Elefantes y canguros ERP frente a la mejor planificación de demanda de su clase

“A pesar de lo que has visto en tus caricaturas de los sábados por la mañana, los elefantes no pueden saltar, y hay una razón simple: no tienen que hacerlo. La mayoría de los animales nerviosos (canguros, monos y ranas) lo hacen principalmente para alejarse de los depredadores”. — Patrick Monahan, Science.org, 27 de enero de 2016.

Ahora sabe por qué las empresas de ERP más grandes no pueden desarrollar las mejores soluciones de alta calidad. Nunca tuvieron que hacerlo, por lo que nunca evolucionaron para innovar fuera de su enfoque principal. 

Sin embargo, a medida que los sistemas ERP se convirtieron en productos básicos, las brechas en su funcionalidad se volvieron imposibles de ignorar. Los jugadores más grandes buscaron proteger su parte de la cartera de los clientes prometiendo desarrollar aplicaciones complementarias innovadoras para llenar todos los espacios en blanco. Pero sin ese “músculo de la innovación”, muchos proyectos fracasaron y se acumularon montañas de deuda técnica.

Las mejores empresas de su clase evolucionaron para innovar y tener una profunda experiencia funcional en verticales específicos. El resultado es que los mejores complementos de ERP son más fáciles de usar, tienen más funciones y ofrecen más valor que los módulos de ERP nativos que reemplazan. 

Si su proveedor de ERP ya se ha asociado con un innovador proveedor de complementos*, ¡ya está listo! Pero si solo puede obtener lo básico de su ERP, opte por un complemento de primera clase que tenga una integración personalizada con el ERP. 

Un excelente lugar para comenzar su búsqueda es buscar complementos de planificación de la demanda de ERP que agreguen inteligencia a la fuerza del ERP, es decir, aquellos que respaldan la optimización del inventario y la previsión de la demanda. Aproveche las herramientas complementarias como las aplicaciones de pronóstico estadístico, planificación de la demanda y optimización de inventario de Smart para desarrollar pronósticos y políticas de almacenamiento que se retroalimentan al sistema ERP para impulsar los pedidos diarios. 

*Las tiendas de aplicaciones son una licencia para que lo mejor de su clase venda en la base de empresas de ERP, siendo sociedades cotizadas.

 

 

 

 

¿Es su proceso de planificación y previsión de la demanda una caja negra?

Hay una cosa que recuerdo casi todos los días en Smart Software que me desconcierta: la mayoría de las empresas no entienden cómo se crean los pronósticos y cómo se determinan las políticas de almacenamiento. Es una caja negra organizativa. Aquí hay un ejemplo de una llamada de ventas reciente:

¿Cómo pronosticas?
Usamos la historia.

¿Cómo usas la historia?
¿Qué quieres decir?

Bueno, puede tomar un promedio del último año, los últimos dos años, promediar los períodos más recientes o usar algún otro tipo de fórmula para generar el pronóstico.
Estoy bastante seguro de que usamos un promedio de los últimos 12 meses.

¿Por qué 12 meses en lugar de una cantidad diferente de historia?
12 meses es una buena cantidad de tiempo porque no se distorsiona con datos más antiguos, pero es lo suficientemente reciente.

¿Cómo sabes que es más preciso que usar 18 meses o alguna otra longitud de la historia?
no lo sabemos Ajustamos las previsiones en función de los comentarios de las ventas.  

¿Sabes si los ajustes hacen que las cosas sean más precisas o menos que si solo usaras el promedio?
No lo sabemos, pero confiamos en que las previsiones están infladas.

¿Qué hacen entonces los compradores de inventario si creen que los números están inflados?
Tienen mucho conocimiento comercial y ajustan sus compras en consecuencia.

Entonces, ¿es justo decir que ignorarían los pronósticos al menos parte del tiempo?
Sí, algunas veces.

¿Cómo deciden los compradores cuándo pedir más? ¿Tiene un punto de pedido o stock de seguridad especificado en su sistema ERP que ayuda a guiar estas decisiones?
Sí, utilizamos un campo de stock de seguridad.

¿Cómo se calcula el stock de seguridad?
Los compradores determinan esto en función de la importancia del artículo, los plazos de entrega y otras consideraciones, como cuántos clientes compran el artículo, la velocidad del artículo, su costo. Llevarán diferentes cantidades de existencias de seguridad dependiendo de esto.

La discusión continuó. La conclusión principal aquí es que cuando rascas justo debajo de la superficie, se revelan muchas más preguntas que respuestas. Esto a menudo significa que el proceso de planificación de inventario y previsión de la demanda es muy subjetivo, varía de planificador a planificador, el resto de la organización no lo entiende bien y es probable que sea reactivo. Como ha descrito Tom Willemain, es “un caos enmascarado por la improvisación”. El proceso “tal como está” debe estar completamente identificado y documentado. Solo entonces se pueden exponer las brechas y se pueden realizar mejoras.   Aquí hay una lista de 10 preguntas que puede hacer que revelará el verdadero proceso de previsión, planificación de la demanda y planificación del inventario de su organización.

 

 

 

 

 

Quince preguntas que revelan cómo se calculan los pronósticos en su empresa

En un reciente LinkedIn blog, detallé cuatro preguntas que, una vez respondidas, revelarán cómo se realizan los pronósticos. siendo utilizado en tu negocio En este artículo, hemos enumerado preguntas que puede hacer que revelarán cómo se realizan los pronósticos. creado.

1. Cuando preguntamos a los usuarios cómo crean pronósticos, su respuesta suele ser "usamos el historial". Obviamente, esto no es suficiente información, ya que existen diferentes tipos de historial de demanda que requieren diferentes métodos de pronóstico. Si está utilizando datos históricos, asegúrese de averiguar si está utilizando un modelo promedio, un modelo de tendencias, un modelo estacional o algo más para pronosticar.

2. Una vez que sepa el modelo utilizado, pregunte acerca de los valores de los parámetros de esos modelos. El resultado del pronóstico de un "promedio" diferirá, a veces significativamente, según la cantidad de períodos que esté promediando. Entonces, averigüe si está usando un promedio de los últimos 3 meses, 6 meses, 12 meses, etc.

3. Si está utilizando modelos de tendencia, pregunte cómo se establecen los pesos del modelo. Por ejemplo, en un modelo de tendencias, como el suavizado exponencial doble, los pronósticos diferirán significativamente según cómo los cálculos ponderen los datos recientes en comparación con los datos más antiguos (las ponderaciones más altas ponen más énfasis en los datos recientes).

4. Si está utilizando modelos estacionales, los resultados del pronóstico se verán afectados por el "nivel" y las "ponderaciones de tendencia" utilizadas. También debe determinar si los períodos estacionales se pronostican con estacionalidad multiplicativa o aditiva. (La estacionalidad aditiva dice, por ejemplo, "Suma 100 unidades para julio", mientras que la estacionalidad multiplicativa dice "Multiplica por 1,25 para julio"). Finalmente, es posible que no estés usando este tipo de métodos en absoluto. Algunos profesionales utilizarán un método de pronóstico que simplemente promedia períodos anteriores (es decir, el próximo mes de junio se pronosticará con base en el promedio de los tres junios anteriores).

5. ¿Cómo haces para elegir un modelo sobre otro? ¿Depende la elección de la técnica del tipo de datos de demanda o de la disponibilidad de nuevos datos de demanda? ¿Este proceso está automatizado? O si un planificador elige subjetivamente un modelo de tendencia, ¿se seguirá pronosticando ese elemento con ese modelo hasta que el planificador lo cambie de nuevo?

6. ¿Son sus pronósticos “totalmente automáticos”, de modo que la tendencia y/o la estacionalidad se detecten automáticamente? ¿O sus pronósticos dependen de las clasificaciones de artículos que deben mantener los usuarios? Este último requiere más tiempo y atención por parte de los planificadores para definir qué comportamiento constituye tendencia, estacionalidad, etc.

7. ¿Cuáles son las reglas de clasificación de artículos que se utilizan? Por ejemplo, un artículo puede considerarse un artículo de tendencia si la demanda aumenta más de 5% período tras período. Un artículo puede considerarse estacional si el 70% o más de la demanda anual ocurre en cuatro períodos o menos. Tales reglas están definidas por el usuario y, a menudo, requieren suposiciones demasiado amplias. A veces, se configuran cuando un sistema se implementó originalmente, pero nunca se revisó, incluso cuando cambian las condiciones. Es importante asegurarse de que se comprendan las reglas de clasificación y, si es necesario, se actualicen.

8. ¿El pronóstico se regenera automáticamente cuando hay nuevos datos disponibles o tiene que regenerar manualmente los pronósticos?

9. ¿Revisa si hay algún cambio en el pronóstico de un período al siguiente antes de decidir si usa el nuevo pronóstico? ¿O prefieres el nuevo pronóstico por defecto?

10. ¿Cómo se tratan las anulaciones de pronóstico que se realizaron en ciclos de planificación anteriores cuando se crea un nuevo pronóstico? ¿Se reutilizan o se reemplazan?

11. ¿Cómo incorpora las previsiones realizadas por su equipo de ventas o por sus clientes? ¿Estos pronósticos reemplazan el pronóstico de línea base o utiliza estas entradas para hacer anulaciones del planificador al pronóstico de línea base?

12. ¿Bajo qué circunstancias ignoraría el pronóstico de referencia y usaría exactamente lo que le dicen las ventas o los clientes?

13. Si confía en los pronósticos de los clientes, ¿qué hace con los clientes que no brindan pronósticos?

14. ¿Cómo documenta la efectividad de su enfoque de pronóstico? La mayoría de las empresas solo miden la precisión del pronóstico final que se envía al sistema ERP, si es que miden algo. Pero no evalúan predicciones alternativas que podrían haberse utilizado. Es importante comparar lo que está haciendo con los puntos de referencia. Por ejemplo, ¿los métodos que está utilizando superan un pronóstico ingenuo (es decir, "mañana es igual a hoy", que no requiere pensar), o lo que vio el año pasado, o el promedio de los últimos 12 meses? La evaluación comparativa de su pronóstico de referencia asegura que está exprimiendo la mayor precisión posible de los datos.

15. ¿Mide si las anulaciones de ventas, clientes y planificadores mejoran o empeoran el pronóstico? Esto es tan importante como medir si sus enfoques estadísticos están superando al método ingenuo. Si no sabe si las anulaciones están ayudando o perjudicando, la empresa no puede mejorar en la previsión; necesita saber qué pasos están agregando valor para que pueda hacer más y mejorar aún más. Si no está documentando la precisión del pronóstico y realizando un análisis de "valor agregado del pronóstico", entonces no podrá evaluar adecuadamente si los pronósticos que se producen son los mejores que podría hacer. Perderá oportunidades para mejorar el proceso, aumentar la precisión y educar a la empresa sobre qué tipo de error de pronóstico se espera.

 

 

Cómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico

Smart IP&O funciona con el motor de pronóstico SmartForecasts® que selecciona automáticamente el método más apropiado para cada artículo. Los métodos de Smart Forecast se enumeran a continuación:

  • Promedio móvil simple y suavizado exponencial único para datos planos y ruidosos
  • Promedio móvil lineal y suavizado exponencial doble para datos de tendencias
  • Winters Aditivo y Winters Multiplicativo para datos estacionales y estacionales y de tendencias.

Este blog explica cómo funciona cada modelo utilizando diagramas de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro.

 

Estacionalidad
Si desea forzar (o evitar) que se muestre la estacionalidad en el pronóstico, elija los modelos Winters. Ambos métodos requieren 2 años completos de historial.

Multiplicativo de Winters determinará el tamaño de los picos o valles de los efectos estacionales en función de una diferencia porcentual de un volumen promedio de tendencia. No es una buena opción para artículos de muy bajo volumen debido a la división por cero al determinar ese porcentaje. Observe en la imagen a continuación que se proyecta que la gran caída porcentual en la demanda estacional en el historial continúe durante el horizonte de pronóstico, lo que hace que parezca que no hay demanda estacional a pesar de usar un método estacional.

 

Winter’s multiplicative Forecasting method software

Pronóstico estadístico elaborado con el método multiplicativo de Winter. 

 

Aditivo de Winters determinará el tamaño de los picos o valles de los efectos estacionales con base en una unidad de diferencia del volumen promedio. No es un buen ajuste si hay una tendencia significativa en los datos. Tenga en cuenta en la imagen de abajo que sla estacionalidad ahora se pronostica con base en el cambio unitario promedio en la estacionalidad. Por lo tanto, el pronóstico aún refleja claramente el patrón estacional a pesar de la tendencia a la baja tanto en el nivel como en los picos/valles estacionales.

Winter’s additive Forecasting method software

Pronóstico estadístico producido con el método aditivo de Winter.

 

Tendencia

Si desea forzar (o evitar) que la tendencia hacia arriba o hacia abajo se muestre en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil lineal y Suavizado exponencial doble.

 Suavizado exponencial doble retomará una tendencia a largo plazo. No es una buena opción si hay pocos puntos de datos históricos.

Double exponential smoothing Forecasting method software

Pronóstico estadístico producido con Doble Suavización Exponencial

 

Media móvil lineal recogerá las tendencias a corto plazo. No es una buena opción para datos altamente volátiles.

Linear moving average Forecasting method software

 

Datos no de tendencia y no estacionales
Si desea forzar (o evitar) que se muestre un promedio en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil simple y Suavizado exponencial único.

Suavizado exponencial simple sopesará más los datos más recientes y producirá un pronóstico de línea plana. No es una buena opción para datos de tendencias o estacionales.

Single exponential smoothing Forecasting method software

Pronóstico estadístico utilizando Suavización Exponencial Simple

media móvil simple encontrará un promedio para cada período, a veces pareciendo moverse, y mejor para el promedio a más largo plazo. No es una buena opción para datos de tendencias o estacionales.

Simple moving average Forecasting method software

Pronóstico estadístico utilizando la media móvil simple

 

 

 

El papel de la confianza en el proceso de pronóstico de la demanda Parte 2: ¿En qué confías?

“Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

¿En qué confías?

Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software.

Confianza en los datos

La confianza en los datos sustenta la confianza en el pronosticador que utiliza los datos. La mayoría de nuestros clientes tienen sus datos en un sistema ERP. Estos datos deben entenderse como un activo corporativo clave. Para que los datos sean confiables, deben tener las “tres C”, es decir, deben ser correctos, completos y actuales.

La corrección es obviamente fundamental. Una vez tuvimos un cliente que estaba implementando un proceso de pronóstico nuevo y sólido, pero encontró que los resultados estaban completamente en desacuerdo con su sentido de lo que estaba sucediendo en el negocio. Resultó que varios de sus flujos de datos eran incorrectos por un factor de dos, lo cual es un gran error. Por supuesto, esto retrasó el proceso de implementación hasta que pudieron identificar y corregir todos los errores graves en sus datos de demanda.

Hay un punto menos obvio que hacer sobre la corrección. Es decir, los datos son aleatorios, por lo que lo que ve ahora no es probable que sea lo que verá a continuación. Planificar la producción basándose en la suposición de que la demanda de la próxima semana será exactamente la misma que la demanda de esta semana es claramente una tontería, pero los modelos clásicos de pronóstico basados en fórmulas, como el suavizado exponencial mencionado anteriormente, proyectarán el mismo número a lo largo del horizonte de pronóstico. Aquí es donde planificación basada en escenarios es esencial para hacer frente a las inevitables fluctuaciones de variables clave como las demandas de los clientes y los plazos de reposición de los proveedores.

La integridad es el segundo requisito para que los datos sean confiables. En última instancia, nuestro software obtiene gran parte de su valor al exponer los vínculos entre las decisiones operativas (p. ej., seleccionar los puntos de pedido que rigen la reposición de existencias) y las métricas relacionadas con el negocio, como los costos de inventario. Sin embargo, a menudo la implementación del software de pronóstico se retrasa porque la información sobre la demanda de artículos está disponible en algún lugar, pero no así los costos de mantenimiento, pedido y/o escasez. O, para citar otro ejemplo reciente, un cliente pudo dimensionar adecuadamente solo la mitad de su inventario de repuestos para piezas reparables porque nadie había estado rastreando cuándo se averiaba la otra mitad, lo que significa que no había información sobre el tiempo medio antes de la falla (MTBF) , por lo que no fue posible modelar el comportamiento ante averías de la mitad de la flota de repuestos reparables.

Finalmente, la vigencia de los datos es importante. A medida que aumenta la velocidad de los negocios y los ciclos de planificación de la empresa pasan de un ritmo trimestral o mensual a un ritmo semanal o diario, se vuelve deseable explotar la agilidad que brindan las cargas nocturnas de datos transaccionales diarios en la nube. Esto permite ajustes de alta frecuencia de pronósticos y/o parámetros de control de inventario para artículos que experimentan alta volatilidad y cambios repentinos en la demanda. Cuanto más frescos sean los datos, más fiable será el análisis.

Confíe en el software de previsión de la demanda

Incluso con datos de alta calidad, los pronosticadores aún deben confiar en el software analítico que procesa los datos. Esta confianza debe extenderse tanto al propio software como al entorno informático en el que funciona.

Si los pronosticadores usaron software local, deben confiar en sus propios departamentos de TI para salvaguardar los datos y mantenerlos disponibles para su uso. Si, en cambio, desean explotar el poder de los análisis basados en la nube, los clientes deben confiar su información confidencial a sus proveedores de software. El software de nivel profesional, como el nuestro, justifica la confianza de los clientes a través de la certificación SOC 2. La certificación SOC 2 fue desarrollada por el Instituto Americano de CPA y define los criterios para administrar los datos de los clientes en función de cinco "principios de servicio de confianza": seguridad, disponibilidad, integridad de procesamiento, confidencialidad y privacidad.

¿Qué pasa con el software en sí? ¿Qué se necesita para que sea confiable? Los criterios principales aquí son la corrección de los algoritmos y la fiabilidad funcional. Si el proveedor tiene un proceso de desarrollo de programas profesional, habrá pocas posibilidades de que el software termine calculando los números incorrectos debido a un error de programación. Y si el proveedor tiene un riguroso proceso de aseguramiento de la calidad, habrá pocas posibilidades de que el software se bloquee justo cuando el pronosticador tiene una fecha límite o debe lidiar con un análisis emergente para una situación especial.

Resumen

Para ser útiles, los responsables de la toma de decisiones deben confiar en los pronosticadores y sus pronósticos. Esa confianza depende de las características de los pronosticadores y sus procesos y comunicación. También depende de la calidad de los datos y el software utilizado para crear los pronósticos.

 

Lee la 1ra parte de este Blog “En quién confías” aquí: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/