Reflexiones sobre la planificación de piezas de repuesto para el transporte público

La pandemia de Covid19 ha puesto un estrés inusual en las agencias de transporte público. Este estrés obliga a las agencias a revisar nuevamente sus procesos de planificación de piezas de repuesto, que es un factor clave para garantizar el tiempo de actividad y equilibrar los costos de inventario de piezas de servicio.

Este blog se centra en los sistemas de autobuses y sus prácticas para la gestión y planificación de piezas de repuesto. Sin embargo, aquí hay lecciones para otros tipos de transporte público, incluidos el tren y el tren ligero.

En 1995, la Junta de Investigación del Transporte (TRB) del Consejo Nacional de Investigación publicó un informe que aún tiene relevancia. Proporciones de autobuses de repuesto específicas del sistema: una síntesis de la práctica de tránsito fijado

El propósito de este estudio fue documentar y examinar las variables críticas específicas del sitio que afectan la cantidad de vehículos de repuesto que los sistemas de autobuses necesitan para mantener los requisitos máximos de servicio. … Si bien los gerentes de tránsito generalmente reconocieron que dimensionar correctamente la flota en realidad mejora las operaciones y reduce los costos, muchos informaron dificultades para lograr y mantener de manera constante una proporción de repuesto del 20 por ciento, como recomienda la FTA… Quienes respondieron a la encuesta abogaron por que se ponga más énfasis en el desarrollo de técnicas de mantenimiento de autobuses mejoradas e innovadoras, que los ayudarían a minimizar el tiempo de inactividad y mejorar la disponibilidad de los vehículos, lo que finalmente conduciría a vehículos de repuesto reducidos y costos de mano de obra y materiales.

Las pautas sumamente simplificadas como "mantener los autobuses de repuesto 20%" son fáciles de entender y medir, pero enmascaran tácticas más detalladas que pueden proporcionar políticas más personalizadas que administren mejor el dinero de los contribuyentes gastado en repuestos al tiempo que garantizan los más altos niveles de disponibilidad. Si se puede mejorar la confiabilidad operativa para cada bus, se necesitarán menos repuestos.

Una forma de mantener cada autobús en funcionamiento con más frecuencia es mejorar la gestión de los inventarios de piezas de repuesto, específicamente pronosticando el uso de piezas de servicio y las políticas de reabastecimiento requeridas con mayor precisión. Aquí es donde la gestión moderna de la cadena de suministro puede hacer una contribución significativa. El TRB señaló esto en su informe:

Muchas agencias han logrado limitar la dependencia del exceso de vehículos de repuesto. Esos funcionarios de tránsito están de acuerdo en que varios factores e iniciativas han llevado a su éxito y son fundamentales para el éxito de cualquier programa [incluido] … Uso eficaz de tecnología avanzada para gestionar funciones críticas de mantenimiento, incluido el reemplazo ordenado y oportuno de piezas… La falta de disponibilidad de piezas de repuesto y otros componentes cuando se necesitan afectará negativamente cualquier programa de mantenimiento.

Siempre que los gerentes sean conscientes de los problemas y estén atentos a las herramientas disponibles para ellos, la probabilidad de que los autobuses se queden sin existencias disminuirá considerablemente”.

La gestión eficaz del inventario de piezas de repuesto requiere un equilibrio entre "tener suficiente" y "tener demasiado". Lo que puede hacer el software moderno de planificación de piezas de servicio es hacer visible la compensación entre estos dos objetivos para que los gerentes de tránsito puedan tomar decisiones basadas en hechos sobre los inventarios de piezas de repuesto.

Hay suficientes complicaciones para encontrar el equilibrio adecuado como para requerir ir más allá de las reglas generales simples como "mantener a mano la demanda de diez días" o "volver a pedir cuando tenga menos de cinco unidades en stock". Los factores que impulsan estas decisiones incluyen tanto la demanda promedio de una pieza, la volatilidad de esa demanda, el tiempo promedio de reabastecimiento (que puede ser un problema cuando la pieza llega en un barco lento desde Alemania), la variabilidad en el tiempo de entrega y varios factores de costo: costos de mantenimiento, costos de pedidos y costos de escasez (p. ej., tarifas perdidas, pérdida de buena voluntad pública).

El innovador software de planificación de piezas de repuesto y análisis de la cadena de suministro utiliza métodos avanzados de predicción probabilística y optimización estocástica para gestionar estas complejidades y proporcionar una mayor disponibilidad de piezas a un costo menor. Por ejemplo, Metro Transit de Minnesota documentó un aumento de 4 veces en el retorno de la inversión en los primeros seis meses de implementación de un nuevo sistema. Para obtener más información sobre cómo las agencias de transporte público están explotando los análisis innovadores de la cadena de suministro, consulte:

 

 

Deja un comentario
Artículos Relacionados
Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

Por qué la planificación del inventario no debería depender exclusivamente de reglas generales simples

Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.

Why MRO Businesses Should Care About Excess Inventory

Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

Mantener el rumbo

 

Me he parado frente a miles de estudiantes. Han sido más o menos jóvenes, más o menos técnicos, más o menos experimentados y más o menos interesados. He hecho esto como miembro de la facultad universitaria desde 1972, primero en el Instituto de Tecnología de Massachusetts, luego en la Universidad de Harvard y finalmente en la Escuela de Ingeniería del Instituto Politécnico Rensselaer. Entre Harvard y RPI abandoné la academia temporalmente para cofundó Smart Software con Charlie Smart y Nelson Hartunian. Entonces, desde entonces, también he estado ocupado capacitando a los usuarios comerciales para que aprovechen el poder de los análisis avanzados para la previsión y la optimización del inventario.

Mientras escribo esto, acabo de regresar a mi oficina en RPI después de presentarles a los estudiantes de primer año de Ingeniería Industrial los conceptos básicos de la gestión de inventario. Si se apegan al programa, seguirán tomando los cursos requeridos en cadena de suministro, simulación de sistemas, análisis estadístico y optimización. Les conté historias sobre lo útiles que serían para sus empresas si decidieran hacer carrera en el mundo de la cadena de suministro. Si hubiera tenido más tiempo, habría mencionado cuán capaces serán cuando se gradúen en relación con muchos de sus pares corporativos. Estos estudiantes de primer año están listos y dispuestos a seguir el curso, absorbiendo todas las técnicas y teorías que podemos arrojarles, y perfeccionando sus habilidades prácticas en trabajos de verano o asignaciones cooperativas.

Lo que no les dije es que muchos de ellos tendrán que trabajar para mantener su intensidad cuando estén en el trabajo. Es una triste verdad que, por la razón que sea, muchos profesionales del inventario se asientan en una especie de estancamiento que impide la capacidad de sus empresas para explotar las últimas tecnologías, como la previsión de demanda avanzada basada en la nube y la optimización del inventario. Reúna a suficientes de esas personas en un solo lugar y la agilidad y la eficiencia mejorada desaparecerán.

Creo que uno de los factores que aburre a las personas es que el proceso de implementación con frecuencia se siente dolorosamente incremental y prolongado. A menudo comienza con un inventario aleccionador de datos relevantes, su corrección y su actualidad. Luego pasa a un descubrimiento, a menudo incómodo, de que realmente no existe un proceso sistemático y la consiguiente necesidad de diseñar uno bueno en el futuro. Lo siguiente es la necesidad de aprender a usar un nuevo paquete de software. Ese paso implica aprender nuevo vocabulario, cierto nivel de pensamiento probabilístico, la capacidad de interpretar nuevos gráficos y tablas, sin mencionar una nueva interfaz de software. Todo esto requiere tiempo y esfuerzo.

 

Forecast accuracy provides a statistically sound

 

Descubrimos que algunas cosas ayudan a los nuevos clientes a mantener el rumbo. Uno es tener un campeón entre la gerencia, un patrocinador ejecutivo, que pueda dar fe de la importancia comercial de una implementación exitosa mientras asegura que los usuarios reciban apoyo con educación continua. Un segundo es identificar y capacitar a uno o dos superusuarios que tengan combinaciones inusuales de habilidades técnicas y de comunicación. Un tercero consiste en dividir la capacitación en fragmentos del tamaño de un bocado y evaluar la comprensión después de cada fragmento y repetir este proceso hasta que quede claro que los nuevos conceptos, el vocabulario y el proceso se absorben por completo. Pero todas esas maniobras se desvanecerán sin que la gerencia se involucre y esté lista para mantener el rumbo. Las prácticas de planificación de inventario vigentes durante muchos años no se reemplazarán por completo en un proceso de implementación de tres meses. Tienes que quererlo para conseguirlo.

 

 

Deja un comentario
Artículos Relacionados
Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

Por qué la planificación del inventario no debería depender exclusivamente de reglas generales simples

Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.

Why MRO Businesses Should Care About Excess Inventory

Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

El cuento de Ricitos de Oro sobre los niveles de inventario

Puede que recuerdes la historia de Goldilocks de tu juventud hace mucho tiempo. A veces la papilla estaba demasiado caliente, a veces demasiado fría, pero solo una vez estaba bien. Ahora que somos adultos, podemos traducir ese cuento de hadas en un principio profesional para la planificación del inventario: puede haber muy poco o demasiado inventario, y hay un nivel de Ricitos de Oro que es “perfecto”. Este blog trata de encontrar ese punto dulce.

Para ilustrar nuestra fábula de la cadena de suministro, considere este ejemplo. Imagine que vende repuestos para mantener los sistemas de sus clientes en funcionamiento. Usted ofrece una parte de servicio en particular que le cuesta $100 pero se vende por un margen de beneficio de 20%. Puede hacer $20 en cada unidad que vende, pero no puede quedarse con el $20 completo debido a los costos operativos de inventario que soporta para poder vender la pieza. Hay costos de mantenimiento para mantener la pieza en buen estado mientras está en stock y costos de pedido para reabastecer las unidades que vende. Finalmente, a veces se pierden ingresos por ventas perdidas debido a desabastecimientos.  

Estos costos operativos pueden estar directamente relacionados con la forma en que administra la pieza en el inventario. Para nuestro ejemplo, suponga que utiliza una política de inventario (Q,R), donde Q es la cantidad del pedido de reposición y R es el punto de pedido. Suponga además que la razón por la que no está fabricando $30 por unidad es que tiene competidores, y los clientes obtendrán la pieza de ellos si no pueden obtenerla de usted.

Tanto sus ingresos como sus costes dependen de formas complejas de sus elecciones de Q y R. Estas determinarán cuánto pide, cuándo y, por tanto, con qué frecuencia pide, con qué frecuencia se agota y, por tanto, cuántas ventas pierde y cuánto dinero en efectivo que atas en el inventario. Es imposible calcular el costo de estas relaciones con conjeturas, pero el software moderno puede hacer que las relaciones sean visibles y calcular las cifras en dólares que necesita para guiar su elección de valores para Q y R. Lo hace ejecutando simulaciones probabilísticas detalladas y basadas en hechos. que predicen los costes y el rendimiento promediando un gran número de escenarios de demanda realistas.  

Con estos resultados en la mano, puede calcular el margen asociado con los valores (Q,R) usando la fórmula simple

Margen = (Demanda - Ventas perdidas) x Beneficio por unidad vendida - Costos de pedido - Costos de mantenimiento.

En esta fórmula, las ventas perdidas, los costos de pedido y los costos de mantenimiento dependen del punto de pedido R y la cantidad de pedido Q.

La Figura 1 muestra el resultado de las simulaciones que fijaron Q en 25 unidades y variaron R de 10 a 30 en pasos de 5. Si bien la curva es bastante plana en la parte superior, ganaría más dinero manteniendo un inventario disponible de alrededor de 25 unidades ( que corresponde al ajuste R = 20). Más inventario, a pesar de un mayor nivel de servicio y menos ventas perdidas, generaría un poco menos de dinero (y vincularía mucho más efectivo), y menos inventario generaría mucho menos.

 

Margins vs Inventory Level Business

Figura 1: Mostrando que puede haber muy poco o demasiado inventario disponible

 

Sin confiar en el software de simulación de inventario, no podríamos descubrir

  • a) que es posible llevar muy poco y demasiado inventario
  • b) cuál es el mejor nivel de inventario
  • c) cómo llegar allí mediante las elecciones adecuadas del punto de pedido R y la cantidad de pedido Q.

 

Sin una comprensión explícita de lo anterior, las empresas tomarán decisiones de inventario diarias basándose en la intuición y los métodos de regla empírica basados en promedios. Las compensaciones descritas aquí no están expuestas y la combinación resultante de inventario produce un retorno mucho menor, perdiendo cientos de miles a millones por año en ganancias perdidas. Así que sé como Ricitos de Oro. Con los sistemas y las herramientas de software correctos, ¡usted también puede hacerlo bien!    

 

 

Deja un comentario
Artículos Relacionados
Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

Por qué la planificación del inventario no debería depender exclusivamente de reglas generales simples

Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.

Why MRO Businesses Should Care About Excess Inventory

Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

Ejemplos de optimización en Inventarios multi-escalón, basados en simulación

Administrar el inventario en una sola instalación es bastante difícil, pero el problema se vuelve mucho más complejo cuando hay múltiples instalaciones dispuestas en múltiples escalones. La complejidad surge de las interacciones entre los escalones, con demandas en los niveles más bajos que aumentan y cualquier escasez en los niveles más altos se reduce en cascada.

Si cada una de las instalaciones se administrara de forma aislada, se podrían usar métodos estándar, sin tener en cuenta las interacciones, para establecer parámetros de control de inventario, como puntos de pedido y cantidades de pedido. Sin embargo, ignorar las interacciones entre niveles puede conducir a fallas catastróficas. La experiencia y el ensayo y error permiten el diseño de sistemas estables, pero esa estabilidad puede verse afectada por cambios en los patrones de demanda o tiempos de entrega o por la adición de nuevas instalaciones. El análisis avanzado de la cadena de suministro ayuda en gran medida a hacer frente a tales cambios, lo que proporciona un "sandbox" seguro dentro del cual probar los cambios propuestos en el sistema antes de implementarlos. Este blog ilustra ese punto.

 

El escenario

Para tener alguna esperanza de discutir este problema de manera útil, este blog simplificará el problema al considerar la jerarquía de dos niveles que se muestra en la Figura 1. Imagine que las instalaciones en el nivel inferior son almacenes (WH) desde los cuales se pretende satisfacer las demandas de los clientes. , y que los artículos de inventario en cada WH son piezas de servicio que se venden a una amplia gama de clientes externos.

 

Fact and Fantasy in Multiechelon Inventory Optimization

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

Imagine que el nivel superior consiste en un único centro de distribución (DC) que no atiende a los clientes directamente pero sí reabastece los WH. Para simplificar, suponga que el centro de distribución en sí se reabastece desde una fuente que siempre tiene (o produce) existencias suficientes para enviar inmediatamente las piezas al centro de distribución, aunque con cierto retraso. (Alternativamente, podríamos considerar que el sistema tiene tiendas minoristas abastecidas por un almacén).

Cada nivel se puede describir en términos de niveles de demanda (tratados como aleatorios), plazos de entrega (aleatorios), parámetros de control de inventario (aquí, valores mínimos y máximos) y política de escasez (aquí, se permiten pedidos pendientes).

 

El método de análisis

La literatura académica ha avanzado en este problema, aunque generalmente a costa de simplificaciones necesarias para facilitar una solución puramente matemática. Nuestro enfoque aquí es más accesible y flexible: simulación Monte Carlo. Es decir, construimos un programa informático que incorpora la lógica de funcionamiento del sistema. El programa “crea” una demanda aleatoria en el nivel de WH, procesa la demanda de acuerdo con la lógica de una política de inventario elegida y crea demanda para el CD agrupando las solicitudes aleatorias de reposición realizadas por los WH. Este enfoque nos permite observar muchos días simulados de operación del sistema mientras observamos eventos significativos como desabastecimientos en cualquier nivel.

 

Un ejemplo

Para ilustrar un análisis, simulamos un sistema que consta de cuatro WH y un DC. La demanda promedio varió entre los WH. La reposición del CD a cualquier WH tomó de 4 a 7 días, con un promedio de 5,15 días. La reposición de la CC desde la Fuente tomó 7, 14, 21 o 28 días, pero 90% del tiempo fue 21 o 28 días, lo que hace un promedio de 21 días. Cada instalación tenía valores mínimos y máximos establecidos por el criterio del analista después de algunos cálculos aproximados.

La Figura 2 muestra los resultados de un año de operación diaria simulada de este sistema. La primera fila de la figura muestra la demanda diaria del artículo en cada WH, que se supuso que era "puramente aleatoria", lo que significa que tenía una distribución de Poisson. La segunda fila muestra el inventario disponible al final de cada día, con los valores mínimo y máximo indicados por líneas azules. La tercera fila describe las operaciones en el CD. Contrariamente a la suposición de gran parte de la teoría, la demanda en el DC no estaba cerca de ser Poisson, ni tampoco la demanda fuera del DC a la Fuente. En este escenario, los valores Mín. y Máx. fueron suficientes para mantener alta la disponibilidad de artículos en cada WH y en el CD, y no se observaron desabastecimientos en ninguna de las cinco instalaciones.

 

Click aquí para ampliar la imagen

Figure 2 - Simulated year of operation of a system with four WHs and one DC.

Figura 2 – Año de operación simulado de un sistema con cuatro WHs y un DC.

 

Ahora vamos a variar el escenario. Cuando los desabastecimientos son extremadamente raros, como en la Figura 2, a menudo hay un exceso de inventario en el sistema. Supongamos que alguien sugiere que el nivel de inventario en el centro de distribución parece un poco alto y piensa que sería una buena idea ahorrar dinero allí. Su sugerencia para reducir las existencias en el CD es reducir el valor de Min en el CD de 100 a 50. ¿Qué sucede? Podrías adivinar, o podrías simular.

La figura 3 muestra la simulación: el resultado no es agradable. El sistema funciona bien durante gran parte del año, luego el centro de distribución se queda sin existencias y no puede ponerse al día a pesar de enviar órdenes de reposición cada vez mayores a la fuente. Tres de los cuatro WH descienden en espirales de muerte al final del año (y WH1 sigue a partir de entonces). La simulación ha puesto de relieve una sensibilidad que no se puede ignorar y ha marcado una mala decisión.

 

Haga click aquí para ampliar la imágen

Figure 3 - Simulated effects of reducing the Min at the DC.

Figura 3: efectos simulados de reducir el Min en el DC.

 

Ahora los gerentes de inventario pueden volver a la mesa de diseño y probar otras formas posibles de reducir la inversión en inventario a nivel de CD. Un movimiento que siempre ayuda, si usted y su proveedor pueden lograrlo juntos, es crear un sistema más ágil al reducir el tiempo de reabastecimiento. Trabajar con la fuente para garantizar que el centro de distribución siempre obtenga sus reabastecimientos en 7 o 14 días estabiliza el sistema, como se muestra en la Figura 4.

 

Haga click aquí para ampliar la imágen

Figure 4 - Simulated effects of reducing the lead time for replenishing the DC.

Figura 4: efectos simulados de reducir el tiempo de espera para reponer el centro de distribución.

 

Desafortunadamente, no se ha logrado la intención de reducir el inventario en el DC. El recuento de inventario diario original era de unas 80 unidades y sigue siendo de unas 80 unidades después de reducir el mínimo del centro de distribución y mejorar drásticamente el tiempo de entrega de la fuente al centro de distribución. Pero con el modelo de simulación, el equipo de planificación puede probar otras ideas hasta llegar a un rediseño satisfactorio. O, dado que la Figura 4 muestra que el inventario de CD comienza a coquetear con cero, podrían pensar que es prudente aceptar la necesidad de un promedio de aproximadamente 80 unidades en el CD y buscar formas de recortar la inversión en inventario en los WH.

 

la comida para llevar

  1. La optimización de inventario de varios niveles (MEIO) es compleja. Muchos factores interactúan para producir comportamientos del sistema que pueden resultar sorprendentes incluso en sistemas simples de dos niveles.
  2. La simulación de Monte Carlo es una herramienta útil para los planificadores que necesitan diseñar nuevos sistemas o modificar los existentes.

 

 

 

Deja un comentario
Artículos Relacionados
Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

Por qué la planificación del inventario no debería depender exclusivamente de reglas generales simples

Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.

Why MRO Businesses Should Care About Excess Inventory

Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Para la mayoría de los pequeños y medianos fabricantes y distribuidores, la optimización del inventario de un solo nivel o de un solo escalón está a la vanguardia de la práctica logística. La optimización de inventario de niveles múltiples ("MEIO") implica jugar el juego a un nivel aún más alto y, por lo tanto, es mucho menos común. Este blog es el primero de dos. Su objetivo es explicar qué es MEIO, por qué fallan las teorías estándar de MEIO y cómo el modelado probabilístico a través de la simulación de escenarios puede restaurar la realidad del proceso MEIO. El segundo blog mostrará un ejemplo particular.

 

Definición de optimización de inventario

Un sistema de inventario se basa en un conjunto de opciones de diseño.

La primera opción es la política para responder a los desabastecimientos: ¿simplemente pierde la venta ante un competidor o puede convencer al cliente para que acepte un pedido pendiente? Lo primero es más común con los distribuidores que con los fabricantes, pero esto puede no ser una gran elección ya que los clientes pueden dictar la respuesta.

La segunda opción es la política de inventario. Estas se dividen en políticas de “revisión continua” y “revisión periódica”, con varias opciones dentro de cada tipo. Puede enlazar a un video tutorial que describe varias políticas de inventario comunes aquí. Quizás el más eficiente sea conocido por los profesionales como "Min/Max" y por los académicos como (s, s) o “pequeña S, gran S”. Utilizamos esta política en las siguientes simulaciones de escenarios. Funciona de la siguiente manera: cuando el inventario disponible cae por debajo del mínimo (s), se realiza un pedido de reposición. El tamaño del pedido es la brecha entre el inventario disponible y el Max (S), por lo que si Min es 10, Max es 25 y disponible es 8, es hora de hacer un pedido de 25-8 = 17 unidades.

La tercera opción es decidir sobre los mejores valores de los "parámetros" de la política de inventario, por ejemplo, los valores que se utilizarán para Min y Max. Antes de asignar números a Min y Max, necesita claridad sobre lo que significa "mejor" para usted. Por lo general, lo mejor significa opciones que minimizan los costos operativos de inventario sujetos a un piso en la disponibilidad del artículo, expresado como Nivel de servicio o Tasa de llenado. En términos matemáticos, este es un "problema de optimización de enteros con restricciones bidimensional". "Bidimensional" porque tienes que elegir dos números: Min y Max. "Entero" porque Min y Max tienen que ser números enteros. "Restringido" porque debe elegir valores mínimos y máximos que brinden un nivel lo suficientemente alto de disponibilidad de artículos, como niveles de servicio y tasas de llenado. “Optimización” porque desea llegar allí con el costo operativo más bajo (el costo operativo combina los costos de mantenimiento, pedido y escasez).

 

Sistemas de inventario de varios niveles

El problema de optimización se vuelve más difícil en sistemas de múltiples escalones. En un sistema de un solo escalón, cada elemento del inventario se puede analizar de forma aislada: un par de valores Mín./Máx. por SKU. Debido a que hay más partes en un sistema de varios niveles, existe un problema computacional mayor.

La Figura 1 muestra un sistema simple de dos niveles para administrar un solo SKU. En el nivel inferior, las demandas llegan a varios almacenes. Cuando están en peligro de agotarse, se reabastecen desde un centro de distribución (DC). Cuando el propio DC está en peligro de agotarse, lo suministra una fuente externa, como el fabricante del artículo.

El problema de diseño aquí es multidimensional: necesitamos valores mínimos y máximos para 4 almacenes y para el CD, por lo que la optimización ocurre en 4×2+1×2=10 dimensiones. El análisis debe tener en cuenta una multitud de factores contextuales:

  • El nivel promedio y la volatilidad de la demanda que ingresa a cada almacén.
  • El promedio y la variabilidad de los plazos de reabastecimiento del centro de distribución.
  • El promedio y la variabilidad de los plazos de reabastecimiento desde la fuente.
  • El nivel de servicio mínimo exigido en los almacenes.
  • El nivel de servicio mínimo requerido en el CD.
  • Los costos de mantenimiento, pedido y escasez en cada almacén.
  • Los costos de mantenimiento, pedido y escasez en el centro de distribución.

Como era de esperar, las conjeturas en el asiento de los pantalones no funcionarán bien en esta situación. Tampoco intentar simplificar el problema analizando cada escalón por separado. Por ejemplo, los desabastecimientos en el centro de distribución aumentan el riesgo de desabastecimiento a nivel de almacén y viceversa.

Obviamente, este problema es demasiado complicado para tratar de resolverlo sin la ayuda de algún tipo de modelo informático.

 

Por qué la teoría del inventario estándar es mala matemática

Con un poco de búsqueda, puede encontrar modelos, artículos de revistas y libros sobre MEIO. Estas son fuentes valiosas de información y conocimiento, incluso números. Pero la mayoría de ellos confían en el recurso de simplificar demasiado el problema para que sea posible escribir y resolver ecuaciones. Esta es la “Fantasía” a la que se refiere el título.

Hacerlo es una maniobra clásica de modelado y no es necesariamente una mala idea. Cuando era estudiante de posgrado en el MIT, me enseñaron el valor de tener dos modelos: un modelo pequeño y aproximado para servir como una especie de visor y un modelo más grande y preciso para producir números confiables. El modelo más pequeño está basado en ecuaciones y teorías; el modelo más grande está basado en procedimientos y datos, es decir, una simulación detallada del sistema. Los modelos basados en teorías y ecuaciones simples pueden producir malas estimaciones numéricas e incluso pasar por alto fenómenos completos. Por el contrario, los modelos basados en procedimientos (p. ej., "pedir hasta el máximo cuando supere el mínimo") y hechos (p. ej., los últimos 3 años de demanda diaria de artículos) requerirán mucha más computación pero darán respuestas más realistas. Afortunadamente, gracias a la nube, tenemos mucha potencia informática al alcance de la mano.

Quizás el mayor "pecado" de modelado en la literatura de MEIO es la suposición de que las demandas en todos los escalones se pueden modelar como procesos de Poisson puramente aleatorios. Incluso si fuera cierto a nivel de almacén, estaría lejos de ser cierto a nivel de CD. El proceso de Poisson es la "rata blanca del modelado de demanda" porque es simple y permite una mayor manipulación de ecuaciones con lápiz y papel. Dado que no todas las demandas tienen forma de Poisson, esto da como resultado recomendaciones poco realistas.

 

Optimización de simulación basada en escenarios

Para obtener realismo, debemos profundizar en los detalles de cómo funcionan los sistemas de inventario en cada escalón. Con pocos límites, excepto los impuestos por el hardware, como el tamaño de la memoria, los programas de computadora pueden mantener cualquier nivel de complejidad. Por ejemplo, no hay necesidad de suponer que cada uno de los almacenes enfrenta flujos de demanda idénticos o tiene los mismos costos que todos los demás.

Una simulación por computadora funciona de la siguiente manera.

  1. El historial de demanda del mundo real y el historial de tiempo de entrega se recopilan para cada SKU en cada ubicación.
  2. Los valores de los parámetros de inventario (p. ej., Min y Max) se seleccionan para la prueba.
  3. Los historiales de demanda y reposición se utilizan para crear escenarios que representan las entradas al programa de computadora que codifica las reglas de operación del sistema.
  4. Las entradas se utilizan para impulsar la operación de un modelo informático del sistema con los valores de los parámetros elegidos durante un largo período, digamos un año.
  5. Los indicadores clave de rendimiento (KPI) se calculan para el año simulado.
  6. Los pasos 2 a 5 se repiten muchas veces y los resultados se promedian para vincular las opciones de parámetros con el rendimiento del sistema.
  7.  

La optimización del inventario agrega otro "bucle externo" a los cálculos mediante la búsqueda sistemática de los posibles valores de Min y Max. Entre esos pares de parámetros que satisfacen la restricción de disponibilidad de artículos, la búsqueda adicional identifica los valores Mín. y Máx. que dan como resultado el costo operativo más bajo.

Fact and Fantasy in Multiechelon Inventory Optimization

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

 

Estén atentos a nuestro próximo blog

PRÓXIMAMENTE, EN BREVE, PRONTO. Para ver un ejemplo de una simulación del sistema en la Figura 1, lea el segundo blog sobre este tema

 

 

Deja un comentario
Artículos Relacionados
Why Inventory Planning Shouldn’t Rely Exclusively on Simple Rules of Thumb

Por qué la planificación del inventario no debería depender exclusivamente de reglas generales simples

Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.

Why MRO Businesses Should Care About Excess Inventory

Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.