieuwe tool... is dat ik de gevolgen van beslissingen over voorraadvoorraden kan evalueren voordat ik ze implementeer.”
    1. Verbeterde besluitvorming AI biedt bruikbare inzichten en aanbevelingen, waardoor managers weloverwogen beslissingen kunnen nemen. Dit omvat het identificeren van langzaam bewegende artikelen, het voorspellen van de toekomstige vraag en het optimaliseren van de voorraadniveaus. Regressieanalyse kan bijvoorbeeld de verkoop relateren aan externe variabelen zoals seizoensinvloeden of economische indicatoren, waardoor een dieper inzicht ontstaat in de vraagfactoren. Een van de klanten van Smart Software rapporteerde een aanzienlijke verbetering in de besluitvormingsprocessen, wat resulteerde in een stijging van het serviceniveau met 30% en een vermindering van de overtollige voorraad met 15%. “Smart IP&O stelde ons in staat de vraag op elke opslaglocatie te modelleren en, met behulp van serviceniveaugestuurde planning, te bepalen hoeveel we op voorraad moesten hebben om het serviceniveau te bereiken dat we nodig hebben”, aldus de Inkoopmanager bij Seneca Companies.
    1. Kostenbesparing Door de voorraadniveaus te optimaliseren kunnen bedrijven de opslagkosten verlagen en verliezen als gevolg van verouderde of verlopen producten minimaliseren. AI-gestuurde systemen verminderen ook de noodzaak van handmatige voorraadcontroles, waardoor tijd en arbeidskosten worden bespaard. Dat blijkt uit een recente casestudy hoe de implementatie van Inventory Planning & Optimization (IP&O) binnen 90 dagen na de start van het project werd gerealiseerd. In de daaropvolgende zes maanden maakte IP&O het mogelijk de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in een voorraadreductie van $9,0 miljoen, terwijl het beoogde serviceniveau behouden bleef.

     

    Door gebruik te maken van geavanceerde algoritmen en realtime data-analyse kunnen bedrijven optimale voorraadniveaus handhaven en de algehele prestaties van hun supply chain verbeteren. Inventory Planning & Optimization (IP&O) is een krachtig hulpmiddel dat uw organisatie kan helpen deze doelen te bereiken. Het integreren van de modernste voorraadoptimalisatie in uw organisatie kan leiden tot aanzienlijke verbeteringen op het gebied van efficiëntie, kostenreductie en klanttevredenheid.

     

     

    Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

     

    Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

    Er zijn veel verschillen in wat bedrijven bedoelen als ze hun ‘serviceniveaus’ noemen. Dit kan variëren van bedrijf tot bedrijf en zelfs van afdeling tot afdeling binnen een bedrijf. Hier zijn twee voorbeelden:

     

    1. Serviceniveau gemeten ‘vanaf de plank’ versus een door de klant opgegeven doorlooptijd.
      Serviceniveau gemeten “uit het schap” betekent het percentage bestelde eenheden dat onmiddellijk uit voorraad leverbaar is. Wanneer een klant een bestelling plaatst, wordt deze echter vaak niet direct verzonden. De klantenservice of verkoopafdeling geven aan wanneer de bestelling wordt verzonden. Als de klant akkoord gaat met de beloofde verzenddatum en de bestelling op die datum wordt verzonden, wordt aangenomen dat aan het serviceniveau is voldaan. De serviceniveaus zullen duidelijk hoger zijn als ze worden berekend over de door de klant opgegeven doorlooptijd versus ‘vanaf de plank’.
    1. Serviceniveau gemeten over de vaste versus variabele, door de klant opgegeven doorlooptijd.
      Hoge serviceniveaus zijn vaak scheef omdat de door de klant opgegeven doorlooptijden later worden aangepast, zodat bijna elke bestelling “op tijd en volledig” kan worden uitgevoerd. Dit gebeurt wanneer de initiële doorlooptijd niet kan worden gehaald, maar de klant ermee instemt de bestelling later aan te nemen, en het door de klant opgegeven doorlooptijdveld dat wordt gebruikt om het serviceniveau bij te houden, wordt aangepast door de verkoopafdeling of de klantenservice.

    Het verduidelijken van de manier waarop ‘serviceniveaus’ worden gedefinieerd, gemeten en gerapporteerd is essentieel voor het op één lijn brengen van organisaties en het verbeteren van de besluitvorming, wat resulteert in effectievere voorraadbeheerpraktijken.