La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia. Pero no estamos solos: hay un pequeño número de otras empresas de software en todo el mundo que se están poniendo al día.

Entonces, ¿qué sigue para el análisis de la cadena de suministro? ¿Dónde está la próxima frontera? Podría implicar algún tipo de modelo de red neuronal de un sistema de distribución. Pero daríamos mejores probabilidades a una extensión de nuestros modelos de vanguardia de sistemas de inventario de “escalón único” a sistemas de inventario de “escalones múltiples”.

Las Figuras 1 y 2 ilustran la distinción entre sistemas de escalón único y múltiple. La Figura 1 muestra un fabricante que depende de una Fuente para reponer su stock de repuestos o componentes. Cuando se avecina un desabastecimiento, el fabricante solicita reabastecimiento de existencias a la Fuente.

Single Multiechelon Inventory Optimization Software AI

Figura 1: Un sistema de inventario de un solo escalón

 

Los modelos de escalón único no incluyen explícitamente detalles de la Fuente. Sigue siendo un misterio, un fantasma invisible cuya única característica relevante es el tiempo aleatorio que tarda en responder a una solicitud de reabastecimiento. Es importante destacar que se supone implícitamente que la Fuente nunca se agota. Esa suposición puede ser “suficientemente buena” para muchos propósitos, pero no puede ser literalmente cierta. Se maneja incorporando eventos de desabastecimiento de proveedores en la distribución del tiempo de entrega de reabastecimiento. Rechazar ese supuesto es la razón fundamental para el modelado multiescalón.

La Figura 2 muestra un sistema de inventario simple de dos escalones. Cambia los dominios de la fabricación a la distribución. Hay múltiples almacenes (WH) que dependen de un centro de distribución (DC) para el reabastecimiento. Ahora el DC es una parte explícita del modelo. Tiene una capacidad finita para procesar pedidos y requiere sus propios protocolos de reordenamiento. El DC se reabastece desde arriba en la cadena desde una Fuente. La Fuente podría ser el fabricante del artículo del inventario o quizás un “CD regional” o algo similar, pero ¿adivinen qué? – es otro fantasma. Al igual que en el modelo de un solo escalón, este fantasma tiene una característica visible: la distribución de probabilidad de su tiempo de reabastecimiento. (El chiste de un famoso chiste de física es "Pero señora, hay tortugas hasta abajo". En nuestro caso, "Son fantasmas hasta arriba").

Two Multiechelon Inventory Optimization Software AI

Figura 2: Un sistema de inventario de dos niveles

 

El problema del diseño y optimización de procesos es mucho más difícil con dos niveles. La dificultad no es sólo la adición de dos parámetros de control más para cada WH (por ejemplo, un mínimo y un máximo para cada uno) más los mismos dos parámetros para el DC. Más bien, la parte más difícil es modelar la interacción entre los WH. En el modelo de un solo nivel, cada WH opera en su propio pequeño mundo y nunca escucha "Lo siento, estamos agotados" de la Fuente fantasmal. Pero en un sistema de dos niveles, hay múltiples WH que compiten por el reabastecimiento desde su DC compartido. Esta competencia crea la principal dificultad analítica: los WH no pueden modelarse de forma aislada sino que deben analizarse simultáneamente. Por ejemplo, si un DC da servicio a diez WH, hay 2+10×2 = 22 parámetros de control de inventario cuyos valores deben calcularse. En lenguaje nerd: no es trivial resolver un problema de optimización discreta restringido de 22 variables que tiene una función objetivo estocástica.

Si elegimos el diseño de sistema incorrecto, descubrimos un nuevo fenómeno inherente a los sistemas de múltiples niveles, que informalmente llamamos "fusión" o "catástrofe". En este fenómeno, el CD no puede satisfacer las demandas de reabastecimiento de los WH, por lo que eventualmente crea desabastecimientos a nivel de almacén. Luego, las solicitudes de reabastecimiento cada vez más frenéticas del WH agotan el inventario en el DC, que inicia sus propias solicitudes de reabastecimiento en pánico desde el DC regional. Si el CD regional tarda demasiado en reponer el CD, entonces todo el sistema se disuelve en una tragedia de desabastecimiento.

Una solución al problema de la fusión es sobrediseñar el CD para que casi nunca se agote, pero eso puede ser muy costoso, razón por la cual existe un CD regional en primer lugar. Por lo tanto, cualquier diseño de sistema asequible tiene un CC que sea lo suficientemente bueno como para durar mucho tiempo entre fusiones. Esta perspectiva implica un nuevo tipo de indicador clave de desempeño (KPI), como “La probabilidad de colapso dentro de X años es inferior al Y por ciento”.

La próxima frontera requerirá nuevos métodos y nuevas métricas, pero ofrecerá una nueva forma de diseñar y optimizar los sistemas de distribución. Nuestra fábrica de zorrillos ya está generando prototipos. Mira este espacio.

 

 

Epicor adquiere software inteligente para tecnologías de optimización y planificación de inventario impulsadas por IA

Smart Software se complace en anunciar que nos unimos a Epicor, un líder mundial de software empresarial específico de la industria. La adquisición reúne a dos empresas estrechamente alineadas para ayudar a las organizaciones a obtener la información adecuada en el momento adecuado y tomar medidas para maximizar el rendimiento empresarial.

Al unirse a Epicor, los clientes de Smart Software se beneficiarán de una importante escala, desarrollo e inversión en nuestras soluciones de optimización y planificación de inventario, lo que con el tiempo les brindará aún más capacidades y opciones de productos. Con la adquisición de Smart Software, Epicor complementa y fortalece su cartera de las mejores soluciones ERP de su clase, ayudando a fabricantes, empresas de mudanzas y vendedores de todo el mundo a optimizar y simplificar sus cadenas de suministro para obtener una ventaja competitiva. Como su socio comercial estratégico, nuestra principal prioridad a medida que integramos las organizaciones en los próximos meses es continuar brindándole el más alto nivel de servicio y soporte que espera.

Para obtener más información sobre las noticias, visite el Sala de prensa de Epicor

 

Acerca de Smart Software, Inc.
Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes como Disney, Arizona Public Service y Ameren. La plataforma de optimización y planificación de inventario de Smart, Smart IP&O, proporciona a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir

Acerca de Epicor
Epicor equipa a las empresas trabajadoras con soluciones empresariales que hacen que el mundo siga girando. Durante 50 años, los clientes de Epicor en las industrias automotriz, de suministro para la construcción, de distribución, de manufactura y minorista han confiado en Epicor para ayudarlos a hacer mejores negocios. Los conjuntos de soluciones innovadoras de Epicor están cuidadosamente seleccionados para satisfacer las necesidades de los clientes y diseñados para responder de manera flexible a su realidad en rápido cambio. Con un profundo conocimiento y experiencia en la industria, Epicor acelera las ambiciones de sus clientes, ya sea crecer y transformarse, o simplemente volverse más productivos y efectivos. Visita www.epicor.com para más información.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Comprender e implementar la tecnología de optimización de inventario es importante por varias razones. En primer lugar, afecta directamente la capacidad de una empresa para satisfacer las demandas de los clientes con prontitud, afectando así la satisfacción y la lealtad del cliente. En segundo lugar, una gestión eficaz del inventario controla los costos operativos, reduciendo la retención innecesaria de existencias y minimizando el riesgo de desabastecimiento o exceso de existencias. En una era donde las condiciones del mercado cambian rápidamente, tener un sistema sólido para gestionar estos aspectos puede marcar la diferencia entre prosperar y simplemente sobrevivir.

En el corazón de la gestión de inventarios se encuentra una paradoja: la necesidad de estar preparado para la demanda fluctuante sin sucumbir a los peligros del exceso de existencias, que puede conducir a mayores costos de mantenimiento, obsolescencia y desperdicio de recursos. Por el contrario, la falta de existencias puede provocar desabastecimientos, pérdida de ventas y disminución de la satisfacción del cliente, lo que en última instancia afecta la reputación y los resultados de una empresa. La naturaleza impredecible de las demandas del mercado, agravada por posibles interrupciones en la cadena de suministro y cambios en el comportamiento de los consumidores, añade complejidad a este acto de equilibrio.

La tecnología juega un papel fundamental aquí. El software moderno de optimización de inventario integra modelos probabilísticos, algoritmos de pronóstico sofisticados y capacidades de simulación. Estos sistemas ayudan a las empresas a responder rápidamente a las condiciones cambiantes del mercado. Además, la adopción de dicha tecnología fomenta una cultura de toma de decisiones basada en datos, lo que garantiza que las empresas no simplemente reaccionen a las incertidumbres sino que elaboren estrategias de manera proactiva para mitigar sus impactos.

Aquí hay breves discusiones sobre las tecnologías algorítmicas relevantes.

Optimización probabilística del inventario: Los enfoques tradicionales de gestión de inventarios se basan en modelos deterministas que suponen un mundo estático y predecible. Estos modelos fallan ante la variabilidad y la incertidumbre. Ingrese a la optimización probabilística del inventario, un paradigma que abarca la aleatoriedad inherente a los procesos de la cadena de suministro. Este enfoque emplea modelos estadísticos para representar las incertidumbres en la oferta y la demanda, lo que permite a las empresas dar cuenta de una gama completa de resultados posibles.

Previsión avanzada:  Una piedra angular de la optimización eficaz del inventario es la capacidad de anticipar con precisión la demanda futura. Las técnicas de pronóstico avanzadas, como [no vendemos esto fuera de SmartForecasts o tal vez ya no esté allí, así que no lo menciones], el análisis de series de tiempo y el aprendizaje automático, extraen patrones explotables de datos históricos.

Cálculo del stock de seguridad: un escudo contra la incertidumbre:

Los pronósticos que incluyen estimaciones de su propia incertidumbre permiten calcular las existencias de seguridad. El stock de seguridad actúa como amortiguador contra la imprevisibilidad de la demanda y los plazos de entrega. Determinar el nivel óptimo de existencias de seguridad es un desafío crítico que los modelos probabilísticos abordan hábilmente. Con los niveles de stock de seguridad adecuados, las empresas pueden mantener altos niveles de servicio, asegurando la disponibilidad del producto sin la carga de un inventario excesivo.

Planificación de escenarios: preparación para múltiples futuros:

El futuro es intrínsecamente incierto y un único pronóstico nunca puede abarcar todos los escenarios posibles. Los métodos avanzados que crean una variedad de escenarios de demanda realistas son la forma esencial de optimización probabilística del inventario. Estas técnicas permiten a las empresas explorar las implicaciones de múltiples futuros, desde el mejor hasta el peor de los casos. Al planificar en función de estos escenarios, las empresas pueden mejorar su resiliencia frente a la volatilidad del mercado.

Navegando el futuro con confianza

El panorama incierto del entorno empresarial actual requiere un cambio de las prácticas tradicionales de gestión de inventarios a enfoques probabilísticos más sofisticados. Al adoptar los principios de optimización probabilística del inventario, las empresas pueden lograr un equilibrio duradero entre la excelencia del servicio y la eficiencia de costos. La integración de técnicas de pronóstico avanzadas, cálculos estratégicos de existencias de seguridad y planificación de escenarios, respaldados por Smart Inventory Planning and Optimization (Smart IP&O), equipa a las empresas para transformar la incertidumbre de un desafío a una oportunidad. Las empresas que adoptan este enfoque informan mejoras significativas en los niveles de servicio, reducciones en los costos de inventario y una mayor agilidad de la cadena de suministro.

Por ejemplo, los artículos menos críticos que se prevé alcanzarán los niveles de servicio 99%+ representan oportunidades para reducir el inventario. Al apuntar a niveles de servicio más bajos en artículos menos críticos, el inventario tendrá “el tamaño adecuado” con el tiempo para alcanzar el nuevo equilibrio, lo que disminuirá los costos de mantenimiento y el valor del inventario disponible. Un importante sistema de transporte público redujo el inventario en más de $4,000,000 y mejoró los niveles de servicio.

La optimización de los niveles de inventario también significa que los ahorros obtenidos en un subconjunto de artículos se pueden reasignar para mantener una cartera más amplia de artículos "en stock", lo que permite capturar ingresos que de otro modo se perderían en ventas. Un distribuidor líder pudo almacenar una cartera más amplia de piezas con ahorros gracias a la reducción de inventario y una mayor disponibilidad de piezas en 18%.

 

 

 

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Inicialmente, durante la década de 1980, la práctica habitual de utilizar datos anuales para realizar pronósticos y la introducción de datos mensuales se consideró innovadora. Este período marcó el comienzo de una tendencia hacia el aumento de la resolución del análisis de datos, lo que permitió a las empresas capturar y reaccionar ante cambios más rápidos en la dinámica del mercado. A medida que avanzamos hacia la década de 2000, la norma del análisis de datos mensual estaba bien establecida, pero los "chicos geniales" (innovadores en el borde de la analítica empresarial) comenzaron a experimentar con datos semanales. Este cambio fue impulsado por la necesidad de sincronizar las operaciones comerciales con condiciones de mercado cada vez más volátiles y comportamientos de los consumidores que exigían respuestas más rápidas que las que podían proporcionar los ciclos mensuales. Hoy, en la década de 2020, si bien el análisis de datos mensuales sigue siendo común, la frontera se ha desplazado nuevamente, esta vez hacia el análisis de datos diario, y algunos pioneros incluso se han aventurado en el análisis por horas.

El verdadero poder del análisis de datos diario radica en su capacidad de proporcionar una vista detallada de las operaciones comerciales, capturando las fluctuaciones diarias que podrían pasar desapercibidas en los datos mensuales o semanales. Sin embargo, las complejidades de los datos diarios requieren enfoques analíticos avanzados para extraer información significativa. En este nivel, comprender la demanda requiere lidiar con conceptos como intermitencia, estacionalidad, tendencia y volatilidad. La intermitencia, o la aparición de días sin demanda, se vuelve más pronunciada en una granularidad diaria y exige técnicas de pronóstico especializadas como el método de Croston para predicciones precisas. La estacionalidad a nivel diario puede revelar múltiples patrones (como mayores ventas los fines de semana o días festivos) que los datos mensuales enmascararían. Las tendencias se pueden observar como aumentos o disminuciones de la demanda a corto plazo, lo que exige estrategias de ajuste ágiles. Finalmente, la volatilidad a nivel diario se acentúa, mostrando oscilaciones de la demanda más significativas que las observadas en los análisis mensuales o semanales, lo que puede afectar las estrategias de gestión de inventarios y la necesidad de existencias de reserva. Este nivel de complejidad subraya la necesidad de herramientas analíticas sofisticadas y experiencia en el análisis de datos diario.

En conclusión, la evolución de pronósticos de series temporales menos frecuentes a pronósticos diarios marca un cambio sustancial en la forma en que las empresas abordan el análisis de datos. Esta transición no solo refleja el ritmo acelerado de los negocios, sino que también resalta la necesidad de herramientas que puedan manejar una mayor granularidad de los datos. La dedicación de Smart Software para perfeccionar sus capacidades analíticas para gestionar los datos diarios destaca el movimiento más amplio de la industria hacia una toma de decisiones más dinámica, receptiva y basada en datos. Este cambio no se trata simplemente de mantener el ritmo del tiempo, sino de aprovechar conocimientos detallados para forjar ventajas competitivas en un entorno empresarial en constante cambio.

 

Los métodos de previsión

​El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados ​​en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Funciones como pronosticar múltiples artículos como grupo, considerar la demanda impulsada por la promoción y manejar patrones de demanda intermitentes son capacidades esenciales para las empresas que manejan carteras de productos diversas y condiciones de mercado dinámicas. La implementación adecuada de estas aplicaciones brinda a las empresas herramientas de pronóstico versátiles, lo que contribuye significativamente a la toma de decisiones informadas y la eficiencia operativa.

Modelos extrapolativos

Nuestras soluciones de pronóstico de la demanda admiten una variedad de enfoques de pronóstico, incluidos modelos de pronóstico extrapolativos o basados en suavizamiento, como el suavizado exponencial y los promedios móviles. La filosofía detrás de estos modelos es simple: intentan detectar, cuantificar y proyectar hacia el futuro cualquier patrón repetitivo en los datos históricos.

  Hay dos tipos de patrones que se pueden encontrar en los datos históricos:

  • Tendencia
  • Estacionalidad

Estos patrones se ilustran en la siguiente figura junto con datos aleatorios.

The Methods of Forecasting

 

Ilustración de datos de series de tiempo aleatorias, estacionales y de tendencia

Si el patrón es una tendencia, entonces los modelos extrapolativos, como el suavizado exponencial doble y el promedio móvil lineal, estiman la tasa de aumento o disminución en el nivel de la variable y proyectan esa tasa en el futuro.

Si el patrón es estacionalidad, entonces modelos como Winters y el suavizamiento exponencial triple estiman multiplicadores estacionales o factores de suma estacionales y luego los aplican a las proyecciones de la porción no estacional de los datos.

Muy a menudo, especialmente en el caso de los datos de ventas minoristas, intervienen patrones tanto de tendencia como estacionales. Si estos patrones son estables, se pueden aprovechar para dar pronósticos muy precisos.

A veces, sin embargo, no hay patrones obvios, de modo que los gráficos de los datos parecen ruido aleatorio. A veces los patrones son claramente visibles, pero cambian con el tiempo y no se puede confiar en que se repitan. En estos casos, los modelos extrapolativos no intentan cuantificar ni proyectar patrones. En cambio, intentan promediar el ruido y hacer buenas estimaciones del punto medio de la distribución de los valores de los datos. Estos valores típicos se convierten entonces en pronósticos. A veces, cuando los usuarios ven una trama histórica con muchos altibajos, se preocupan cuando el pronóstico no replica esos altibajos. Normalmente, esto no debería ser motivo de preocupación. Esto ocurre cuando los patrones históricos no son lo suficientemente fuertes como para justificar el uso de un método de pronóstico que replique el patrón. Quiere asegurarse de que sus pronósticos no sufran el "efecto de movimiento" que se describe en este entrada en el blog.

El pasado como predictor del futuro.

El supuesto clave implícito en los modelos extrapolativos es que el pasado es una buena guía para el futuro. Esta suposición, sin embargo, puede fracasar. Algunos de los datos históricos pueden estar obsoletos. Por ejemplo, los datos podrían describir un entorno empresarial que ya no existe. O bien, el mundo que representa el modelo puede estar listo para cambiar pronto, dejando todos los datos obsoletos. Debido a factores tan complicados, los riesgos del pronóstico extrapolativo son menores cuando se pronostica sólo a corto plazo en el futuro.

Los modelos extrapolativos tienen la ventaja práctica de ser baratos y fáciles de construir, mantener y utilizar. Sólo requieren registros precisos de los valores pasados de las variables que necesita pronosticar. A medida que pasa el tiempo, simplemente agrega los últimos puntos de datos a la serie temporal y vuelve a pronosticar. Por el contrario, los modelos causales que se describen a continuación requieren más pensamiento y más datos. La simplicidad de los modelos extrapolativos se aprecia más cuando se tiene un problema de pronóstico masivo, como hacer pronósticos de la demanda de un día para otro para los 30.000 artículos en el inventario de un almacén.

Ajustes de juicio

Los modelos extrapolativos se pueden ejecutar en modo completamente automático con Demand Planner sin necesidad de intervención. Los modelos causales requieren un juicio sustancial para una selección inteligente de variables independientes. Sin embargo, ambos tipos de modelos estadísticos pueden mejorarse mediante ajustes de juicio. Ambos pueden beneficiarse de sus conocimientos.

Tanto el modelo causal como el extrapolativo se basan en datos históricos. Sin embargo, es posible que tenga información adicional que no se refleja en los números que se encuentran en el registro histórico. Por ejemplo, es posible que sepa que las condiciones competitivas pronto cambiarán, tal vez debido a descuentos de precios, tendencias de la industria, la aparición de nuevos competidores o el anuncio de una nueva generación de sus propios productos. Si estos eventos ocurren durante el período para el cual usted está pronosticando, pueden arruinar la precisión de los pronósticos puramente estadísticos. La función de ajuste gráfico de Smart Demand Planner le permite incluir estos factores adicionales en sus pronósticos a través del proceso de ajuste gráfico en pantalla.

Tenga en cuenta que aplicar ajustes del usuario al pronóstico es un arma de doble filo. Si se utiliza adecuadamente, puede mejorar la precisión de los pronósticos al explotar un conjunto más rico de información. Si se utiliza de forma promiscua, puede añadir ruido adicional al proceso y reducir la precisión. Le recomendamos que utilice ajustes de juicio con moderación, pero que nunca acepte ciegamente las predicciones de un método de pronóstico puramente estadístico. También es muy importante medir el valor añadido previsto. Es decir, el valor agregado al proceso de pronóstico por cada paso incremental. Por ejemplo, si aplica anulaciones basadas en conocimientos comerciales, es importante medir si esos ajustes agregan valor al mejorar la precisión del pronóstico. Smart Demand Planner admite la medición del valor agregado del pronóstico mediante el seguimiento de cada pronóstico considerado y la automatización de los informes de precisión del pronóstico. Puede seleccionar pronósticos estadísticos, medir sus errores y compararlos con los anulados. Al hacerlo, informa el proceso de previsión para que se puedan tomar mejores decisiones en el futuro. 

Pronósticos de múltiples niveles

Otra situación común implica la previsión de múltiples niveles, donde se pronostican varios elementos como un grupo o incluso puede haber varios grupos, y cada grupo contiene varios elementos. Generalmente llamaremos a este tipo de pronóstico Pronóstico multinivel. El mejor ejemplo es el pronóstico de líneas de productos, donde cada artículo es miembro de una familia de artículos y el total de todos los artículos de la familia es una cantidad significativa.

Por ejemplo, como en la siguiente figura, es posible que tenga una línea de tractores y desee pronósticos de ventas para cada tipo de tractor y para toda la línea de tractores.

The Methods of Forecasting 2

Ilustración de pronósticos de productos de múltiples niveles

 Smart Demand Planner proporciona pronósticos acumulativos y descendentes. Esta función es crucial para obtener pronósticos completos de todos los artículos de productos y el total de su grupo. El método Roll Down/Roll Up dentro de esta función ofrece dos opciones para obtener estos pronósticos:

Acumular (de abajo hacia arriba): esta opción inicialmente pronostica cada artículo individualmente y luego agrega los pronósticos a nivel de artículo para generar un pronóstico a nivel de familia.

Desplazar hacia abajo (de arriba hacia abajo): alternativamente, la opción de desplazamiento hacia abajo comienza formando el total histórico a nivel de familia, lo pronostica y luego asigna proporcionalmente el total al nivel de artículo.

Al utilizar Roll Down/Roll Up, tiene acceso a la gama completa de métodos de pronóstico proporcionados por Smart Demand Planner tanto a nivel de artículo como de familia. Esto garantiza flexibilidad y precisión en la previsión, atendiendo a las necesidades específicas de su negocio en diferentes niveles jerárquicos.

La investigación sobre pronósticos no ha establecido condiciones claras que favorezcan el enfoque de pronóstico de arriba hacia abajo o de abajo hacia arriba. Sin embargo, el enfoque ascendente parece preferible cuando los historiales de los artículos son estables y el énfasis está en las tendencias y patrones estacionales de los artículos individuales. La estrategia descendente suele ser una mejor opción si algunos elementos tienen un historial muy ruidoso o si el énfasis está en la previsión a nivel de grupo. Dado que Smart Demand Planner hace que sea rápido y fácil probar un enfoque tanto ascendente como descendente, debe probar ambos métodos y comparar los resultados. Puede utilizar la función "Retener lo actual" de Smart Demand Planner en "Pronóstico versus real" para probar ambos enfoques con sus propios datos y ver cuál produce un pronóstico más preciso para su negocio.