Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Ik begin met een bekentenis: ik ben een algoritme-man. Mijn hart leeft in de ‘machinekamer’ van onze software, waar razendsnelle berekeningen heen en weer gaan door de AWS-cloud, waardoor vraag- en aanbodscenario’s worden gegenereerd die worden gebruikt als leidraad voor belangrijke beslissingen over vraagvoorspelling en voorraadbeheer.

Maar ik erken dat het doelwit van al die mooie, woedende berekeningen het brein van de baas is, de persoon die verantwoordelijk is om ervoor te zorgen dat op de meest efficiënte en winstgevende manier aan de vraag van de klant wordt voldaan. Deze blog gaat dus over Smart Operational Analytics (SOA), waarmee rapportages voor het management worden gemaakt. Of, zoals ze in het leger worden genoemd, sit-reps.

Alle berekeningen die door de planners met behulp van onze software worden begeleid, worden uiteindelijk gedestilleerd in de SOA-rapporten voor het management. De rapporten richten zich op vijf gebieden: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Voorraadanalyse

Deze rapporten houden de huidige voorraadniveaus in de gaten en identificeren gebieden die verbetering behoeven. De nadruk ligt op de huidige voorraadaantallen en hun status (voorhanden, onderweg, in quarantaine), voorraadwisselingen en excessen versus tekorten.

Voorraadprestaties

Deze rapporten houden Key Performance Indicators (KPI's) bij, zoals opvullingspercentages, serviceniveaus en voorraadkosten. De analytische berekeningen elders in de software begeleiden u bij het behalen van uw KPI-doelen door Key Performance Predictions (KPP's) te berekenen op basis van aanbevolen instellingen voor bijvoorbeeld bestelpunten en bestelhoeveelheden. Maar soms komen er verrassingen voor, of wordt het operationele beleid niet uitgevoerd zoals aanbevolen, waardoor er altijd enige discrepantie zal zijn tussen KPP's en KPI's.

Voorraadtrends

Weten waar de zaken er vandaag voor staan is belangrijk, maar zien waar de zaken zich ontwikkelen is ook waardevol. Deze rapporten onthullen trends in de vraag naar artikelen, voorraadgebeurtenissen, het gemiddelde aantal beschikbare dagen, de gemiddelde verzendtijd en meer.

Prestaties van leveranciers

Uw bedrijf kan niet optimaal presteren als uw leveranciers u naar beneden halen. Deze rapporten monitoren de prestaties van leveranciers op het gebied van de nauwkeurigheid en snelheid van het invullen van aanvullingsorders. Als u meerdere leveranciers voor hetzelfde artikel heeft, kunt u deze met elkaar vergelijken.

Vraagafwijkingen

Uw gehele voorraadsysteem is vraaggestuurd en alle voorraadbeheerparameters worden berekend na het modelleren van de artikelvraag. Dus als er iets vreemds gebeurt aan de vraagzijde, moet u waakzaam zijn en u voorbereiden op het herberekenen van zaken als min- en max-waarden voor artikelen die zich vreemd beginnen te gedragen.

Overzicht

Het eindpunt van alle enorme berekeningen in onze software is het dashboard dat het management laat zien wat er aan de hand is, wat de toekomst biedt en waar de aandacht op moet worden gevestigd. Smart Inventory Analytics is het onderdeel van ons software-ecosysteem gericht op de C-Suite van uw bedrijf.

 Smart Reporting Studio Inventory Management Supply Software

Figuur 1: Enkele voorbeeldrapportages in grafische vorm

 

Je moet samenwerken met de algoritmen

Ruim veertig jaar geleden bestond Smart Software uit drie vrienden die in de kelder van een kerk een bedrijf begonnen te starten. Tegenwoordig is ons team uitgebreid en opereert vanuit meerdere locaties in Massachusetts, New Hampshire en Texas, met teamleden in Engeland, Spanje, Armenië en India. Net als velen van u in uw functie hebben wij manieren gevonden om gedistribueerde teams voor ons en voor u te laten werken.

Deze notitie gaat over een ander soort teamwerk: de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. Ik schrijf vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is mijn onderwerp hoe je het beste met de software kunt samenwerken.

Onze softwaresuite, Smart Inventory Planning and Optimization (Smart IP&O™) is in staat tot zeer gedetailleerde berekeningen van de toekomstige vraag en de voorraadcontroleparameters (bijvoorbeeld bestelpunten en bestelhoeveelheden) die die vraag het meest effectief zouden beheren. Maar om al die kracht optimaal te kunnen benutten, is uw inbreng nodig. Je moet samenwerken met de algoritmen.

Die interactie kan verschillende vormen aannemen. U kunt beginnen door simpelweg te beoordelen hoe het nu met u gaat. De rapportschrijffuncties in Smart IP&O (Smart Operational Analytics™) kunnen al uw transactiegegevens verzamelen en analyseren om uw Key Performance Indicators (KPI's) te meten, zowel financieel (bijvoorbeeld voorraadinvesteringen) als operationeel (bijvoorbeeld opvullingspercentages).

De volgende stap zou kunnen zijn om SIO (Smart Inventory Optimization™), de inventarisanalyse binnen SIP&O, te gebruiken om ‘wat-als’-spelletjes met de software te spelen. U kunt zich bijvoorbeeld afvragen: 'Wat als we de bestelhoeveelheid voor artikel 1234 verlagen van 50 naar 40?' De software vermaalt de cijfers om u te laten weten hoe dat zou uitpakken, waarna u reageert. Dit kan handig zijn, maar wat als u 50.000 items moet overwegen? Je zou wat-als-spellen willen doen voor een paar cruciale items, maar niet voor allemaal.

De echte kracht zit hem in het gebruik van de automatische optimalisatiemogelijkheden in SIO. Hier kunt u op grote schaal samenwerken met de algoritmen. Op basis van uw zakelijke oordeel kunt u “groepen” creëren, dat wil zeggen verzamelingen van items die enkele cruciale kenmerken gemeen hebben. U kunt bijvoorbeeld een groep maken voor 'kritieke reserveonderdelen voor klanten van elektriciteitsbedrijven', bestaande uit 1.200 onderdelen. Vervolgens kunt u, opnieuw op basis van uw zakelijk oordeel, specificeren welke standaard voor de beschikbaarheid van artikelen moet gelden voor alle artikelen in die groep (bijvoorbeeld: “minstens 95% kans dat de voorraad binnen een jaar niet op voorraad is”). Nu kan de software het overnemen en automatisch de beste bestelpunten en bestelhoeveelheden voor elk van deze artikelen berekenen om de gewenste artikelbeschikbaarheid tegen de laagst mogelijke totale kosten te bereiken. En dat, beste lezer, is krachtig teamwerk.

 

 

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

Vraagpatronen

Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

 

Zakelijke kennis

Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

 

Methoden voor MRO

In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

 

Betrouwbaarheidsmodellen

Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts function and its survival function

Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

 

Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts Increasing hazard function and survival function

Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

 

Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

 

Conditiegebaseerd onderhoud

Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

 

MRO and Spare Parts real-time monitoring for condition-based maintenance

Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

 

Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

 

Smart's aanpak
De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

MRO and Spare Parts simulation of demand and on-hand inventory

Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Probabilistische voorspellingsscenario's creëren en exploiteren

    Probabilistische scenario's zijn reeksen gegevenspunten die worden gegenereerd om potentiële situaties uit de echte wereld weer te geven. In tegenstelling tot scenario's in oorlogsspellen of andere simulaties zijn dit synthetische tijdreeksen die worden gebruikt als input voor systeemmodellen of als intuïtiebouwers voor besluitvormers.

    Scenario's van de toekomstige vraag naar artikelen kunnen bijvoorbeeld worden ingevoerd in Monte Carlo-simulatiemodellen van voorraadbeheersystemen, waardoor een virtueel laboratorium ontstaat waarin de gevolgen van managementbeslissingen kunnen worden onderzocht, zoals het wijzigen van bestelpunten en/of bestelhoeveelheden. Bovendien kunnen grafieken van meetgegevens, zoals voorhanden voorraad of stockouts, voorraadplanners helpen hun ‘gevoel’ voor de willekeur die inherent is aan hun activiteiten te verdiepen.

    Figuur 1 toont dagelijkse vraagscenario's die zijn gegenereerd op basis van een enkele waargenomen vraagreeks die gedurende één jaar is geregistreerd. Merk op dat hetzelfde proces voor het genereren van gegevens er in detail “heel anders uit kan zien” van monster tot monster. Dit bootst het echte leven na.

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 1

    Figuur 1: Een waargenomen vraagvolgorde en daarvan afgeleide vraagscenario’s.

     

    Figuur 2 toont twee vraagscenario's en hun gevolgen voor de voorraad in een bepaald voorraadbeheersysteem. Het verschil tussen de twee voorraadgrafieken illustreert de mate waarin de willekeur in de vraag het probleem domineert. Het bovenste plot toont twee afleveringen van stockout, terwijl het onderste plot negen toont. Door het gemiddelde te nemen over vele scenario's zullen de typische waarden van Key Performance Metrics (KPI's) worden verduidelijkt, zoals het gemiddelde aantal stockouts dat is gekoppeld aan elke keuze van het bestelpunt en de bestelhoeveelheid (die respectievelijk 10 en 25 zijn in figuur 2).

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 2

    Figuur 2: Twee vraagscenario's en hun gevolgen voor de voorhanden voorraad

     

    In deze notitie beschrijven we technieken voor het maken van scenario's en geven we criteria op voor het evalueren van scenariogeneratoren.

    Criteria voor scenario's

    Zoals we hieronder zullen zien, zijn er verschillende manieren om scenario's te maken. Ongeacht de bron, welke criteria definiëren een ‘goed’ scenario? Er zijn vier hoofdcriteria: trouw, variëteit, hoeveelheid en kosten. Trouw vat samen hoe nauwkeurig een scenario situaties uit de echte wereld imiteert. High-fidelity betekent dat de scenario's de werkelijke gebeurtenissen nauwkeurig weerspiegelen en een solide basis vormen voor analyse en besluitvorming. Verscheidenheid beschrijft de diversiteit aan scenario's die een generator kan creëren. Een veelzijdige generator kan een breed scala aan potentiële situaties simuleren, waardoor mogelijkheden en risico's grondig kunnen worden verkend. Hoeveelheid verwijst naar het aantal scenario's dat een generator kan produceren. Een generator die een groot aantal scenario's kan creëren, levert voldoende gegevens voor analyse. Kosten houdt rekening met zowel de computer- als de menselijke hulpbronnen die nodig zijn om de scenario's te produceren. Een efficiënte scenariogenerator brengt kwaliteit in evenwicht met het gebruik van hulpbronnen, zodat de inspanning wordt gerechtvaardigd door de waarde en nauwkeurigheid van de resultaten.

    Scenariogeneratie

    Denk opnieuw aan een scenario als een tijdreeks. Hoe komen scenario's tot stand?

    1. Gepetto's werkplaats: Deze aanpak omvat het handmatig vervaardigen van scenario's door experts. Hoewel het high-fidelity (realisme) kan opleveren, vergt het zeer veel middelen en kan het niet gemakkelijk variatie genereren, wat een groot aantal scenario's vereist.
    2. Groundhog-dag: Bij deze methode wordt herhaaldelijk één enkele praktijksituatie als input gebruikt. Hoewel het per definitie realistisch en kosteneffectief is (er worden geen andere middelen gebruikt dan het vastleggen van de gegevens), mist deze aanpak variatie en kan daarom de diversiteit van scenario's uit de echte wereld niet accuraat weerspiegelen.
    3. Parametrische modellen: Voorbeelden van parametrische modellen zijn de klassiekers die in de klassen van de Statistiek worden bestudeerd: Normaal, exponentieel, Poisson, enz. De vraagdiagrammen in Figuur 2 worden parametrisch gegenereerd, zijnde de kwadraten van willekeurige Poisson-variabelen. Deze modellen genereren een onbeperkt aantal goedkope scenario's met een goede variëteit, maar ze geven niet altijd de complexiteit van gegevens uit de echte wereld weer, waardoor de betrouwbaarheid mogelijk in gevaar komt. Wanneer de werkelijkheid ingewikkelder is, genereren deze modellen te vereenvoudigde scenario's.
    4. Niet-parametrische tijdreeksbootstraps: Deze aanpak kan goed scoren op alle criteria: trouw, variëteit, kwantiteit en kosten. Het is een veelzijdige methode die uitblinkt in het creëren van enorme aantallen realistische scenario's. De synthetische vraaggeschiedenissen in Figuur 1 zijn eenvoudige bootstrap-voorbeelden, gebaseerd op de waargenomen waarden in de bovenste grafiek. (Zie de onderstaande links voor enkele details over het genereren van scenario's.)

    Scenario's exploiteren

    Scenario's bewijzen hun waarde op twee manieren: als input voor besluitvorming en als intuïtiebouwers. Wanneer vraagscenario's bijvoorbeeld worden gebruikt als input voor simulatiemodellen, maken ze stresstests en prestatieschattingen voor systeemontwerp mogelijk. Scenario's kunnen ook dienen als intuïtiebouwers voor besluitvormers of systeembeheerders. Hun visuele weergave helpt bij het ontwikkelen van inzicht in en waardering voor de risico's die gepaard gaan met het nemen van operationele beslissingen, of het nu gaat om vraagvoorspelling of voorraadbeheer.

    Scenario-gebaseerde analyse is zeer computerintensief, vooral wanneer de scenario's worden gegenereerd door middel van bootstrapping. Bij Smart Software gebeurt het rekenen in de cloud. Stel je de rekenlast voor die gepaard gaat met het bepalen van bestelpunten en bestelhoeveelheden voor elk van de tienduizenden voorraadartikelen met behulp van honderden of duizenden vraagsimulaties voor elk artikel. Stel je verder voor dat de software niet alleen een specifiek voorgesteld paar van bestelpunten en bestelhoeveelheid evalueert, maar door de hele “ontwerpruimte” van paren dwaalt om het beste paar controleparameters voor elk item te vinden. Om dit praktisch te maken, profiteren we van de parallelle verwerkingskracht van de cloud. In wezen krijgt elk inventarisitem een eigen computer toegewezen die bij de berekeningen kan worden gebruikt, zodat al dat computerwerk tegelijkertijd kan plaatsvinden in plaats van opeenvolgend. Nu kunnen we losgaan en u echt de resultaten bezorgen die u nodig heeft.

    Meer leren

    Wie geïnteresseerd is in verdere technische details en referenties, kan hier meer informatie vinden.

    Wat maakt een probabilistische voorspelling?

    Probabilistische prognoses voor intermitterende vraag

     

     

     

     

    Een ruwe kaart van termen die verband houden met prognoses

    Mensen die nieuw zijn in de functie van “vraagplanner” of “aanbodplanner” zullen waarschijnlijk vragen hebben over de verschillende prognosetermen en -methoden die in hun baan worden gebruikt. Deze notitie kan helpen door deze termen uit te leggen en te laten zien hoe ze verband houden.

     

    Demand Planning

    Vraagplanning gaat over hoeveel van wat u te verkopen heeft in de toekomst de deur uit zal gaan, bijvoorbeeld hoeveel wat niet u het volgende kwartaal zult verkopen. Hier volgen zes methodologieën die vaak worden gebruikt bij vraagplanning.

    • Statistical Forecasting
      • Deze methoden gebruiken de vraaggeschiedenis om toekomstige waarden te voorspellen. De twee meest gebruikelijke methoden zijn curve-fitting en data-afvlakking.
      • Curve-aanpassing komt overeen met een eenvoudige wiskundige functie, zoals de vergelijking voor een rechte lijn (y= a +b∙t) of een rentecurve (y=a∙bT), naar de vraaggeschiedenis. Vervolgens breidt het die lijn of curve voorwaarts in de tijd uit als de voorspelling.
      • Het gladmaken van gegevens resulteert daarentegen niet in een vergelijking. In plaats daarvan doorloopt het de geschiedenis van de vraag, waarbij gaandeweg de waarden worden gemiddeld, om een vloeiendere versie van de geschiedenis te creëren. Deze methoden worden exponentiële afvlakking en voortschrijdend gemiddelde genoemd. In het eenvoudigste geval (dat wil zeggen, bij afwezigheid van trends of seizoensinvloeden, waarvoor varianten bestaan), is het doel om het huidige gemiddelde vraagniveau te schatten en dat als voorspelling te gebruiken.
      • Deze methoden produceren “puntvoorspellingen”, dit zijn schattingen op één getal voor elke toekomstige tijdsperiode (bijvoorbeeld: “De verkoop in maart zal 218 eenheden bedragen”). Soms komen ze met schattingen van potentiële voorspellingsfouten, die zijn gebaseerd op afzonderlijke modellen voor de variabiliteit van de vraag (“De verkoop in maart zal 218 ± 120 eenheden bedragen”).
    • Probabilistic Forecasting
      • Deze benadering maakt gebruik van de willekeur van de vraag en werkt hard om de prognoseonzekerheid in te schatten. Het beschouwt prognoses minder als een oefening in het verzamelen van specifieke cijfers en meer als een oefening in risicobeheer.
      • Het modelleert expliciet de variabiliteit in de vraag en gebruikt die om resultaten te presenteren in de vorm van grote aantallen scenario's die zijn geconstrueerd om het volledige scala aan mogelijke vraagsequenties weer te geven. Deze zijn vooral handig bij taken op het gebied van tactische leveringsplanning, zoals het instellen van bestelpunten en bestelhoeveelheden.
    • Causale voorspellingen
      • Statistische voorspellingsmodellen gebruiken als input alleen de vraaggeschiedenis van het betreffende artikel in het verleden. Ze beschouwen de op en neer gaande bewegingen in het vraagdiagram als het eindresultaat van talloze niet nader genoemde factoren (rentetarieven, de prijs van thee in China, fasen van de maan, wat dan ook). Causale voorspellingen identificeren expliciet één of meer invloeden (rentetarieven, advertentie-uitgaven, prijzen van concurrenten, …) die op plausibele wijze de verkoop kunnen beïnvloeden. Vervolgens wordt een vergelijking opgesteld die de numerieke waarden van deze ‘drivers’ of ‘causale factoren’ relateert aan de verkoop van artikelen. De coëfficiënten van de vergelijking worden geschat door middel van “regressieanalyse”.
    • Oordelende voorspellingen
      • Gouden Darm. Ondanks de algemene beschikbaarheid van klodders data, besteden sommige bedrijven weinig aandacht aan de cijfers en hechten ze meer gewicht aan de subjectieve oordelen van een leidinggevende die wordt geacht een ‘Gouden Buik’ te hebben, waardoor hij of zij ‘onderbuikgevoel’ kan gebruiken om te voorspellen wat de toekomstige vraag zal zijn. Als die persoon veel ervaring heeft, een carrière lang naar de cijfers heeft gekeken en niet vatbaar is voor wensdenken of andere vormen van cognitieve vooringenomenheid, kan de Gouden Darm een goedkope, snelle manier van plannen zijn. Maar er zijn goede aanwijzingen uit studies van bedrijven die op deze manier worden uitgevoerd, dat vertrouwen op de Gouden Gut riskant is.
      • Groepsconsensus. Vaker is een proces waarbij gebruik wordt gemaakt van een periodieke bijeenkomst om tot een groepsconsensusvoorspelling te komen. De groep zal toegang hebben tot gedeelde objectieve gegevens en voorspellingen, maar de leden zullen ook kennis hebben van factoren die mogelijk niet goed of helemaal niet worden gemeten, zoals het consumentenvertrouwen of de verhalen van verkopers. Het is nuttig om voor deze discussies een gedeeld, objectief uitgangspunt te hebben dat bestaat uit een soort objectieve statistische analyse. Vervolgens kan de groep overwegen om de statistische voorspelling aan te passen. Dit proces verankert de voorspelling in de objectieve realiteit, maar maakt gebruik van alle andere informatie die beschikbaar is buiten de voorspellingsdatabase.
      • Scenariogeneratie. Soms ontmoeten meerdere mensen elkaar en bespreken ze ‘strategische wat-als’-vragen. “Wat als we onze Australische klanten verliezen?” “Wat als de uitrol van onze nieuwe producten met zes maanden wordt uitgesteld?” "Wat als onze verkoopmanager voor het Midden-Westen naar een concurrent springt?" Deze vragen over het grotere geheel kunnen implicaties hebben voor itemspecifieke prognoses en kunnen worden toegevoegd aan elke bijeenkomst over prognoses voor groepsconsensus.
    • Prognose van nieuwe producten
      • Nieuwe producten hebben per definitie geen verkoopgeschiedenis die statistische, waarschijnlijkheids- of causale voorspellingen ondersteunt. Hier kunnen altijd subjectieve voorspellingsmethoden worden gebruikt, maar deze berusten vaak op een gevaarlijke verhouding tussen hoop en feiten. Gelukkig bestaat er op zijn minst gedeeltelijke steun voor objectieve voorspellingen in de vorm van curve-fitting.
      • Een grafiek van de cumulatieve verkoop van een artikel beschrijft vaak een soort “S-curve”, dat wil zeggen een grafiek die begint bij nul, zich opbouwt en vervolgens afvlakt tot de totale totale verkoop gedurende de uiteindelijke levensduur. De curve dankt zijn naam aan het feit dat hij lijkt op een letter S die op de een of andere manier naar rechts is uitgesmeerd en uitgerekt. Nu zijn er een oneindig aantal S-curves, dus voorspellers kiezen doorgaans een vergelijking en specificeren subjectief enkele belangrijke parameterwaarden, zoals wanneer de omzet 25%, 50% en 75% van de totale levenslange omzet zal bereiken en wat dat uiteindelijke niveau zal zijn. Dit is ook openlijk subjectief, maar het levert gedetailleerde voorspellingen per periode op die kunnen worden bijgewerkt naarmate de ervaring toeneemt. Ten slotte worden S-curven soms gevormd om overeen te komen met de bekende geschiedenis van een soortgelijk voorgangerproduct ("De verkoop voor onze laatste gizmo zag er zo uit, dus laten we dat als sjabloon gebruiken.").

     

    Supply Planning

    Vraagplanning wordt meegenomen in de aanbodplanning door toekomstige verkopen (bijvoorbeeld voor eindproducten) of gebruik (bijvoorbeeld voor reserveonderdelen) te voorspellen. Vervolgens is het aan de leveringsplanning om ervoor te zorgen dat de betreffende artikelen beschikbaar zijn voor verkoop of gebruik.

    • Afhankelijke vraag
      • Afhankelijke vraag is de vraag die kan worden bepaald door de relatie ervan met de vraag naar een ander artikel. Uit een stuklijst kan bijvoorbeeld blijken dat een rood wagentje bestaat uit een carrosserie, een trekstang, vier wielen, twee assen en diverse bevestigingsmiddelen om de wielen op de assen te houden en de trekstang met de carrosserie te verbinden. Dus als je 10 kleine rode wagons hoopt te verkopen, kun je er beter 10 maken, wat betekent dat je 10×2 = 20 assen, 10×4 = 40 wielen, enz. nodig hebt. De afhankelijke vraag regelt de aankoop van grondstoffen, de aankoop van componenten en subsystemen, zelfs personeel inhuren (voor 10 wagons is één middelbare scholier nodig om ze in een dienst van een uur in elkaar te zetten).
      • Als u meerdere producten heeft met gedeeltelijk overlappende stuklijsten, heeft u de keuze uit twee prognosebenaderingen. Stel dat u niet alleen kleine rode wagentjes verkoopt, maar ook kleine blauwe kinderwagens, die allebei dezelfde assen gebruiken. Om het aantal assen te voorspellen dat u nodig heeft, kunt u (1) de afhankelijke vraag naar assen van elk product voorspellen en de prognoses toevoegen, of (2) de totale vraaggeschiedenis naar assen als zijn eigen tijdreeks bekijken en die afzonderlijk voorspellen. Wat beter werkt, is een empirische vraag die kan worden getest.
    • Voorraadbeheer
      • Voorraadbeheer omvat veel verschillende taken. Deze omvatten het instellen van parameters voor voorraadbeheer, zoals bestelpunten en bestelhoeveelheden, het reageren op onvoorziene omstandigheden zoals voorraadtekorten en het versnellen van bestellingen, het instellen van personeelsbezetting en het selecteren van leveranciers.
    • Bij de eerste drie speelt forecasting een rol. Het aantal aanvulbestellingen dat in een jaar voor elk product wordt gedaan, bepaalt hoeveel mensen er nodig zijn om inkooporders te verlagen. Het aantal en de ernst van stockouts in een jaar bepalen het aantal onvoorziene gebeurtenissen dat moet worden afgehandeld. Het aantal inkooporders en stockouts in een jaar zal willekeurig zijn, maar wordt bepaald door de keuze van de parameters voor voorraadbeheer. De implicaties van dergelijke keuzes kunnen worden gemodelleerd door inventarissimulaties. Deze simulaties zullen worden aangestuurd door gedetailleerde vraagscenario's die worden gegenereerd door probabilistische voorspellingen.