¿Qué hace un pronóstico probabilístico?

¿Qué es todo el alboroto en torno al término "pronóstico probabilístico"? ¿Es solo un término de marketing más reciente que algunos proveedores de software y consultores han acuñado para fingir innovación? ¿Hay alguna diferencia tangible real en comparación con las técnicas anteriores de "mejor ajuste"? ¿No son todos los pronósticos probabilísticos de todos modos?

Para responder a esta pregunta, es útil pensar en lo que realmente le dice el pronóstico en términos de probabilidades. Un pronóstico "bueno" debe ser imparcial y, por lo tanto, arrojar una probabilidad de 50/50 de ser mayor o menor que el real. Un pronóstico "malo" generará amortiguadores subjetivos (o deprimirá artificialmente el pronóstico) y dará como resultado una demanda sesgada hacia arriba o hacia abajo. Considere a un vendedor que reduce intencionalmente su pronóstico al no informar las ventas que espera cerrar para ser "conservador". Sus pronósticos tendrán un sesgo de pronóstico negativo ya que los datos reales casi siempre serán más altos de lo que predijeron. Por otro lado, considere un cliente que proporciona un pronóstico inflado a su fabricante. Preocupados por los desabastecimientos, sobrestiman la demanda para asegurar su suministro. Su pronóstico tendrá un sesgo positivo ya que los datos reales casi siempre serán más bajos de lo que predijeron. 

Estos tipos de pronósticos de un número descritos anteriormente son problemáticos. Nos referimos a estas predicciones como "pronósticos puntuales", ya que representan un punto (o una serie de puntos a lo largo del tiempo) en un gráfico de lo que podría suceder en el futuro. No brindan una imagen completa porque para tomar decisiones comerciales efectivas, como determinar cuánto inventario almacenar o la cantidad de empleados disponibles para respaldar la demanda, se requiere información detallada sobre cuánto más bajo o más alto será el real. En otras palabras, necesita las probabilidades de cada posible resultado que podría ocurrir. Entonces, por sí mismo, el pronóstico puntual no es probabilístico.   

Para obtener un pronóstico probabilístico, debe conocer la distribución de las posibles demandas en torno a ese pronóstico. Una vez que calcula esto, el pronóstico se convierte en "probabilidad". La forma en que los sistemas de pronóstico y los profesionales, como planificadores de demanda, analistas de inventario, gerentes de materiales y directores financieros, determinan estas probabilidades es el núcleo de la pregunta: "¿qué hace que un pronóstico sea probabilístico?"     

Distribuciones normales
La mayoría de los pronósticos y los sistemas/software que los producen comienzan con una predicción de la demanda. Luego, calculan el rango de posibles demandas en torno a ese pronóstico al hacer suposiciones teóricas incorrectas sobre la distribución. Si alguna vez usó un "intervalo de confianza" en su software de pronóstico, esto se basa en una distribución de probabilidad alrededor del pronóstico. La forma en que se determina este rango de demanda es asumiendo un tipo particular de distribución. La mayoría de las veces esto significa asumir una forma de campana, también conocida como distribución normal. Cuando la demanda es intermitente, algunos sistemas de optimización de inventario y previsión de la demanda pueden suponer que la demanda tiene forma de Poisson. 

Después de crear el pronóstico, la distribución supuesta se aplica alrededor del pronóstico de demanda y luego tiene su estimación de probabilidades para cada demanda posible, es decir, un "pronóstico probabilístico". Estas estimaciones de la demanda y las probabilidades asociadas se pueden usar para determinar valores extremos o cualquier valor intermedio si se desea. Los valores extremos en los percentiles superiores de la distribución (es decir, 92%, 95%, 99%, etc.) se utilizan con mayor frecuencia como entradas para los modelos de control de inventario. Por ejemplo, los puntos de pedido de piezas de repuesto críticas en una empresa de servicios eléctricos pueden planificarse en función de un nivel de servicio de 99,51 TP3T o incluso superior. Mientras que una pieza de servicio no crítica podría planificarse en un nivel de servicio 85% o 90%.

El problema de hacer suposiciones sobre la distribución es que estas probabilidades se equivocarán. Por ejemplo, si la demanda no se distribuye normalmente pero está forzando una curva normal/en forma de campana en el pronóstico, entonces, ¿cómo es posible que las probabilidades sean incorrectas? Específicamente, es posible que desee saber el nivel de inventario necesario para lograr una probabilidad 99% de no quedarse sin existencias y la distribución normal le indicará que almacene 200 unidades. Pero cuando se compara con la demanda real, descubre que 200 unidades solo llenaron la demanda por completo en 40/50 observaciones. Entonces, en lugar de obtener un nivel de servicio 99%, ¡solo logró un nivel de servicio 80%! Esta es una falla gigantesca que resulta de intentar encajar una clavija cuadrada en un agujero redondo. El error lo habría llevado a tomar una reducción de inventario incorrecta.

Las distribuciones estimadas empíricamente son inteligentes
Para producir un pronóstico probabilístico inteligente (lectura precisa), primero debe estimar la distribución de la demanda empíricamente sin suposiciones ingenuas sobre la forma de la distribución. Smart Software hace esto mediante la ejecución de decenas de miles de escenarios simulados de demanda y tiempo de entrega. Nuestra solución aprovecha técnicas patentadas que incorporan simulación Monte Carlo, Bootstrapping estadístico y otros métodos. Los escenarios están diseñados para simular la incertidumbre y la aleatoriedad de la vida real tanto de la demanda como de los plazos de entrega. Las observaciones históricas reales se utilizan como entradas principales, pero la solución también le dará la opción de simular a partir de valores no observados. Por ejemplo, el hecho de que 100 unidades hayan sido la demanda histórica máxima no significa que esté garantizado alcanzar un máximo de 100 en el futuro. Después de terminar los escenarios, sabrá la probabilidad exacta de cada resultado. El pronóstico “puntual” se convierte entonces en el centro de esa distribución. Cada período futuro a lo largo del tiempo se expresa en términos de la distribución de probabilidad asociada con ese período.

Líderes en Pronóstico Probabilístico
Smart Software, Inc. fue la primera empresa en introducir el arranque estadístico como parte de un sistema de software de pronóstico de demanda disponible comercialmente hace veinte años. En ese momento se nos otorgó una patente de EE. UU. y se nos nombró finalista en los Premios a la Excelencia Corporativa APICS para la Innovación Tecnológica. Nuestro Investigación patrocinada por la NSF que condujo a este y otros descubrimientos fueron fundamentales para avanzar en la previsión y la optimización del inventario. Estamos comprometidos con la innovación continua, y usted puede encuentre más información sobre nuestra patente más reciente aquí.

 

 

Smart Software anuncia patente de próxima generación

Belmont, MA, junio de 2023 – Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de la demanda líderes en la industria, anunció hoy la concesión de la patente estadounidense 11,656,887, “SISTEMA Y MÉTODO PARA SIMULAR LA DEMANDA Y OPTIMIZAR LOS PARÁMETROS DE CONTROL PARA UNA PLATAFORMA TECNOLÓGICA”.

La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma”. Una aplicación importante es la optimización de los inventarios de piezas.

Los aspectos de la invención incluyen: un proceso de arranque avanzado que convierte una única serie temporal observada de demanda de artículos en un número ilimitado de escenarios de demanda realistas; a proceso de predicción del rendimiento que ejecuta simulaciones Monte Carlo de una política de control de inventario propuesta para evaluar su desempeño; y un proceso de mejora del desempeño que utiliza el proceso de predicción del rendimiento para explorar automáticamente el espacio de diseños de sistemas alternativos para identificar valores óptimos de los parámetros de control, seleccionando aquellos que minimicen el costo operativo y al mismo tiempo garanticen un nivel objetivo de disponibilidad del artículo.

La nueva tecnología analítica descrita en la patente formará la base para el próximo lanzamiento de la próxima generación ("Gen2") de Planificador de demanda inteligente™ y Smart IP&O™. Los clientes y revendedores actuales pueden obtener una vista previa de Gen2 comunicándose con su representante de ventas de Smart Software.

La investigación subyacente a la patente fue autofinanciada por Smart, complementada con subvenciones competitivas para investigación de innovación en pequeñas empresas de la Fundación Nacional de Ciencias de EE. UU.

 

Acerca de Smart Software, Inc.
Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes como Disney, Arizona Public Service, Ameren y la Cruz Roja Americana. La plataforma de optimización y planificación de inventario de Smart, Smart IP&O, brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y nuestro sitio web es www.smartcorp.com.

 

 

Una guía práctica para desarrollar un proceso de pronóstico profesional

Muchas empresas que buscan mejorar su proceso de pronóstico no saben por dónde empezar. Puede ser confuso lidiar con el aprendizaje de nuevos métodos estadísticos, asegurarse de que los datos estén correctamente estructurados y actualizados, acordar quién es el "propietario" del pronóstico, definir qué significa propiedad y medir la precisión. Habiendo visto esto durante más de cuarenta años de práctica, escribimos este blog para delinear el enfoque central y alentarlo a mantenerlo simple desde el principio.

1. Objetividad. Primero, comprenda y comunique que el proceso de Planificación y Pronóstico de la Demanda es un ejercicio de objetividad. El enfoque está en obtener aportes de varias fuentes (partes interesadas, clientes, gerentes funcionales, bases de datos, proveedores, etc.) y decidir si esos aportes agregan valor. Por ejemplo, si anula un pronóstico estadístico y agrega 20% a la proyección, no debe simplemente asumir que lo hizo correctamente automáticamente. En su lugar, sea objetivo y verifique si eso anula el aumento o la disminución de la precisión del pronóstico. Si descubre que sus anulaciones empeoraron las cosas, ha ganado algo: esto informa el proceso y sabe cómo analizar mejor las decisiones de anulación en el futuro.

2. Trabajo en equipo. Reconocer que la previsión y la planificación de la demanda son deportes de equipo. Acuerde quién será el capitán del equipo. El capitán es responsable de crear los pronósticos estadísticos de referencia y de supervisar el proceso de planificación de la demanda. Pero los resultados dependen de que todos los miembros del equipo realicen contribuciones positivas, proporcionen datos, sugieran metodologías alternativas, cuestionen las suposiciones y ejecuten las acciones recomendadas. Los resultados finales son propiedad de la empresa y de cada una de las partes interesadas.

3. Medición. No se obsesione con los puntos de referencia de precisión de los pronósticos de la industria. Cada SKU tiene su propio nivel de "previsibilidad", y es posible que esté gestionando cualquier número de elementos difíciles. En su lugar, cree sus propios puntos de referencia basados en una secuencia de métodos de pronóstico cada vez más avanzados. Los pronósticos estadísticos avanzados pueden parecer abrumadoramente complejos al principio, así que comience de manera simple con un método básico, como pronosticar la demanda promedio histórica. Luego, mida qué tan cerca está ese pronóstico simple de la demanda real observada. A partir de ahí, desarrolle técnicas que se ocupen de complicaciones como la tendencia y la estacionalidad. Mida el progreso utilizando métricas de precisión calculadas por su software, como el error porcentual absoluto medio (MAPE). Esto permitirá que su empresa mejore un poco cada ciclo de pronóstico.

4. Tiempo. Luego concentre sus esfuerzos en hacer que la previsión sea un proceso independiente que no se combine con el complejo proceso de optimización del inventario. La gestión de inventario se basa en una sólida previsión de la demanda, pero se centra en otros temas: qué comprar, cuándo comprar, cantidades mínimas de pedido, existencias de seguridad, niveles de inventario, plazos de entrega de los proveedores, etc. Deje que la gestión de inventario pase a más adelante . Primero construya "músculo de pronóstico" creando, revisando y evolucionando el proceso de pronóstico para tener una cadencia regular. Cuando su proceso haya madurado lo suficiente, póngase al día con la velocidad creciente de los negocios aumentando el ritmo de su proceso de previsión a una cadencia mensual como mínimo.

Observaciones

Revisar el proceso de previsión de una empresa puede ser un paso importante. A veces sucede cuando hay rotación de ejecutivos, a veces cuando hay un nuevo sistema ERP, a veces cuando hay un nuevo software de pronóstico. Cualquiera que sea el evento precipitante, este cambio es una oportunidad para repensar y refinar cualquier proceso que haya tenido antes. Pero tratar de comerse todo el elefante de una sola vez es un error. En este blog, describimos algunos pasos discretos que puede seguir para lograr una evolución exitosa hacia un mejor proceso de pronóstico.

 

 

 

 

Correlación frente a causalidad: ¿es esto relevante para su trabajo?

Fuera del trabajo, es posible que haya escuchado el famoso dicho "Correlación no es causalidad". Puede sonar como una tontería teórica que, aunque involucrada en un Premio Noble reciente en economía, no es relevante para su trabajo como planificador de la demanda. De ser así, es posible que solo tengas razón en parte.

Modelos extrapolativos vs causales

La mayoría de los pronósticos de demanda utilizan modelos extrapolativos. También llamados modelos de series de tiempo, estos pronostican la demanda usando solo los valores pasados de la demanda de un artículo. Los gráficos de valores pasados revelan la tendencia, la estacionalidad y la volatilidad, por lo que son buenos para muchas cosas. Pero existe otro tipo de modelo, los modelos causales, que potencialmente pueden mejorar la precisión de los pronósticos más allá de lo que puede obtener de los modelos extrapolativos.

Los modelos causales aportan más datos de entrada a la tarea de previsión: información sobre supuestos "impulsores" de previsión externos al historial de demanda de un artículo. Los ejemplos de factores causales potencialmente útiles incluyen variables macroeconómicas como la tasa de inflación, la tasa de crecimiento del PIB y los precios de las materias primas. Los ejemplos que no están vinculados a la economía nacional incluyen las tasas de crecimiento específicas de la industria y el gasto publicitario propio y de la competencia. Estas variables generalmente se utilizan como entradas para los modelos de regresión, que son ecuaciones con la demanda como salida y variables causales como entradas.

Pronóstico utilizando modelos causales

Muchas empresas tienen un proceso S&OP que implica una revisión mensual de pronósticos estadísticos (extrapolativos) en los que la gerencia ajusta los pronósticos según su criterio. A menudo, esta es una forma indirecta y subjetiva de trabajar con modelos causales en el proceso sin hacer el modelo de regresión.

Para hacer realmente un modelo de regresión causal, primero debe designar una lista de variables predictoras causales potencialmente útiles. Estos pueden provenir de su experiencia en la materia. Por ejemplo, suponga que fabrica vidrio para ventanas. Gran parte de su vidrio puede terminar en casas nuevas y edificios de oficinas nuevos. Por lo tanto, la cantidad de casas y oficinas nuevas que se están construyendo son variables predictoras plausibles en una ecuación de regresión.

Aquí hay una complicación: si está usando la ecuación para predecir algo, primero debe predecir los predictores. Por ejemplo, las ventas de vidrio del próximo trimestre pueden estar fuertemente relacionadas con el número de viviendas nuevas y edificios de oficinas nuevos el próximo trimestre. Pero, ¿cuántas casas nuevas habrá el próximo trimestre? Ese es su propio problema de pronóstico. Entonces, tiene un modelo de pronóstico potencialmente poderoso, pero tiene trabajo adicional que hacer para que sea utilizable.

Hay una forma de simplificar las cosas: si las variables predictoras son versiones "retrasadas" de sí mismas. Por ejemplo, la cantidad de nuevos permisos de construcción emitidos hace seis meses puede ser un buen predictor de las ventas de vidrio el próximo mes. No tiene que predecir los datos del permiso de construcción, solo tiene que buscarlos.

¿Es una relación causal o simplemente una correlación espuria?

Los modelos causales son el verdadero negocio: hay un mecanismo real que relaciona la variable predictora con la variable predicha. El ejemplo de predecir las ventas de vidrio a partir de los permisos de construcción es un ejemplo.

Una relación de correlación es más dudosa. Existe una asociación estadística que puede o no proporcionar una base sólida para la previsión. Por ejemplo, suponga que vende un producto que atrae más a los holandeses pero no se da cuenta. Los holandeses son, en promedio, las personas más altas de Europa. Si sus ventas están aumentando y la altura promedio de los europeos está aumentando, puede usar esa relación con buenos resultados. Sin embargo, si la proporción de holandeses en la zona euro está disminuyendo mientras que la estatura promedio está aumentando porque la mezcla de hombres versus mujeres se está desplazando hacia los hombres, ¿qué puede salir mal? Esperará que las ventas aumenten porque la estatura promedio está aumentando. Pero sus ventas son principalmente a los holandeses, y su proporción relativa de la población se está reduciendo, por lo que sus ventas realmente van a disminuir. En este caso, la asociación entre las ventas y la altura del cliente es una correlación espuria.

¿Cómo se puede saber la diferencia entre relaciones verdaderas y espurias? El estándar de oro es hacer un experimento científico riguroso. Pero no es probable que esté en condiciones de hacerlo. En cambio, debe confiar en su “modelo mental” personal de cómo funciona su mercado. Si sus corazonadas son correctas, entonces sus modelos causales potenciales se correlacionarán con la demanda y los modelos causales le darán sus frutos, ya sea para complementar los modelos extrapolables o para reemplazarlos.

 

 

 

 

Tipos de problemas de pronóstico que ayudamos a resolver

Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

Pronosticar un artículo en función de su patrón

Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

Forecasting an item based on its pattern

Ventas por Trimestre

SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

 

Pronosticar un artículo en función de su relación con otras variables.

Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

Forecasting an item based on its relationship to other variables.

Ventas y Representantes de Ventas por Trimestre

Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

 

Pronosticar simultáneamente una cantidad de artículos de productos y su total

Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

Forecasting an item based on its relationship to other variables.

Ventas mensuales de camisas de vestir por color

Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

 

Pronóstico de miles de artículos automáticamente

Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

Forecasting thousands of items automatically

Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

 

Pronosticar la demanda que en la mayoría de los casos es cero

Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

Forecasting demand that is most often zero

SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

 

Pronóstico de requisitos de inventario

La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.