Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de error

Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información.

La precisión se representa como un porcentaje entre cero y 100, mientras que los porcentajes de error comienzan en cero pero no tienen límite superior. Los informes de MAPE (error porcentual absoluto medio) u otras métricas de error pueden denominarse informes de “precisión del pronóstico”, lo que desdibuja la distinción. Por lo tanto, es posible que desee saber cómo pasar del punto de vista del error al punto de vista de la precisión que defiende su empresa. Este blog describe cómo con algunos ejemplos.

Las métricas de precisión se calculan de manera que cuando lo real es igual al pronóstico, la precisión es 100% y cuando el pronóstico es el doble o la mitad de lo real, entonces la precisión es 0%. Los informes que comparan el pronóstico con el real a menudo incluyen lo siguiente:

  • El actual
  • La previsión
  • Error unitario = Pronóstico – Real
  • Error absoluto = Valor absoluto del error unitario
  • Error absoluto % = Error Abs / Real, como %
  • Precisión % = 100% – Error absoluto %

Mire un par de ejemplos que ilustran la diferencia en los enfoques. Digamos que Real = 8 y el pronóstico es 10.

El error de unidad es 10 – 8 = 2

Error absoluto de % = 2/8, como % = 0,25 * 100 = 25%

Precisión = 100% – 25% = 75%.

Ahora digamos que el real es 8 y el pronóstico es 24.

El error de unidad es 24– 8 = 16

Error absoluto de % = 16/8 como % = 2 * 100 = 200%

Precisión = 100% – 200% = negativo se establece en 0%.

En el primer ejemplo, las mediciones de precisión proporcionan la misma información que las mediciones de error, ya que el pronóstico y lo real ya están relativamente cerca. Pero cuando el error es más del doble del real, las mediciones de precisión llegan a cero. Indica correctamente que el pronóstico no era del todo exacto. Pero el segundo ejemplo es más preciso que el tercero, donde el valor real es 8 y el pronóstico es 200. Esa es una distinción que un rango de precisión de 0 a 100% no registra. En este último ejemplo:

El error de unidad es 200 – 8 = 192

Error absoluto de % = 192/8, como % = 24 * 100 = 2,400%

Precisión = 100% – 2,400% = negativo se establece en 0%.

Las métricas de error continúan proporcionando información sobre qué tan lejos está el pronóstico de lo real y posiblemente representan mejor la precisión del pronóstico.

Alentamos a adoptar el punto de vista del error. Simplemente espera que un pequeño porcentaje de error indique que el pronóstico no estuvo lejos de lo real, en lugar de esperar un gran porcentaje de precisión para indicar que el pronóstico estuvo cerca de lo real. Este cambio de mentalidad ofrece los mismos conocimientos y al mismo tiempo elimina las distorsiones.

 

 

 

 

¿Cómo vamos? KPI y KPP

Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Existe el ritmo habitual de realizar pedidos, recibir, pronosticar y planificar, y mover cosas en el almacén. Luego están los tiempos frenéticos: escasez, trámites urgentes, llamadas de último momento para encontrar nuevos proveedores.

Toda esta actividad va en contra de tomarte un momento para ver cómo te va. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

Múltiples métricas

Dependiendo de su rol en su organización, diferentes métricas tendrán diferente importancia. Si usted está en el lado financiero de la casa, la inversión en inventario puede ser una prioridad: ¿cuánto efectivo está invertido en el inventario? Si está del lado de las ventas, la disponibilidad del artículo puede ser lo más importante: ¿cuál es la probabilidad de que pueda decir “sí” a un pedido? Si usted es responsable del reabastecimiento, ¿cuántas órdenes de compra tendrá que recortar su gente en el próximo trimestre?

Métricas de disponibilidad

Volvamos a la disponibilidad de artículos. ¿Cómo se le pone un número a eso? Las dos métricas de disponibilidad más utilizadas son el "nivel de servicio" y la "tasa de cumplimiento". ¿Cual es la diferencia? Es la diferencia entre decir “Ayer tuvimos un terremoto” y decir “Ayer tuvimos un terremoto y fue de 6,4 en la escala de Richter”. El nivel de servicio registra la frecuencia de los desabastecimientos sin importar su tamaño; la tasa de cumplimiento refleja su gravedad. Los dos pueden parecer apuntar en direcciones opuestas, lo que causa cierta confusión. Puede tener un buen nivel de servicio, digamos 90%, pero tener una tasa de cumplimiento vergonzosa, digamos 50%. O viceversa. Lo que los diferencia es la distribución del tamaño de la demanda. Por ejemplo, si la distribución está muy sesgada, por lo que la mayoría de las demandas son pequeñas pero algunas son enormes, es posible que obtenga la división 90%/50% mencionada anteriormente. Si su atención se centra en la frecuencia con la que debe realizar pedidos pendientes, el nivel de servicio es más relevante. Si su preocupación es qué tan grande puede llegar a ser un trámite urgente, la tasa de cumplimiento es más relevante.

Un gráfico para gobernarlos a todos

Un gráfico del inventario disponible puede proporcionar la base para calcular múltiples KPI. Considere la Figura 1, que muestra los datos disponibles cada día durante un año. Este gráfico tiene la información necesaria para calcular múltiples métricas: inversión en inventario, nivel de servicio, tasa de cumplimiento, tasa de reorden y otras métricas.

Key performace indicators and paramenters for inventory management

Inversión en inventario: la altura promedio del gráfico cuando es superior a cero, cuando se multiplica por el costo unitario del artículo del inventario, da el valor en dólares trimestral.

Nivel de servicio: la fracción de ciclos de inventario que terminan por encima de cero es el nivel de servicio. Los ciclos de inventario están marcados por los movimientos ascendentes ocasionados por la llegada de pedidos de reabastecimiento.

Tasa de cumplimiento: la cantidad en la que el inventario cae por debajo de cero y cuánto tiempo permanece allí se combinan para determinar la tasa de cumplimiento.

En este caso, el número promedio de unidades disponibles fue 10,74, el nivel de servicio fue 54% y la tasa de cumplimiento fue 91%.

 

KPI y KPP

En los más de cuarenta años transcurridos desde que fundamos Smart Software, nunca he visto a un cliente producir un gráfico como el de la Figura 1. Aquellos que están más avanzados en su desarrollo sí producen y prestan atención a informes que enumeran sus KPI en forma tabular, pero no No mires ese gráfico. Sin embargo, ese gráfico tiene valor para desarrollar información sobre los ritmos aleatorios del inventario a medida que sube y baja.

Donde resulta especialmente útil es en la prospectiva. Dada la volatilidad del mercado, variables clave como los plazos de entrega de los proveedores, la demanda promedio y la variabilidad de la demanda cambian con el tiempo. Esto implica que los parámetros de control clave, como los puntos de reorden y las cantidades de los pedidos, deben ajustarse a estos cambios. Por ejemplo, si un proveedor dice que tendrá que aumentar su tiempo de entrega promedio en 2 días, esto afectará negativamente sus métricas y es posible que deba aumentar su punto de reorden para compensar. ¿Pero aumentarlo en cuánto?

Aquí es donde entra en juego el software de inventario moderno. Le permitirá proponer un ajuste y luego ver cómo se desarrollarán las cosas. Gráficos como el de la Figura 1 permiten ver y tener una idea del nuevo régimen. Y los gráficos se pueden analizar para calcular KPP (predicciones clave de rendimiento).

La ayuda del KPP elimina las conjeturas a la hora de realizar ajustes. Puede simular lo que sucederá con sus KPI si los cambia en respuesta a cambios en su entorno operativo y qué tan mal se pondrán las cosas si no realiza cambios.

 

 

 

 

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

¿Qué es y qué no es?

¿Qué es la IA y en qué se diferencia del ML? Bueno, ¿qué hace alguien hoy en día cuando quiere saber algo? Lo buscan en Google. Y cuando lo hacen, comienza la confusión.

Una fuente dice que la metodología de la red neuronal llamada aprendizaje profundo es un subconjunto del aprendizaje automático, que es un subconjunto de la IA. Pero otra fuente dice que el aprendizaje profundo ya es parte de la IA porque en cierto modo imita la forma en que funciona la mente humana, mientras que el aprendizaje automático no intenta hacer eso.

Una fuente dice que hay dos tipos de aprendizaje automático: supervisado y no supervisado. Otro dice que hay cuatro: supervisada, no supervisada, semisupervisada y de refuerzo.

Algunos dicen que el aprendizaje por refuerzo es aprendizaje automático; otros lo llaman IA.

Algunos de nosotros, los tradicionalistas, llamamos a muchas de ellas “estadísticas”, aunque no todas lo son.

Al nombrar los métodos, hay mucho espacio tanto para la emoción como para el arte de vender. Si un proveedor de software cree que usted quiere escuchar la frase "IA", es posible que la diga por usted sólo para hacerlo feliz.

Mejor centrarse en lo que sale al final.

Puede evitar algunas exageraciones confusas si se concentra en el resultado final que obtiene de alguna tecnología analítica, independientemente de su etiqueta. Hay varias tareas analíticas que son relevantes para los planificadores de inventario y los planificadores de demanda. Estos incluyen agrupamiento, detección de anomalías, detección de cambios de régimen y análisis de regresión. Los cuatro métodos suelen, aunque no siempre, clasificarse como métodos de aprendizaje automático. Pero sus algoritmos pueden surgir directamente de la estadística clásica.

Agrupación

Agrupar significa agrupar cosas que son similares y distanciarlas de cosas que son diferentes. A veces, agrupar es fácil: para separar geográficamente a sus clientes, simplemente ordénelos por estado o región de ventas. Cuando el problema no es tan obvio, puede utilizar datos y algoritmos de agrupamiento para realizar el trabajo automáticamente, incluso cuando se trata de conjuntos de datos masivos.

Por ejemplo, la Figura 1 ilustra un grupo de “perfiles de demanda”, que en este caso divide todos los artículos de un cliente en nueve grupos según la forma de sus curvas de demanda acumuladas. El grupo 1.1 en la parte superior izquierda contiene artículos cuya demanda se ha ido agotando, mientras que el grupo 3.1 en la parte inferior izquierda contiene artículos cuya demanda se ha acelerado. La agrupación también se puede realizar con proveedores. La elección del número de clústeres normalmente se deja a criterio del usuario, pero ML puede guiar esa elección. Por ejemplo, un usuario puede indicarle al software que "divida mis partes en 4 grupos", pero el uso de ML puede revelar que en realidad hay 6 grupos distintos que el usuario debe analizar. 

 

Confused about AI and Machine Learning Inventory Planning

Figura 1: Agrupación de artículos según las formas de su demanda acumulada

Detección de anomalías

La previsión de la demanda se realiza tradicionalmente mediante la extrapolación de series temporales. Por ejemplo, el suavizado exponencial simple funciona para encontrar el “medio” de la distribución de la demanda en cualquier momento y proyectar ese nivel hacia adelante. Sin embargo, si ha habido un aumento o disminución repentino y único en la demanda en el pasado reciente, ese valor anómalo puede tener un efecto significativo pero no deseado en el pronóstico a corto plazo. Igual de grave para la planificación de inventarios, la anomalía puede tener un efecto enorme en la estimación de la variabilidad de la demanda, que va directamente al cálculo de los requisitos de existencias de seguridad.

Es posible que los planificadores prefieran encontrar y eliminar dichas anomalías (y tal vez hacer un seguimiento fuera de línea para descubrir el motivo de la rareza). Pero nadie que tenga un gran trabajo que hacer querrá escanear visualmente miles de gráficos de demanda para detectar valores atípicos, eliminarlos del historial de demanda y luego volver a calcular todo. La inteligencia humana podría hacer eso, pero la paciencia humana pronto fallaría. Los algoritmos de detección de anomalías podrían hacer el trabajo automáticamente utilizando métodos estadísticos relativamente sencillos. Podrías llamar a esto “inteligencia artificial” si lo deseas.

Detección de cambio de régimen

La detección de cambios de régimen es como el hermano mayor de la detección de anomalías. El cambio de régimen es un cambio sostenido, más que temporal, en uno o más aspectos del carácter de una serie temporal. Si bien la detección de anomalías suele centrarse en cambios repentinos de la demanda media, el cambio de régimen podría implicar cambios en otras características de la demanda, como su volatilidad o su forma distributiva.  

La Figura 2 ilustra un ejemplo extremo de cambio de régimen. La demanda de este artículo tocó fondo alrededor del día 120. Las políticas de control de inventario y los pronósticos de demanda basados en datos más antiguos estarían tremendamente fuera de lugar al final del historial de demanda.

Confused about AI and Machine Learning Demand Planning

Figura 2: Un ejemplo de cambio de régimen extremo en un artículo con demanda intermitente

También en este caso se pueden desarrollar algoritmos estadísticos para resolver este problema, y sería justo llamarlos “aprendizaje automático” o “inteligencia artificial” si así estuviera motivado. El uso de ML o AI para identificar cambios de régimen en el historial de la demanda permite que el software de planificación de la demanda utilice automáticamente solo el historial relevante al realizar pronósticos en lugar de tener que seleccionar manualmente la cantidad de historial para introducirlo en el modelo. 

Análisis de regresión

El análisis de regresión relaciona una variable con otra mediante una ecuación. Por ejemplo, las ventas de marcos de ventanas en un mes pueden predecirse a partir de los permisos de construcción expedidos unos meses antes. El análisis de regresión se ha considerado parte de la estadística durante más de un siglo, pero podemos decir que es "aprendizaje automático", ya que un algoritmo encuentra la manera precisa de convertir el conocimiento de una variable en una predicción del valor de otra.

Resumen

Es razonable estar interesado en lo que sucede en las áreas de aprendizaje automático e inteligencia artificial. Si bien la atención prestada a ChatGPT y sus competidores es interesante, no es relevante para el aspecto numérico de la planificación de la demanda o la gestión de inventario. Los aspectos numéricos del ML y la IA son potencialmente relevantes, pero hay que intentar ver a través de la nube de publicidad que rodea a estos métodos y centrarse en lo que pueden hacer. Si puede hacer el trabajo con métodos estadísticos clásicos, puede hacerlo y luego ejercer su opción de pegar la etiqueta ML a cualquier cosa que se mueva.

 

 

Cómo pronosticar los requisitos de inventario

La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura.

Para simplificar, considere el problema de pronosticar las necesidades de inventario para un solo período de anticipación, digamos un día antes. Por lo general, el trabajo de pronóstico consiste en estimar el nivel más probable o promedio de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de aproximadamente 50% de que la demanda exceda el inventario y resulte en pérdida de ventas y/o pérdida de buena voluntad. Fijar el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero con la misma seguridad resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, a menudo se puede estimar el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina "existencia de seguridad" porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una aproximación muy pobre a la distribución estadística de la demanda. En este caso especial, Smart aprovecha la tecnología patentada para la demanda intermitente que está diseñada para pronosticar con precisión los rangos y producir una mejor estimación del stock de seguridad necesario para lograr el nivel de servicio de inventario requerido.

 

La función de previsión automática

La previsión automática es la característica más popular y más utilizada de SmartForecasts y Smart Demand Planner. Crear pronósticos automáticos es fácil. Pero, la simplicidad del Pronóstico Automático enmascara una poderosa interacción de varios métodos altamente efectivos de pronóstico. En este blog, discutimos parte de la teoría detrás de esta característica principal. Nos enfocamos en el pronóstico automático, en parte debido a su popularidad y en parte porque muchos otros métodos de pronóstico producen resultados similares. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y la previsión promocional.

 

Torneo de pronóstico

El pronóstico automático funciona mediante la realización de un torneo entre un conjunto de métodos competitivos. Debido a que las computadoras personales y la computación en la nube son rápidas, y debido a que hemos codificado algoritmos muy eficientes en el motor de pronóstico automático de SmartForecasts, es práctico adoptar un enfoque puramente empírico para decidir qué método de pronóstico extrapolativo usar. Esto significa que puede darse el lujo de probar una serie de enfoques y luego quedarse con el que mejor pronostique la serie de datos particular en cuestión. SmartForecasts automatiza completamente este proceso al probar los diferentes métodos de pronóstico en un torneo de pronóstico simulado. El ganador del torneo es el método que más se acerca a predecir nuevos valores de datos a partir de los antiguos. La precisión se mide por el error absoluto promedio (es decir, el error promedio, ignorando cualquier signo menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno de los cuales utiliza una parte de los datos, en un proceso conocido como simulación deslizante.

 

Simulación deslizante

La simulación deslizante recorre repetidamente porciones cada vez más largas de los datos históricos, en cada caso pronosticando con anticipación el número deseado de períodos en su horizonte de pronóstico. Suponga que hay 36 valores de datos históricos y necesita pronosticar seis períodos por delante. Imagine que desea evaluar la precisión del pronóstico de algún método en particular, digamos un promedio móvil de cuatro observaciones, en la serie de datos en cuestión.

En un punto de la simulación deslizante, los primeros 24 puntos (solo) se utilizan para pronosticar los valores de datos históricos del 25 al 30, que consideramos temporalmente como desconocidos. Decimos que los puntos 25-30 están “retenidos” del análisis. Calcular los valores absolutos de las diferencias entre los seis pronósticos y los valores históricos reales correspondientes proporciona una instancia de cada pronóstico absoluto de 1 paso, 2 pasos, 3 pasos, 4 pasos, 5 pasos y 6 pasos. error. Repetir este proceso usando los primeros 25 puntos proporciona más instancias de errores de 1 paso, 2 pasos, 3 pasos adelante, etc. El promedio de todas las estimaciones de error absoluto obtenidas de esta manera proporciona un resumen de precisión de un solo número.

 

Métodos utilizados en la previsión automática

Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

  • media móvil simple
  • Media móvil lineal
  • Suavizado exponencial simple
  • Suavizado exponencial doble
  • Versión aditiva del suavizado exponencial de Winters
  • Versión multiplicativa del suavizado exponencial de Winters

 

Los dos últimos métodos son apropiados para series estacionales; sin embargo, se excluyen automáticamente del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales).

Estos seis métodos clásicos basados en el suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puede excluir cualquiera de estos métodos del torneo si tiene preferencia por algunos de los competidores y no por otros.