Hoe gaat het met ons? KPI's en KPP's

Het dagelijkse voorraadbeheer kan u bezig houden. Er is het gebruikelijke ritme van bestellen, ontvangen, voorspellen en plannen, en dingen verplaatsen in het magazijn. Dan zijn er de hectische tijden – tekorten, spoedgevallen, last-minute telefoontjes om nieuwe leveranciers te vinden.

Al deze activiteiten werken tegen dat je even de tijd neemt om te kijken hoe het met je gaat. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

Meerdere statistieken

Afhankelijk van uw rol in uw organisatie zullen verschillende statistieken een verschillende saillantie hebben. Als u zich bezighoudt met de financiële kant van het huis, kan het investeren in inventaris van cruciaal belang zijn: hoeveel geld zit er vast in de inventaris? Als u aan de verkoopkant werkt, kan de beschikbaarheid van artikelen een prioriteit zijn: hoe groot is de kans dat ik 'ja' kan zeggen tegen een bestelling? Als u verantwoordelijk bent voor de bevoorrading, hoeveel inkooporders moeten uw mensen dan het volgende kwartaal schrappen?

Beschikbaarheidsstatistieken

Laten we teruggaan naar de beschikbaarheid van artikelen. Hoe plak je daar een getal op? De twee meest gebruikte beschikbaarheidsstatistieken zijn ‘serviceniveau’ en ‘opvullingspercentage’. Wat is het verschil? Het is het verschil tussen zeggen: “We hebben gisteren een aardbeving gehad” en zeggen: “We hebben gisteren een aardbeving gehad, en die had een kracht van 6,4 op de schaal van Richter.” Serviceniveau registreert de frequentie van stockouts, ongeacht de omvang ervan; het opvullingspercentage weerspiegelt de ernst ervan. De twee kunnen in tegengestelde richtingen lijken te wijzen, wat voor enige verwarring zorgt. U kunt een goed serviceniveau hebben, bijvoorbeeld 90%, maar een gênant opvullingspercentage, bijvoorbeeld 50%. Of vice versa. Wat hen anders maakt, is de verdeling van de vraaggroottes. Als de verdeling bijvoorbeeld erg scheef is, dus de meeste eisen zijn klein, maar sommige zijn enorm, dan kun je de hierboven genoemde 90%/50%-verdeling krijgen. Als uw focus ligt op hoe vaak u moet nabestellen, is het serviceniveau relevanter. Als u zich zorgen maakt over hoe groot een nachtelijke expedite kan worden, is het opvullingspercentage relevanter.

Eén grafiek om ze allemaal te regeren

Een grafiek van de voorhanden voorraad kan de basis vormen voor het berekenen van meerdere KPI's. Kijk eens naar Figuur 1, waarin de grafieken een jaar lang elke dag bij de hand zijn. Dit diagram bevat informatie die nodig is om meerdere statistieken te berekenen: voorraadinvestering, serviceniveau, opvullingspercentage, bestelpercentage en andere statistieken.

Key performance indicators en parameters voor voorraadbeheer

Voorraadinvestering: de gemiddelde hoogte van de grafiek boven nul, vermenigvuldigd met de eenheidskosten van het voorraaditem, geeft een kwartaalwaarde in dollar.

Serviceniveau: Het deel van de voorraadcycli dat boven nul eindigt, is het serviceniveau. Voorraadcycli worden gekenmerkt door de opwaartse bewegingen die worden veroorzaakt door de komst van aanvullingsorders.

Opvullingspercentage: De hoeveelheid waarmee de voorraad onder nul daalt en hoe lang de voorraad daar blijft, bepalen samen het opvullingspercentage.

In dit geval was het gemiddelde aantal beschikbare eenheden 10,74, het serviceniveau 54% en het opvullingspercentage 91%.

 

KPI's en KPP's

In de ruim veertig jaar sinds we Smart Software hebben opgericht, heb ik nog nooit een klant een plot als figuur 1 zien maken. Degenen die verder in hun ontwikkeling zijn, produceren en besteden aandacht aan rapporten waarin hun KPI's in tabelvorm worden vermeld, maar dat doen ze niet' Kijk niet naar zo'n grafiek. Niettemin heeft die grafiek waarde voor het ontwikkelen van inzicht in de willekeurige ritmes van de voorraad terwijl deze stijgt en daalt.

Waar het vooral nuttig is, is prospectief. Gezien de marktvolatiliteit verschuiven belangrijke variabelen zoals de doorlooptijden van leveranciers, de gemiddelde vraag en de variabiliteit van de vraag allemaal in de loop van de tijd. Dit impliceert dat belangrijke controleparameters zoals bestelpunten en bestelhoeveelheden zich aan deze verschuivingen moeten aanpassen. Als een leverancier bijvoorbeeld zegt dat hij zijn gemiddelde doorlooptijd met twee dagen moet verlengen, heeft dit een negatieve invloed op uw statistieken en moet u mogelijk uw bestelpunt verhogen om dit te compenseren. Maar met hoeveel verhogen?

Hier komt moderne inventarisatiesoftware om de hoek kijken. Hiermee kunt u een aanpassing voorstellen en vervolgens zien hoe de zaken zullen verlopen. Percelen zoals Figuur 1 laten je het nieuwe regime zien en er een gevoel voor krijgen. En de grafieken kunnen worden geanalyseerd om KPP's te berekenen: Key Performance Predictions.

De hulp van KPP maakt het giswerk bij aanpassingen overbodig. U kunt simuleren wat er met uw KPI's zal gebeuren als u deze wijzigt als reactie op veranderingen in uw werkomgeving – en hoe slecht de situatie zal zijn als u geen wijzigingen aanbrengt.

 

 

 

 

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Wat is en wat niet

Wat is AI en waarin verschilt het van ML? Wat doet iemand tegenwoordig als hij iets wil weten? Ze Googlen het. En als ze dat doen, begint de verwarring.

Eén bron zegt dat de neurale netmethodologie, deep learning genaamd, een subset is van machine learning, een subset van AI. Maar een andere bron zegt dat deep learning al een onderdeel is van AI, omdat het min of meer de manier nabootst waarop de menselijke geest werkt, terwijl machinaal leren dat niet probeert.

Eén bron zegt dat er twee soorten machinaal leren zijn: onder toezicht en zonder toezicht. Een ander zegt dat er vier zijn: onder toezicht, zonder toezicht, semi-onder toezicht en versterking.

Sommigen zeggen dat versterkend leren machinaal leren is; anderen noemen het AI.

Sommigen van ons, traditionalisten, noemen veel ervan ‘statistieken’, hoewel dat niet allemaal zo is.

Bij het benoemen van methoden is veel ruimte voor zowel emotie als verkoopvaardigheid. Als een softwareleverancier denkt dat je de term ‘AI’ wilt horen, kan het zijn dat hij/zij dat voor je zegt, alleen maar om je blij te maken.

Het is beter om je te concentreren op wat er uiteindelijk uitkomt

Je kunt een verwarrende hype vermijden als je je concentreert op het eindresultaat dat je krijgt van een analytische technologie, ongeacht het label ervan. Er zijn verschillende analytische taken die relevant zijn voor voorraadplanners en vraagplanners. Deze omvatten clustering, detectie van afwijkingen, detectie van regimeveranderingen en regressieanalyse. Alle vier de methoden worden gewoonlijk, maar niet altijd, geclassificeerd als methoden voor machinaal leren. Maar hun algoritmen kunnen rechtstreeks uit de klassieke statistiek komen.

Clustering

Clusteren betekent het groeperen van dingen die op elkaar lijken en het distantiëren ervan van dingen die niet op elkaar lijken. Soms is clusteren eenvoudig: om uw klanten geografisch te scheiden, sorteert u ze eenvoudigweg op staat of verkoopregio. Als het probleem niet zo voor de hand liggend is, kun je data- en clusteralgoritmen gebruiken om de klus automatisch te klaren, zelfs als je met enorme datasets te maken hebt.

Figuur 1 illustreert bijvoorbeeld een cluster van “vraagprofielen”, die in dit geval alle artikelen van een klant in negen clusters verdeelt, op basis van de vorm van hun cumulatieve vraagcurven. Cluster 1.1 linksboven bevat items waarvan de vraag is afgenomen, terwijl Cluster 3.1 linksonder items bevat waarvan de vraag is toegenomen. Clusteren kan ook op leveranciers. De keuze van het aantal clusters wordt doorgaans overgelaten aan het oordeel van de gebruiker, maar ML kan die keuze begeleiden. Een gebruiker kan de software bijvoorbeeld de opdracht geven om “mijn onderdelen in vier clusters op te splitsen”, maar het gebruik van ML kan aan het licht brengen dat er in werkelijkheid zes verschillende clusters zijn die de gebruiker moet analyseren. 

 

Verward over AI en Machine Learning-inventarisplanning

Figuur 1: Artikelen clusteren op basis van de vorm van hun cumulatieve vraag

Onregelmatigheidsdetectie

Vraagvoorspelling wordt traditioneel gedaan met behulp van tijdreeksextrapolatie. Eenvoudige exponentiële afvlakking werkt bijvoorbeeld om op elk moment het ‘midden’ van de vraagverdeling te vinden en dat niveau naar voren te projecteren. Als er in het recente verleden echter een plotselinge, eenmalige stijging of daling van de vraag heeft plaatsgevonden, kan die afwijkende waarde een aanzienlijk maar onwelkom effect hebben op de kortetermijnvoorspellingen. Net zo ernstig voor de voorraadplanning, kan de anomalie een buitensporig effect hebben op de schatting van de variabiliteit van de vraag, wat rechtstreeks doorgaat naar de berekening van de veiligheidsvoorraadvereisten.

Planners geven er misschien de voorkeur aan dergelijke afwijkingen op te sporen en te verwijderen (en misschien offline follow-up te doen om de reden voor de vreemdheid te achterhalen). Maar niemand die een grote klus te klaren heeft, zal duizenden vraagdiagrammen visueel willen scannen om uitschieters op te sporen, deze uit de vraaggeschiedenis te verwijderen en vervolgens alles opnieuw te berekenen. De menselijke intelligentie zou dat kunnen doen, maar het menselijk geduld zou spoedig ophouden. Algoritmen voor het detecteren van afwijkingen zouden het werk automatisch kunnen doen met behulp van relatief eenvoudige statistische methoden. Je zou dit ‘kunstmatige intelligentie’ kunnen noemen als je dat wilt.

Detectie van regimewijzigingen

Detectie van regimeveranderingen is als de grote broer van anomaliedetectie. Regimeverandering is een aanhoudende, in plaats van tijdelijke, verschuiving in een of meer aspecten van het karakter van een tijdreeks. Terwijl de detectie van afwijkingen zich gewoonlijk richt op plotselinge verschuivingen in de gemiddelde vraag, kan een regimeverandering verschuivingen in andere kenmerken van de vraag met zich meebrengen, zoals de volatiliteit of de verdelingsvorm ervan.  

Figuur 2 illustreert een extreem voorbeeld van regimeverandering. Rond dag 120 daalde de vraag naar dit artikel op de bodem. Het voorraadbeheerbeleid en de vraagvoorspellingen op basis van de oudere gegevens zouden aan het einde van de vraaggeschiedenis enorm afwijken van de basis.

Verward over AI en Machine Learning Vraagplanning

Figuur 2: Een voorbeeld van extreme regimeverandering in een artikel met een intermitterende vraag

Ook hier kunnen statistische algoritmen worden ontwikkeld om dit probleem op te lossen, en het zou eerlijk zijn om ze ‘machine learning’ of ‘kunstmatige intelligentie’ te noemen als ze daartoe gemotiveerd zijn. Door ML of AI te gebruiken om regimeveranderingen in de vraaggeschiedenis te identificeren, kan software voor vraagplanning automatisch alleen de relevante geschiedenis gebruiken bij het voorspellen, in plaats van handmatig de hoeveelheid geschiedenis te moeten kiezen die in het model moet worden geïntroduceerd. 

Regressie analyse

Regressieanalyse relateert de ene variabele aan de andere via een vergelijking. De verkoop van kozijnen in één maand kan bijvoorbeeld worden voorspeld op basis van bouwvergunningen die een paar maanden eerder zijn afgegeven. Regressieanalyse wordt al meer dan een eeuw beschouwd als onderdeel van de statistiek, maar we kunnen zeggen dat het ‘machine learning’ is, aangezien een algoritme de precieze manier uitwerkt om kennis van de ene variabele om te zetten in een voorspelling van de waarde van een andere.

Overzicht

Het is redelijk om geïnteresseerd te zijn in wat er gebeurt op het gebied van machinaal leren en kunstmatige intelligentie. Hoewel de aandacht die aan ChatGPT en zijn concurrenten wordt besteed interessant is, is deze niet relevant voor de numerieke kant van vraagplanning of voorraadbeheer. De numerieke aspecten van ML en AI zijn potentieel relevant, maar je moet proberen de wolk van hype rond deze methoden te doorzien en je te concentreren op wat ze kunnen doen. Als u de klus kunt klaren met klassieke statistische methoden, kunt u dat misschien ook doen, en vervolgens uw optie uitoefenen om het ML-label op alles wat beweegt te plakken.

 

 

Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen.

 

  1. Organiseer uw bedrijf rond een prognose van één getal. Dat klinkt verstandig: het is goed om een gedeelde visie te hebben. Maar elk onderdeel van het bedrijf zal zijn eigen idee hebben over welk getal het getal is. De financiële sector wil misschien kwartaalomzet, de marketing wil misschien websitebezoeken, de verkoop wil misschien een verloop, het onderhoud wil misschien een langere tijd tot het misgaat. Overigens heeft elke eenheid waarschijnlijk een handvol belangrijke statistieken. U heeft geen slogan nodig, u moet uw werk gedaan krijgen.

 

  1. Integreer bedrijfskennis in een gezamenlijk prognoseproces. Dit is een goede algemene regel, maar als uw samenwerkingsproces gebrekkig is, kan het knoeien met een statistische prognose via managementoverschrijvingen de nauwkeurigheid verminderen. Je hebt geen slogan nodig; je moet de nauwkeurigheid van alle methoden meten en vergelijken en de winnaars volgen.

 

  1. Voorspelling met behulp van causale modellering. Extrapolatieve prognosemethoden houden geen rekening met de onderliggende krachten die uw verkopen aandrijven, ze werken alleen met de resultaten. Causale modellering brengt u dieper in de fundamentele drijfveren en kan zowel de nauwkeurigheid als het inzicht verbeteren. Causale modellen (geïmplementeerd door middel van regressieanalyse) kunnen echter minder nauwkeurig zijn, vooral als ze voorspellingen van de drijvende krachten vereisen (“voorspellingen van de voorspellers”) in plaats van simpelweg de geregistreerde waarden van vertraagde voorspellende variabelen in te pluggen. Je hebt geen slogan nodig: je hebt een onderlinge vergelijking nodig.

 

  1. Voorspel de vraag in plaats van verzendingen. Vraag is wat je echt wilt, maar het ‘opstellen van een vraagsignaal’ kan lastig zijn: wat doe je met interne overboekingen? Eenmalige? Verloren omzet? Bovendien kunnen vraaggegevens worden gemanipuleerd. Als klanten bijvoorbeeld opzettelijk geen bestellingen plaatsen of proberen hun bestellingen te misleiden door te lang van tevoren te bestellen, zal de bestelgeschiedenis niet beter zijn dan de verzendgeschiedenis. Althans met verzendgeschiedenis, het klopt: u weet wat u heeft verzonden. Prognoses van verzendingen zijn geen voorspellingen van de ‘vraag’, maar vormen een solide uitgangspunt.

 

  1. Gebruik Machine Learning-methoden. Ten eerste is ‘Machine learning’ een elastisch concept dat een steeds groter aantal alternatieven omvat. Onder de motorkap van veel door ML geadverteerde modellen bevindt zich slechts een automatisch kiezen een extrapolatieve voorspellingsmethode (dat wil zeggen: de beste pasvorm) die, hoewel uitstekend in het voorspellen van de normale vraag, al bestaat sinds de jaren tachtig (Smart Software was het eerste bedrijf dat een automatische selectiemethode voor de pc uitbracht). ML-modellen zijn data-hogs die grotere datasets nodig hebben dan u mogelijk ter beschikking heeft. Het op de juiste manier kiezen en trainen van een ML-model vereist een niveau van statistische expertise dat ongebruikelijk is in veel productie- en distributiebedrijven. Misschien wil je iemand vinden die je hand vasthoudt voordat je dit spel gaat spelen.

 

  1. Door uitschieters te verwijderen, ontstaan betere voorspellingen. Hoewel het waar is dat zeer ongebruikelijke pieken of dalen in de vraag onderliggende vraagpatronen, zoals trends of seizoensinvloeden, zullen maskeren, is het niet altijd waar dat u de pieken moet wegnemen. Vaak weerspiegelen deze pieken in de vraag de onzekerheid die willekeurig uw bedrijfsvoering kan verstoren en waarmee dus rekening moet worden gehouden. Het verwijderen van dit soort gegevens uit uw vraagvoorspellingsmodel kan de gegevens op papier voorspelbaarder maken, maar u zult verrast zijn als dit opnieuw gebeurt. Wees dus voorzichtig met het verwijderen van uitschieters massaal.

 

 

 

 

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Overzicht

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Opstarten

Bootstrapping, ook wel "resampling" genoemd, is een methode van computationele statistieken die we gebruiken om vraagscenario's voor prognoses te creëren. De essentie van het prognoseprobleem is het blootleggen van mogelijke toekomsten waarmee uw bedrijf te maken kan krijgen, zodat u kunt uitzoeken hoe u bedrijfsrisico's kunt beheersen. Traditionele prognosemethoden richten zich op het berekenen van de "meest waarschijnlijke" toekomst, maar ze geven niet het volledige risicobeeld weer. Bootstrapping biedt een onbeperkt aantal realistische wat-als-scenario's.

Bootstrapping doet dit zonder onrealistische aannames te doen over de vraag, dwz dat deze niet intermitterend is, of dat deze een klokvormige verdeling van groottes heeft. Die aannames zijn krukken om de wiskunde eenvoudiger te maken, maar de bootstrap is een procedure, geen vergelijking, dus dergelijke vereenvoudigingen zijn niet nodig.

Voor het eenvoudigste vraagtype, dat een stabiele willekeur is zonder seizoensgebondenheid of trend, is bootstrapping doodeenvoudig. Om een redelijk idee te krijgen van wat een enkele toekomstige vraagwaarde zou kunnen zijn, kiest u willekeurig een van de historische eisen. Om een vraagscenario te creëren, maakt u meerdere willekeurige selecties uit het verleden en rijgt u ze aan elkaar. Klaar. Het is mogelijk om wat meer realisme toe te voegen door de gevraagde waarden te "jitteren", dwz een beetje extra willekeur aan elke waarde toe te voegen of af te trekken, maar zelfs dat is eenvoudig.

Figuur 1 toont een eenvoudige bootstrap. De eerste regel is een korte reeks historische vraag naar een SKU. De volgende regels tonen scenario's van toekomstige vraag die zijn gemaakt door willekeurig waarden uit de vraaggeschiedenis te selecteren. De volgende drie eisen kunnen bijvoorbeeld zijn (0, 14, 6), of (2, 3, 5), enz.

Statistische bootstrapping en Monte Carlo-simulatie 1

Afbeelding 1: voorbeeld van vraagscenario's gegenereerd door een eenvoudige bootstrap

 

Bewerkingen met een hogere frequentie, zoals dagelijkse prognoses, brengen complexere vraagpatronen met zich mee, zoals dubbele seizoensgebondenheid (bijv. dag van de week en maand van het jaar) en/of trend. Dit daagde ons uit om een nieuwe generatie bootstrapping-algoritmen uit te vinden. We hebben onlangs een Amerikaans patent gewonnen voor deze doorbraak, maar de essentie is zoals hierboven beschreven.

Monte Carlo simulatie

Monte Carlo staat bekend om zijn casino's, die net als bootstrapping het idee van willekeur oproepen. Monte Carlo-methoden gaan ver terug, maar de moderne impuls kwam met de noodzaak om wat harige berekeningen te maken over waar neutronen zouden vliegen als een A-bom ontploft.

De essentie van Monte Carlo-analyse is deze: “Ons probleem is te ingewikkeld om te analyseren met vergelijkingen van papier en potlood. Dus, laten we een computerprogramma schrijven dat de individuele stappen van het proces codeert, de willekeurige elementen erin stoppen (bijvoorbeeld welke kant een neutron op schiet), het opwinden en kijken hoe het gaat. Aangezien er veel willekeur is, laten we het programma een ontelbaar aantal keren uitvoeren en het gemiddelde van de resultaten nemen.”

Als we deze benadering toepassen op voorraadbeheer, hebben we een andere reeks willekeurig voorkomende gebeurtenissen: een vraag van een bepaalde omvang komt bijvoorbeeld op een willekeurige dag binnen, een aanvulling van een bepaalde omvang arriveert na een willekeurige doorlooptijd, we snijden een aanvullings-PO van een bepaalde maat wanneer de voorraad daalt tot of onder een bepaald bestelpunt. We coderen de logica die deze gebeurtenissen met elkaar in verband brengt in een programma. We voeden het met een willekeurige vraagvolgorde (zie bootstrapping hierboven), voeren het programma een tijdje uit, laten we zeggen een jaar dagelijkse bewerkingen, berekenen prestatiestatistieken zoals Fill Rate en Average On Hand-inventaris, en "gooi de dobbelstenen" door het opnieuw uit te voeren het programma vele malen en het gemiddelde van de resultaten van vele gesimuleerde jaren. Het resultaat is een goede inschatting van wat er gebeurt als we belangrijke managementbeslissingen nemen: “Als we het bestelpunt op 10 eenheden zetten en de bestelhoeveelheid op 15 eenheden, kunnen we een serviceniveau verwachten van 89% en een gemiddelde beschikbaarheid van 21 eenheden.” Wat de simulatie voor ons doet, is het blootleggen van de gevolgen van managementbeslissingen op basis van realistische vraagscenario's en solide wiskunde. Het giswerk is weg.

Figuur 2 toont enkele van de innerlijke werkingen van een Monte Carlo-simulatie van een voorraadsysteem in vier panelen. Het systeem gebruikt een Min/Max voorraadbeheerbeleid met Min=10 en Max=25. Nabestellingen zijn niet toegestaan: u heeft het goed of u verliest het bedrijf. Doorlooptijden voor aanvulling zijn meestal 7 dagen, maar soms ook 14. Deze simulatie duurde een jaar.

Het eerste paneel toont een complex willekeurig vraagscenario waarin er geen vraag is in het weekend, maar de vraag over het algemeen elke dag toeneemt van maandag tot en met vrijdag. Het tweede paneel toont het willekeurige aantal beschikbare eenheden, dat ebt en vloeit met elke aanvullingscyclus. Het derde paneel toont de willekeurige groottes en tijdstippen van aanvullingsorders die binnenkomen van de leverancier. Het laatste paneel toont de onbevredigde vraag die de klantrelaties in gevaar brengt. Dit soort detail kan erg handig zijn om inzicht te krijgen in de dynamiek van een voorraadsysteem.

Statistische bootstrapping en Monte Carlo-simulatie 2

Figuur 2: Details van een Monte Carlo-simulatie

 

Figuur 2 toont slechts een van de talloze manieren waarop het jaar zou kunnen verlopen. Over het algemeen willen we de resultaten van vele gesimuleerde jaren middelen. Niemand zou tenslotte een munt opgooien om te beslissen of het een eerlijke munt was. Figuur 3 laat zien hoe vier key performance metrics (KPI's) van jaar tot jaar variëren voor dit systeem. Sommige statistieken zijn relatief stabiel in simulaties (Fill Rate), maar andere laten meer relatieve variabiliteit zien (Operating Cost = Holding Cost + Ordering Cost + Shortage Cost). Als we de grafieken bekijken, kunnen we schatten dat de keuzes van Min=10, Max=25 leiden tot gemiddelde bedrijfskosten van ongeveer $3.000 per jaar, een opvullingspercentage van ongeveer 90%, een serviceniveau van ongeveer 75% en een gemiddelde aan Hand van ongeveer 10

Statistische bootstrapping en Monte Carlo-simulatie 3

Figuur 3: Variatie in KPI's berekend over 1000 gesimuleerde jaren

 

Het is nu zelfs mogelijk om een managementvraag van een hoger niveau te beantwoorden. We kunnen verder gaan dan "Wat gebeurt er als ik zus-en-zo doe?" naar “Wat is de best wat ik kan doen om een opvullingspercentage van ten minste 90% voor dit item te bereiken tegen de laagst mogelijke kosten?” De wiskundige  achter deze sprong zit nog een andere sleuteltechnologie genaamd "stochastische optimalisatie", maar we stoppen hier voor nu. Het volstaat te zeggen dat de SIO&P-software van Smart de "ontwerpruimte" van min- en max-waarden kan doorzoeken om automatisch de beste keuze te vinden.

 

Wat maakt een probabilistische voorspelling?

Wat is al die heisa rond de term 'probabilistische prognoses'? Is het gewoon een recentere marketingterm die sommige softwareleveranciers en consultants hebben bedacht om innovatie te veinzen? Is er een echt tastbaar verschil in vergelijking met voorgaande "best passende" technieken? Zijn toch niet alle voorspellingen probabilistisch?

Om deze vraag te beantwoorden, is het nuttig om na te denken over wat de voorspelling u werkelijk vertelt in termen van kansen. Een "goede" voorspelling moet onbevooroordeeld zijn en daarom een 50/50 waarschijnlijkheid opleveren die hoger of lager is dan de werkelijke. Een "slechte" voorspelling zal subjectieve buffers inbouwen (of de voorspelling kunstmatig verlagen) en resulteren in een hoge of lage vraag. Overweeg een verkoper die opzettelijk zijn prognose verlaagt door geen verkopen te rapporteren die hij verwacht te sluiten als 'conservatief'. Hun voorspellingen zullen een negatieve voorspellingsbias hebben, aangezien de werkelijke waarden bijna altijd hoger zullen zijn dan wat ze voorspelden. Overweeg aan de andere kant een klant die een opgeblazen prognose aan zijn fabrikant geeft. Bezorgd over stockouts, overschatten ze de vraag om hun aanbod zeker te stellen. Hun voorspelling zal een positieve bias hebben, aangezien de werkelijke waarden bijna altijd lager zullen zijn dan wat ze voorspelden. 

Dit soort ééncijferige voorspellingen die hierboven zijn beschreven, zijn problematisch. We verwijzen naar deze voorspellingen als "puntvoorspellingen", omdat ze één punt (of een reeks punten in de tijd) vertegenwoordigen op een plot van wat er in de toekomst zou kunnen gebeuren. Ze geven geen volledig beeld, want om effectieve zakelijke beslissingen te nemen, zoals het bepalen hoeveel voorraad er moet worden opgeslagen of het aantal werknemers dat beschikbaar moet zijn om aan de vraag te voldoen, is gedetailleerde informatie vereist over hoeveel lager of hoger de werkelijke waarde zal zijn! Met andere woorden, u hebt de kansen nodig voor elke mogelijke uitkomst die zich kan voordoen. Dus op zichzelf is de puntvoorspelling niet probabilistisch.   

Om een probabilistische voorspelling te krijgen, moet u de verdeling van mogelijke eisen rond die voorspelling kennen. Zodra u dit hebt berekend, wordt de voorspelling 'probabilistisch'. Hoe prognosesystemen en beoefenaars zoals vraagplanners, voorraadanalisten, materiaalmanagers en CFO's deze waarschijnlijkheden bepalen, is de kern van de vraag: "wat maakt een prognose probabilistisch?"     

Normale verdelingen
De meeste prognoses en de systemen/software die ze produceren, beginnen met een voorspelling van de vraag. Vervolgens berekenen ze het bereik van mogelijke eisen rond die voorspelling door onjuiste theoretische aannames te doen over de verdeling. Als u ooit een "betrouwbaarheidsinterval" in uw voorspellingssoftware hebt gebruikt, is dit gebaseerd op een kansverdeling rond de voorspelling. De manier waarop dit vraagbereik wordt bepaald, is door uit te gaan van een bepaald type distributie. Meestal betekent dit dat we uitgaan van een klokvormige verdeling, ook wel bekend als een normale verdeling. Wanneer de vraag intermitterend is, kunnen sommige systemen voor voorraadoptimalisatie en vraagvoorspelling aannemen dat de vraag Poisson-vormig is. 

Nadat de prognose is gemaakt, wordt de veronderstelde verdeling rond de vraagprognose gegooid en hebt u uw schatting van kansen voor elke mogelijke vraag - dat wil zeggen, een "probabilistische prognose". Deze schattingen van de vraag en de bijbehorende waarschijnlijkheden kunnen vervolgens worden gebruikt om desgewenst extreme waarden of iets daartussenin te bepalen. De extreme waarden in de bovenste percentielen van de distributie (dwz 92%, 95%, 99%, enz.) worden meestal gebruikt als invoer voor voorraadbeheermodellen. Bestelpunten voor kritieke reserveonderdelen in een elektriciteitsbedrijf kunnen bijvoorbeeld worden gepland op basis van een 99.5%-serviceniveau of zelfs hoger. Terwijl een niet-kritiek serviceonderdeel kan worden gepland op een 85%- of 90%-serviceniveau.

Het probleem met het maken van aannames over de verdeling is dat je deze kansen verkeerd zult interpreteren. Als de vraag bijvoorbeeld niet normaal verdeeld is, maar u een klokvormige/normale curve op de voorspelling afdwingt, hoe kan het dan dat de kansen onjuist zijn. In het bijzonder wilt u misschien het voorraadniveau weten dat nodig is om een 99%-kans te bereiken dat de voorraad niet opraakt en de normale distributie zal u vertellen om 200 eenheden in voorraad te hebben. Maar als je het vergelijkt met de daadwerkelijke vraag, kom je erachter dat 200 eenheden slechts in 40/50 waarnemingen volledig aan de vraag voldeden. Dus in plaats van een 99%-serviceniveau te krijgen, behaalde u alleen een 80%-serviceniveau! Dit is een gigantische misser die het gevolg is van het proberen een vierkante pin in een rond gat te passen. De misser zou ertoe hebben geleid dat u een onjuiste voorraadvermindering had genomen.

Empirisch geschatte verdelingen zijn slim
Om een slimme (lees nauwkeurige) probabilistische voorspelling te maken, moet u eerst de verdeling van de vraag empirisch schatten zonder enige naïeve aannames over de vorm van de verdeling. Smart Software doet dit door tienduizenden gesimuleerde vraag- en doorlooptijdscenario's uit te voeren. Onze oplossing maakt gebruik van gepatenteerde technieken die Monte Carlo-simulatie, statistische bootstrapping en andere methoden bevatten. De scenario's zijn ontworpen om reële onzekerheid en willekeur van zowel vraag als doorlooptijden te simuleren. Actuele historische waarnemingen worden gebruikt als de primaire invoer, maar de oplossing geeft u de mogelijkheid om ook te simuleren van niet-waargenomen waarden. Alleen al omdat 100 eenheden de historische piekvraag was, wil dat nog niet zeggen dat u in de toekomst gegarandeerd op 100 piekt. Nadat de scenario's zijn voltooid, weet u de exacte waarschijnlijkheid voor elke uitkomst. De "punt"-voorspelling wordt dan het middelpunt van die verdeling. Elke toekomstige periode in de tijd wordt uitgedrukt in termen van de kansverdeling die bij die periode hoort.

Leiders in probabilistische prognoses
Smart Software, Inc. was twintig jaar geleden het eerste bedrijf dat ooit statistische bootstrapping introduceerde als onderdeel van een commercieel verkrijgbaar softwaresysteem voor vraagvoorspelling. We kregen er destijds een Amerikaans patent voor en werden finalist genoemd in de APICS Corporate Awards of Excellence for Technological Innovation. Ons NSF gesponsord onderzoek die tot deze en andere ontdekkingen leidden, speelden een belangrijke rol bij het bevorderen van prognoses en voorraadoptimalisatie. Wij zetten ons in voor voortdurende innovatie, en dat kunt u ook vind hier meer informatie over ons meest recente patent.