El papel de la confianza en el proceso de previsión de la demanda Parte 1: En quién confiar

 

“Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

¿En quién confías?

La confianza es siempre una calle de doble sentido, pero permanezcamos del lado del pronosticador de la demanda. ¿Qué características y acciones de los pronosticadores y planificadores de la demanda generan confianza en su trabajo? La profesora Onkal citada anteriormente revisó la investigación académica sobre este tema que se remonta a 2006. Resumió los resultados de encuestas a profesionales que identificaron factores clave de confianza relacionados con las características del pronosticador, el proceso de pronóstico y la comunicación del pronóstico.

Características del pronosticador

La clave para generar confianza entre los usuarios de los pronósticos son las percepciones de la competencia y objetividad del pronosticador y del planificador de la demanda. La competencia tiene un componente matemático, pero muchos gerentes confunden las habilidades informáticas con las habilidades analíticas, por lo que los usuarios de software de pronóstico generalmente pueden superar este obstáculo. Sin embargo, dado que los dos no son lo mismo, vale la pena absorber la capacitación de su proveedor y aprender no solo las matemáticas sino también la jerga de su software de pronóstico. En mi observación, la confianza también puede incrementarse mostrando conocimiento del negocio de la empresa.

La objetividad es también una clave para la confiabilidad. Puede ser incómodo para el pronosticador estar en medio de disputas departamentales ocasionales, pero surgirán y deben manejarse con tacto. ¿Peleas? Bueno, los silos existen y se inclinan en diferentes direcciones. Los departamentos de ventas favorecen las previsiones de demanda más altas que impulsan los aumentos de producción, de modo que nunca tengan que decir "Lo siento, acabamos de salir de eso". Los gerentes de inventario desconfían de los pronósticos de alta demanda, porque el "exceso de entusiasmo" puede dejarlos con la bolsa en la mano, sentados sobre un inventario inflado.

A veces el pronosticador se convierte en un de facto árbitro, y en este papel debe mostrar signos evidentes de objetividad. Eso puede significar primero reconocer que cada decisión de gestión implica compensaciones de cosas buenas contra otras cosas buenas, por ejemplo, disponibilidad del producto versus operaciones ajustadas, y luego ayudar a las partes a lograr un equilibrio doloroso pero tolerable al mostrar los vínculos entre las decisiones operativas y las métricas clave de rendimiento. que le importan a personas como los directores financieros.

El proceso de previsión

Se puede pensar que el proceso de pronóstico tiene tres fases: entradas de datos, cálculos y salidas. Se pueden tomar acciones para aumentar la confianza en cada fase.

 

En cuanto a las entradas:

La confianza se puede aumentar si las entradas obviamente relevantes se reconocen al menos si no se usan directamente en los cálculos. Por lo tanto, factores como el sentimiento de las redes sociales y los instintos de los gerentes de ventas regionales pueden ser partes legítimas de un proceso de consenso de pronóstico. Sin embargo, la objetividad requiere que estos predictores putativos de ganancias sean probados objetivamente. Por ejemplo, un proceso de pronóstico de nivel profesional bien puede incluir un ajuste subjetivo a los pronósticos estadísticos, pero luego también debe evaluar si los ajustes realmente terminan mejorando la precisión, no solo haciendo que algunas personas se sientan escuchadas.

En cuanto a la segunda fase, los cálculos:

Se confiará en el pronosticador en la medida en que pueda implementar más de una forma de calcular los pronósticos y luego articular una buena razón por la que eligió el método finalmente utilizado. Además, el pronosticador debe ser capaz de explicar en un lenguaje accesible cómo funcionan incluso las técnicas más complicadas. Es difícil confiar en un método de “caja negra” tan opaco que resulta inescrutable. La importancia de la explicabilidad se amplifica por el hecho de que el superior del pronosticador debe ser capaz de justificar la elección de la técnica para su supervisor.

Por ejemplo, el suavizado exponencial usa esta ecuación: S(t) = αX(t)+(1-α)S(t-1). Muchos pronosticadores están familiarizados con esta ecuación, pero muchos usuarios de pronósticos no. Hay una historia que explica la ecuación en términos de promediar el "ruido" irrelevante en el historial de demanda de un artículo y la necesidad de lograr un equilibrio entre suavizar el ruido y ser capaz de reaccionar ante cambios repentinos en el nivel de demanda. El pronosticador que pueda contar esa historia será más creíble. (Mi propia versión de esa historia usa frases de los deportes, es decir, "falsificaciones de cabeza" y "jukes". Encontrar análogos campechanos apropiados para su audiencia específica siempre paga dividendos).

Un punto final: las mejores prácticas exigen que cualquier pronóstico vaya acompañado de una evaluación honesta de su incertidumbre. Un pronosticador que trata de generar confianza siendo demasiado específico ("Las ventas del próximo trimestre serán de 12,184 unidades") siempre fallará. Un pronosticador que dice "Las ventas del próximo trimestre tendrán una probabilidad de 90% de caer entre 12,000 y 12,300 unidades" será correcto con más frecuencia y también más útil para los tomadores de decisiones. Después de todo, la previsión es esencialmente un trabajo de gestión de riesgos, por lo que la mejor forma de tomar decisiones es conocer los riesgos.

Comunicación de previsión:

Finalmente, considere la tercera fase, la comunicación de los resultados del pronóstico. La investigación sugiere que la comunicación continua con los usuarios del pronóstico genera confianza. Evita esos horribles y desalentadores momentos en los que un informe con un buen formato es derribado debido a algún defecto fatal que podría haberse previsto: "Esto no es bueno porque no tuvo en cuenta X, Y o Z" o "Realmente queríamos presentar los resultados acumulados en la parte superior de las jerarquías de productos (o por región de ventas o por línea de productos o…)”.

Incluso cuando todos están alineados en cuanto a lo que se espera, la confianza aumenta al presentar los resultados mediante gráficos bien elaborados, con tablas numéricas masivas proporcionadas como respaldo, pero no como la forma principal de comunicar los resultados. Mi experiencia ha sido que, al igual que un dispositivo de control de reuniones, un gráfico suele ser mucho mejor que una gran tabla numérica. Con un gráfico, la atención de todos se centra en lo mismo y muchos aspectos del análisis son inmediatamente (y literalmente) visibles. Con una tabla de resultados, la mesa de participantes a menudo se divide en conversaciones paralelas en las que cada voz se enfoca en diferentes piezas de la mesa.

Onkal resume la investigación de esta manera: "Las conclusiones para quienes hacen pronósticos y quienes los utilizan convergen en torno a la claridad de la comunicación, así como a las percepciones de competencia e integridad".

¿En qué confías?

Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software….  Lee la 2da parte de este Blog “En qué Confías” aquí  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/

 

 

 

 

¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?
Los principales factores que afectan la velocidad de su motor de pronóstico 

¿Cuánto tiempo debe tomar para calcular un pronóstico de demanda usando métodos estadísticos? Esta pregunta la hacen a menudo los clientes actuales y potenciales. La respuesta realmente depende. Los resultados del pronóstico para un solo elemento se pueden calcular en un abrir y cerrar de ojos, en tan solo unas pocas centésimas de segundo, pero a veces pueden requerir hasta cinco segundos. Para comprender las diferencias, es importante entender que hay más cosas involucradas que solo repasar la aritmética del pronóstico en sí. Aquí hay seis factores que influyen en la velocidad de su motor de pronóstico.

1) Método de pronóstico.  Las técnicas tradicionales de extrapolación de series de tiempo (como el suavizado exponencial y los métodos de promedio móvil), cuando están codificadas inteligentemente, son muy rápidas. Por ejemplo, el motor de pronóstico automático Smart Forecast que aprovecha estas técnicas y potencia nuestro software de optimización de inventario y planificación de demanda puede generar pronósticos estadísticos sobre 1,000 artículos en 1 segundo. Los métodos de extrapolación producen un pronóstico esperado y una medida resumida de la incertidumbre del pronóstico. Sin embargo, los modelos más complejos en nuestra plataforma que generan escenarios de demanda probabilísticos toman mucho más tiempo con los mismos recursos informáticos. Esto se debe en parte a que crean un volumen de producción mucho mayor, por lo general miles de secuencias de demanda futura plausibles. Más tiempo, sí, pero no tiempo perdido, ya que estos resultados son mucho más completos y forman la base para la optimización posterior de los parámetros de control de inventario.

2) Recursos informáticos.  Cuantos más recursos arroje al cálculo, más rápido será. Sin embargo, los recursos cuestan dinero y puede que no sea económico invertir en estos recursos. Por ejemplo, para hacer que ciertos tipos de pronósticos basados en aprendizaje automático funcionen, el sistema necesitará realizar cálculos de subprocesos múltiples en varios servidores para entregar resultados rápidamente. Por lo tanto, asegúrese de comprender los recursos informáticos asumidos y los costos asociados. Nuestros cálculos se realizan en la nube de Amazon Web Services, por lo que es posible pagar una gran cantidad de cómputo paralelo si se desea.

3) Número de series temporales.  ¿Tiene que pronosticar solo unos pocos cientos de artículos en una sola ubicación o muchos miles de artículos en docenas de ubicaciones? Cuanto mayor sea el número de combinaciones de SKU x Ubicación, mayor será el tiempo requerido. Sin embargo, es posible recortar el tiempo para obtener pronósticos de demanda mediante una mejor clasificación de la demanda. Por ejemplo, no es importante pronosticar cada combinación de SKU x Ubicación. El software moderno de planificación de la demanda primero puede subdividir los datos en función de las clasificaciones de volumen/frecuencia antes de ejecutar el motor de pronóstico. Hemos observado situaciones en las que existían más de un millón de combinaciones SKU x Ubicación, pero solo el diez por ciento tenía demanda en los doce meses anteriores.

4) Clasificación histórica. ¿Está pronosticando utilizando intervalos de tiempo diarios, semanales o mensuales? Cuanto más granular sea la agrupación, más tiempo llevará calcular los pronósticos estadísticos. Muchas empresas se preguntarán: "¿Por qué alguien querría pronosticar diariamente?" Sin embargo, el software de pronóstico de demanda de última generación puede aprovechar los datos diarios para detectar patrones simultáneos de días de la semana y semanas del mes que, de otro modo, quedarían ocultos con los grupos de demanda mensuales tradicionales. Y la velocidad de los negocios continúa acelerándose, amenazando la viabilidad competitiva del ritmo de planificación mensual tradicional.

5) Cantidad de Historia. ¿Está limitando el modelo alimentándolo solo con el historial de demanda más reciente, o está introduciendo todo el historial disponible en el software de previsión de demanda? Cuanto más historial alimente el modelo, más datos se deben analizar y más tiempo llevará.

6) Procesamiento analítico adicional.  Hasta ahora, hemos imaginado ingresar el historial de demanda de los artículos y obtener pronósticos. Pero el proceso también puede implicar pasos analíticos adicionales que pueden mejorar los resultados. Ejemplos incluyen:

a) Detección y eliminación de valores atípicos para minimizar la distorsión causada por eventos únicos como daños por tormentas.

b) Aprendizaje automático que decide cuánto historial se debe usar para cada elemento detectando el cambio de régimen.

C) Modelado causal que identifica cómo los cambios en los impulsores de la demanda (como el precio, la tasa de interés, la opinión del cliente, etc.) afectan la demanda futura.

d) Informe de excepción que utiliza el análisis de datos para identificar situaciones inusuales que ameritan una mayor revisión por parte de la gerencia.

 

El resto de la historia. También es fundamental comprender que el tiempo para obtener una respuesta implica más que la velocidad de los cálculos de pronóstico. per se. Los datos deben cargarse en la memoria antes de que pueda comenzar la computación. Una vez que se calculan los pronósticos, su navegador debe cargar los resultados para que puedan mostrarse en la pantalla para que usted interactúe con ellos. Si vuelve a pronosticar un producto, puede optar por guardar los resultados. Si está trabajando con jerarquías de productos (agregando pronósticos de artículos hasta familias de productos, familias hasta líneas de productos, etc.), el nuevo pronóstico afectará la jerarquía y todo debe conciliarse. Todo esto lleva tiempo.

¿Lo suficientemente rápido para ti? Cuando está evaluando el software para ver si su necesidad de velocidad será satisfecha, todo esto puede probarse como parte de una prueba de concepto o prueba ofrecida por los proveedores de soluciones de software de planificación de la demanda. Pruébelo y asegúrese de que el calcular, cargar y guardar los tiempos son aceptables dado el volumen de datos y los métodos de pronóstico que desea utilizar para respaldar su proceso.

 

 

 

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

 ¿Qué es el efecto de oscilación? 

Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real.

Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cliente: “El pronóstico no sigue los patrones que veo en el historial. ¿Por qué no?" 

Inteligente: “Si miras de cerca, los altibajos que ves no son patrones. Es realmente ruido”.  

Cliente: “Pero si no predecimos los máximos, nos agotamos”.

Smart: “Si el pronóstico 'se moviera', sería mucho menos preciso. El sistema pronosticará cualquier patrón que sea evidente, en este caso una tendencia alcista muy leve. Protegeremos el ruido con existencias de seguridad. Los meneos se utilizan para establecer las existencias de seguridad”.

Cliente: “Está bien. Tiene sentido ahora. 

Do your statistical forecasts suffer from the wiggle effect graphic

El movimiento parece tranquilizador pero, en este caso, está dando como resultado un pronóstico de demanda incorrecto. Los altibajos en realidad no ocurren a la misma hora cada mes. Un mejor pronóstico estadístico se muestra en verde claro.

 

 

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero? Cuando la demanda anterior es mucho mayor que la demanda más reciente y la demanda más reciente tiene un volumen muy bajo (es decir, 1,2,3 unidades demandadas), la respuesta es, estadísticamente hablando, sí. Sin embargo, esto podría no coincidir con el conocimiento comercial del planificador y el nivel mínimo esperado de demanda. Entonces, ¿qué debe hacer un pronosticador para corregir esto? Aquí hay tres sugerencias:

 

  1. Limite los datos históricos alimentados al modelo. En una situación de tendencia a la baja, los datos más antiguos a menudo se mucho mayor que los datos recientes. Cuando se ignora la demanda de volumen mucho mayor anterior, la tendencia a la baja no será tan significativa. Todavía pronosticará una tendencia a la baja, pero es más probable que los resultados estén en línea con las expectativas comerciales.
  1. Pruebe la amortiguación de tendencias. Smart Demand Planner tiene una función llamada "cobertura de tendencias" que permite a los usuarios definir cómo una tendencia debe desaparecer con el tiempo. Cuanto mayor sea la cobertura de tendencia porcentual (0-100%), más pronunciada será la amortiguación de tendencia. Esto significa que una tendencia pronosticada no continuará durante todo el horizonte de pronóstico. Esto significa que el pronóstico de demanda comenzará a aplanarse antes de que llegue a cero en una tendencia bajista.
  1. Cambiar el modelo de pronóstico. Cambie de un método de tendencia, como Suavizado exponencial doble o Promedio móvil lineal, a un método sin tendencia, como Suavizado exponencial único o Promedio móvil simple. No pronosticará una tendencia a la baja, pero al menos su pronóstico no será cero y, por lo tanto, es más probable que la empresa lo acepte.

 

 

 

Más allá del pronóstico: planificación de colaboración y consenso

5 pasos para la planificación de la demanda por consenso

El objetivo de la previsión de la demanda es establecer la mejor visión posible de la demanda futura. Esto requiere que recurramos a los mejores datos e insumos que podamos obtener, estadísticas de apalancamiento para capturar patrones subyacentes, unir nuestras cabezas para aplicar anulaciones basadas en el conocimiento comercial y acordar un plan de demanda de consenso que sirva como piedra angular para el plan de demanda general de la empresa.

Paso 1: Desarrolle una señal de demanda precisa.   ¿Qué constituye la demanda? Considere cómo su organización define la demanda, por ejemplo, órdenes de venta confirmadas netas de cancelaciones o datos de envío ajustados para eliminar el impacto de los desabastecimientos históricos, y utilícelo de manera consistente. Esta es su medida de lo que el mercado le pide que entregue. No confunda esto con su capacidad de entrega, eso debe reflejarse en el plan de ingresos.

Paso 2: generar un pronóstico estadístico. Planifique para miles de artículos con una aplicación de pronóstico comprobada que extrae automáticamente sus datos y produce pronósticos precisos de manera confiable para todos de tus artículos. Revise la primera pasada de su pronóstico, luego haga los ajustes. Es posible que una huelga o un choque de trenes hayan interrumpido el envío el mes pasado; no deje que eso cambie su pronóstico. Ajuste para estos y vuelva a pronosticar. Haz lo mejor que puedas, luego invita a otros a opinar.

Paso 3: traiga a los expertos. Los gerentes de línea de productos, los líderes de ventas y los socios de distribución clave conocen sus mercados.  Comparte tu pronóstico con ellos. Smart utiliza el concepto de una "instantánea" para compartir un facsímil de su pronóstico, en cualquier nivel, para cualquier línea de productos, con personas que pueden saberlo mejor. Podría haber un pedido enorme que no ha llegado a la tubería, o un socio de canal está a punto de ejecutar su promoción anual. Ofrézcales una manera fácil de tomar su parte del pronóstico y cambiarlo. Arrastre este mes hacia arriba, ese hacia abajo...

Paso 4: Mida la precisión y pronostique el valor agregado. Algunos de sus colaboradores pueden estar en lo correcto, otros tienden a tener un sesgo alto o bajo. Utilice los informes de previsión frente a datos reales y mida el análisis de valor agregado de previsión para medir los errores de previsión y si los cambios en la previsión están perjudicando o ayudando. Al informar el proceso con esta información, su empresa mejorará su capacidad para pronosticar con mayor precisión.

Paso 5: Acordar el Pronóstico de Consenso.  Puede hacer esto una línea de productos o geografía a la vez, o negocio por negocio. Convoque al equipo, agrupe gráficamente sus entradas, revise el rendimiento de precisión anterior, discuta sus razones para aumentar o reducir el pronóstico y acuerde qué entradas usar. Esto se convierte en su plan de consenso. Finalice el plan y envíelo: cargue pronósticos en MRP, envíelos a finanzas y fabricación.  Acaba de iniciar su proceso de Ventas, Inventario y Planificación Operativa.

Puedes hacerlo. Y podemos ayudar.  Si tiene alguna pregunta sobre la planificación colaborativa de la demanda, responda a este blog, haremos un seguimiento.