5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro

La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones.

¿Por qué es tan importante la toma de decisiones rápida en la cadena de suministro digital?

Los negocios están en plena aceleración; los clientes esperan entregas más rápidas, mejores niveles de servicio y mayor transparencia. La clave para satisfacer estas demandas radica en soluciones de cadena de suministro digital que respalden la toma de decisiones inteligente.

Sin embargo, muchas organizaciones tienen dificultades. La brecha entre los datos, el análisis y la acción persiste. Las empresas recopilan grandes cantidades de información, pero no actúan con la suficiente rapidez o, peor aún, toman decisiones basadas en datos obsoletos o incompletos. Es necesario superar esta brecha para aprovechar el verdadero valor de una cadena de suministro digital.

Toma de decisiones rápida y consecuencias para la calidad

1. La brecha de decisión
Muchas organizaciones se encuentran estancadas entre la recopilación de datos y la acción. Esta “brecha de decisión” provoca demoras, lo que reduce el valor comercial potencial que podría haberse obtenido. En el contexto de una cadena de suministro, las decisiones demoradas pueden provocar desabastecimiento, exceso de existencias, pérdida de ventas y clientes insatisfechos.

2. Las nuevas plataformas de IA son clave
Las plataformas digitales y de inteligencia artificial permiten a las empresas tomar decisiones más rápidas e informadas al digitalizar el proceso de datos a la acción. La previsión de la demanda y la optimización del inventario son procesos clave dentro de la matriz de decisiones, y herramientas como Smart IP&O ayudan a predecir las necesidades de inventario y optimizar esas decisiones en función de los costos, los niveles de servicio y los patrones de demanda cambiantes. Esto permite tomar decisiones a una velocidad y escala que antes eran inalcanzables. Además, Smart IP&O admite decisiones estratégicas más importantes y decisiones operativas más pequeñas y frecuentes, lo que garantiza la optimización de una amplia gama de la cadena de suministro.

3. Calidad de la toma de decisiones
Las decisiones rápidas por sí solas no son suficientes. La calidad de esas decisiones es importante. Una toma de decisiones eficaz requiere datos precisos, previsiones y análisis para garantizar que las decisiones conduzcan a resultados positivos. Las organizaciones pueden equilibrar mejor factores importantes como el coste, la disponibilidad y los niveles de servicio aprovechando herramientas que proporcionan información sobre las tendencias y el rendimiento futuros. Este enfoque les permite crear estrategias alineadas con las necesidades y demandas reales, mejorando la eficiencia y el éxito general.

Smart IP&O utiliza modelos de previsión avanzados y datos en tiempo real para garantizar la toma de decisiones rápidas y fiables. Por ejemplo, las organizaciones pueden utilizar métricas proyectadas para equilibrar los niveles de servicio, los costes y la disponibilidad de existencias, lo que garantiza que las políticas de inventario se alineen con las tendencias de demanda reales.

4. Escalabilidad y consistencia en la toma de decisiones
A medida que las empresas crecen, aumenta la complejidad de las decisiones en la cadena de suministro y gestionar una cantidad cada vez mayor de productos, puntos de datos y procesos puede resultar complicado. Las plataformas digitales y las herramientas de automatización ayudan a las empresas a escalar sus procesos de toma de decisiones mediante la gestión de grandes cantidades de datos con precisión y uniformidad.

Al automatizar tareas repetitivas y aplicar reglas consistentes en distintos escenarios, las empresas pueden garantizar que las decisiones se tomen de manera uniforme, lo que genera resultados más predecibles y confiables. Este enfoque genera resultados más predecibles y confiables, ya que los sistemas automatizados garantizan que las decisiones sean consistentes incluso cuando la empresa se expande.

Las plataformas impulsadas por IA como Smart IP&O ofrecen escalabilidad, lo que permite a las empresas gestionar miles de productos y puntos de datos con precisión constante. Esta consistencia es fundamental para mantener los niveles de servicio y reducir los costos a medida que las operaciones se expanden.

5. Digitalización de los procesos de decisión
La digitalización de los procesos de toma de decisiones implica la automatización de diversos aspectos de la toma de decisiones. Mediante el uso de herramientas digitales, se pueden automatizar las decisiones rutinarias, como las relacionadas con el inventario, la demanda y la producción, lo que permite una gestión más rápida y eficiente de las tareas cotidianas. En los casos en los que aún se requiere la intervención humana, se pueden configurar sistemas para notificar a los usuarios cuando se cumplen condiciones o umbrales específicos. Esto reduce el esfuerzo manual y permite a los empleados centrarse en un trabajo más estratégico y complejo, lo que en última instancia mejora la productividad y la eficiencia.

 

La promesa de la cadena de suministro digital reside en su capacidad de transformar los datos en acciones de forma rápida y precisa. Para aprovechar al máximo esta promesa, las organizaciones deben superar la brecha de decisión mediante la adopción de plataformas como Smart IP&O. Estas plataformas mejoran la toma de decisiones rápida y garantizan que no se sacrifique la calidad en el proceso. A medida que las empresas evolucionen, aquellas que integren con éxito estas herramientas en su matriz de decisiones estarán mejor posicionadas para seguir siendo competitivas y satisfacer las expectativas cada vez mayores de los clientes.

 

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

​​En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se dispara cuando muchos componentes son intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede resultar poco realista o incluso imposible. Varias soluciones líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, analizaremos esta funcionalidad en Epicor Kinetic y cómo puede aprovecharla con Epicor Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

¿Por qué necesitaría una lista de materiales de planificación?

Tradicionalmente, cada producto terminado o SKU tenía una lista de materiales rígidamente definida. Si almacenamos ese producto y queremos planificar en torno a la demanda pronosticada, pronosticaremos la demanda de esos productos y luego alimentaremos MRP para llevar esta demanda pronosticada desde el nivel del producto terminado hasta sus componentes a través de la lista de materiales.

Sin embargo, muchas empresas ofrecen productos altamente configurables donde los clientes pueden seleccionar opciones sobre el producto que compran. Como ejemplo, recuerde la última vez que compró un teléfono móvil. Elegiste una marca y un modelo, pero a partir de ahí probablemente se te presentaron opciones: ¿qué tamaño de pantalla quieres? ¿Cuánto almacenamiento quieres? ¿Qué color prefiere usted? Si esa empresa quiere tener estos teléfonos móviles listos y disponibles para enviárselos en un tiempo razonable, de repente, ya no solo anticipan la demanda de ese modelo: deben pronosticar ese modelo para cada tipo de tamaño de pantalla, para todas las capacidades de almacenamiento, ¡Para todos los colores y todas las combinaciones posibles de ellos también! Para algunos fabricantes, estas configuraciones pueden dar lugar a cientos o miles de posibles permutaciones de productos terminados.

Puede haber tantas personalizaciones posibles que la demanda a nivel del producto terminado sea completamente impredecible en el sentido tradicional. Es posible que se vendan miles de esos teléfonos móviles cada año, pero para cada configuración posible, la demanda puede ser extremadamente baja y esporádica; tal vez ciertas combinaciones se vendan una vez y nunca más.

Esto a menudo obliga a estas empresas a planificar puntos de reorden y niveles de existencias de seguridad principalmente a nivel de componentes, mientras reaccionan en gran medida a la demanda firme en el nivel de producto terminado a través de MRP. Si bien este es un enfoque válido, carece de una forma sistemática de aprovechar los pronósticos que puedan dar cuenta de la actividad futura anticipada, como promociones, próximos proyectos u oportunidades de ventas. Hacer pronósticos a nivel “configurado” es efectivamente imposible, y tratar de incorporar estos supuestos de pronóstico a nivel de componentes tampoco es factible.

Explicación de la lista de materiales de planificación Aquí es donde entran las listas de materiales de planificación. Quizás el equipo de ventas esté trabajando en una gran oportunidad B2B para ese modelo, o haya una promoción planificada para el Cyber Monday. Si bien no es realista intentar trabajar con esos supuestos para cada configuración posible, hacerlo a nivel de modelo es totalmente factible y tremendamente valioso.

La lista de materiales de planificación puede utilizar una previsión a un nivel superior y luego reducir la demanda en función de proporciones predefinidas para sus posibles componentes. Por ejemplo, el fabricante de teléfonos móviles puede saber que la mayoría de las personas optan por 128 GB de almacenamiento y que muchas menos optan por actualizaciones a 256 GB o 512 GB. La lista de materiales de planificación permite a la organización (por ejemplo) reducir 60% de la demanda a la opción de 128 GB, 30% a la opción de 256 GB y 10% a la opción de 512 GB. Podrían hacer lo mismo con los tamaños de pantalla, los colores u otras personalizaciones disponibles.

La empresa ahora puede centrar su pronóstico en este nivel de modelo, dejando que la lista de materiales de planificación determine la combinación de componentes. Claramente, definir estas proporciones requiere algo de reflexión, pero la planificación de listas de materiales permite efectivamente a las empresas pronosticar lo que de otro modo sería impredecible.

La importancia de un buen pronóstico

Por supuesto, todavía necesitamos un buen pronóstico para cargar en Epicor Kinetic. Como se explica en este artículo, si bien Epicor Kinetic puede importar un pronóstico, a menudo no puede generar uno y, cuando lo hace, tiende a requerir una gran cantidad de configuraciones difíciles de usar que no suelen revisarse, lo que genera pronósticos inexactos. . Por lo tanto, corresponde a la empresa elaborar sus propios conjuntos de pronósticos, a menudo elaborados manualmente en Excel. La elaboración de pronósticos manualmente generalmente presenta una serie de desafíos, que incluyen, entre otros:

  • La incapacidad de identificar patrones de demanda como estacionalidad o tendencia.
  • Dependencia excesiva de las previsiones de clientes o de ventas.
  • Falta de precisión o seguimiento del desempeño.

No importa qué tan bien configurado esté el MRP con sus listas de materiales de planificación cuidadosamente consideradas, un pronóstico deficiente significa una producción deficiente del MRP y desconfianza en el sistema: basura que entra, basura que sale. Siguiendo con el ejemplo de la “compañía de telefonía celular”, sin una forma sistemática de capturar patrones de demanda clave y/o conocimiento del dominio en el pronóstico, MRP nunca podrá verlo.

 

IP&O inteligente: una solución integral

Smart IP&O respalda la planificación en todos los niveles de su lista de materiales, aunque el “soplado” se maneja a través de MRP dentro de Epicor Kinetic. Este es el método que utilizamos para nuestros clientes de Epicor Kinetic, que es sencillo y efectivo:

  • Planificador de la demanda: La plataforma contiene una aplicación de pronóstico especialmente diseñada llamada Smart Demand Planner que utilizará para pronosticar la demanda de sus productos manufacturados (generalmente productos terminados). Genera pronósticos estadísticos, permite a los planificadores realizar ajustes y/o incorporar otros pronósticos (como pronósticos de ventas o de clientes) y realiza un seguimiento de la precisión. El resultado de esto es un pronóstico que ingresa a la entrada de pronóstico dentro de Epicor Kinetic, donde MRP lo recogerá. Posteriormente, MRP utilizará la demanda en el nivel del producto terminado y también eliminará los requisitos de material a través de la lista de materiales, de modo que la demanda también se reconozca en niveles más bajos.
  • Optimización del inventario: Puede utilizar simultáneamente la optimización inteligente de inventario para establecer niveles mínimos/máximos/de seguridad tanto para cualquier producto terminado que fabrique para almacenar (si corresponde; algunos de nuestros clientes operan exclusivamente bajo pedido según la demanda firme), así como para materias primas. materiales. La clave aquí es que a nivel de materia prima, Smart aprovechará la demanda de uso del trabajo, los tiempos de entrega de los proveedores, etc., para optimizar estos parámetros y al mismo tiempo utilizará los pedidos/envíos de ventas como demanda en el nivel del producto terminado. Smart maneja estas múltiples entradas de demanda de manera elegante a través de la integración bidireccional con Epicor Kinetic.

Cuando se ejecuta MRP, compara la oferta y la demanda (que, una vez más, incluye la demanda de materia prima extraída del pronóstico del producto terminado) con los niveles mínimo/máximo/de seguridad que ha establecido para sugerir PO y sugerencias de trabajo.

 

Amplíe Epicor Kinetic con Smart IP&O

Smart IP&O está diseñado para ampliar su sistema Epicor Kinetic con muchas soluciones integradas de planificación de la demanda y optimización de inventario. Por ejemplo, puede generar pronósticos estadísticos automáticamente para una gran cantidad de artículos, permite ajustes de pronóstico intuitivos, realiza un seguimiento de la precisión del pronóstico y, en última instancia, le permite generar verdaderos pronósticos basados en consenso para anticipar mejor las necesidades de sus clientes.

Gracias a las jerarquías de productos altamente flexibles, Smart IP&O se adapta perfectamente a la previsión en el nivel de planificación de la lista de materiales, por lo que puede capturar patrones clave e incorporar conocimiento empresarial en los niveles más importantes. Además, puede analizar e implementar niveles óptimos de existencias de seguridad en cualquier nivel de su lista de materiales.

Aprovechar las capacidades de planificación de BOM de Epicor Kinetic junto con las funciones avanzadas de optimización de inventario y pronóstico de Smart IP&O garantiza que pueda satisfacer la demanda de manera eficiente y precisa, independientemente de la complejidad de las configuraciones de su producto. Esta sinergia no sólo mejora la precisión de los pronósticos, sino que también fortalece la eficiencia operativa general, ayudándole a mantenerse a la vanguardia en un mercado competitivo.

 

 

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Inicialmente, durante la década de 1980, la práctica habitual de utilizar datos anuales para realizar pronósticos y la introducción de datos mensuales se consideró innovadora. Este período marcó el comienzo de una tendencia hacia el aumento de la resolución del análisis de datos, lo que permitió a las empresas capturar y reaccionar ante cambios más rápidos en la dinámica del mercado. A medida que avanzamos hacia la década de 2000, la norma del análisis de datos mensual estaba bien establecida, pero los "chicos geniales" (innovadores en el borde de la analítica empresarial) comenzaron a experimentar con datos semanales. Este cambio fue impulsado por la necesidad de sincronizar las operaciones comerciales con condiciones de mercado cada vez más volátiles y comportamientos de los consumidores que exigían respuestas más rápidas que las que podían proporcionar los ciclos mensuales. Hoy, en la década de 2020, si bien el análisis de datos mensuales sigue siendo común, la frontera se ha desplazado nuevamente, esta vez hacia el análisis de datos diario, y algunos pioneros incluso se han aventurado en el análisis por horas.

El verdadero poder del análisis de datos diario radica en su capacidad de proporcionar una vista detallada de las operaciones comerciales, capturando las fluctuaciones diarias que podrían pasar desapercibidas en los datos mensuales o semanales. Sin embargo, las complejidades de los datos diarios requieren enfoques analíticos avanzados para extraer información significativa. En este nivel, comprender la demanda requiere lidiar con conceptos como intermitencia, estacionalidad, tendencia y volatilidad. La intermitencia, o la aparición de días sin demanda, se vuelve más pronunciada en una granularidad diaria y exige técnicas de pronóstico especializadas como el método de Croston para predicciones precisas. La estacionalidad a nivel diario puede revelar múltiples patrones (como mayores ventas los fines de semana o días festivos) que los datos mensuales enmascararían. Las tendencias se pueden observar como aumentos o disminuciones de la demanda a corto plazo, lo que exige estrategias de ajuste ágiles. Finalmente, la volatilidad a nivel diario se acentúa, mostrando oscilaciones de la demanda más significativas que las observadas en los análisis mensuales o semanales, lo que puede afectar las estrategias de gestión de inventarios y la necesidad de existencias de reserva. Este nivel de complejidad subraya la necesidad de herramientas analíticas sofisticadas y experiencia en el análisis de datos diario.

En conclusión, la evolución de pronósticos de series temporales menos frecuentes a pronósticos diarios marca un cambio sustancial en la forma en que las empresas abordan el análisis de datos. Esta transición no solo refleja el ritmo acelerado de los negocios, sino que también resalta la necesidad de herramientas que puedan manejar una mayor granularidad de los datos. La dedicación de Smart Software para perfeccionar sus capacidades analíticas para gestionar los datos diarios destaca el movimiento más amplio de la industria hacia una toma de decisiones más dinámica, receptiva y basada en datos. Este cambio no se trata simplemente de mantener el ritmo del tiempo, sino de aprovechar conocimientos detallados para forjar ventajas competitivas en un entorno empresarial en constante cambio.

 

Los tres tipos de análisis de la cadena de suministro

​En este video blog, exploramos las funciones críticas del análisis descriptivo, predictivo y prescriptivo en la gestión de inventario, destacando sus contribuciones esenciales para impulsar la optimización de la cadena de suministro a través de la previsión estratégica y el análisis de datos detallados.

 

Estos análisis fomentan un ecosistema de gestión de inventario dinámico, receptivo y eficiente al permitir a los administradores de inventario monitorear las operaciones actuales, anticipar desarrollos futuros y formular respuestas óptimas. Le explicaremos cómo Descriptive Analytics lo mantiene informado sobre las operaciones actuales, Predictive Analytics lo ayuda a anticipar demandas futuras y Prescriptive Analytics guía sus decisiones estratégicas para lograr la máxima eficiencia y rentabilidad.

Al final del vídeo, tendrá un conocimiento sólido de cómo aprovechar estos análisis para mejorar sus estrategias de gestión de inventario. No se trata sólo de herramientas, sino de una nueva forma de pensar y abordar la optimización del inventario con el apoyo de un software moderno.

 

 

Señales de advertencia de que tiene una brecha en el análisis de la cadena de suministro

“Los negocios son guerra” puede ser una metáfora exagerada, pero no carece de validez. Al igual que la “brecha de los bombarderos” y la “brecha de los misiles”, la preocupación por quedarse atrás de la competencia y la consiguiente amenaza de aniquilación siempre acechan en las mentes de los ejecutivos de negocios. Si no lo hacen, deberían hacerlo, porque no todas las brechas se solucionan. imaginario (se demostró que la brecha de los bombarderos y la brecha de los misiles no existían entre los EE.UU. y la URSS, pero la brecha de los años 1980 entre la productividad japonesa y la estadounidense era demasiado real). La diferencia entre paranoia y preocupación justificada es convertir el miedo en hechos. Esta publicación trata sobre cómo organizar su atención hacia posibles brechas en el análisis de la cadena de suministro de su empresa.

Brechas de vigilancia

El ejército estadounidense tiene un dicho: "El tiempo dedicado al reconocimiento nunca se desperdicia". De vez en cuando, nuestro Pronosticador inteligente El blog tiene una publicación que te ayuda a girar la cabeza para ver qué sucede a tu alrededor. Un ejemplo es nuestra publicación sobre gemelos digitales, que es un tema candente en todo el mundo de la ingeniería. En resumen: utilizar simulaciones de oferta y demanda para detectar debilidades en su plan de inventario es una forma de reconocimiento de la cadena de suministro. Cerrar esta brecha de vigilancia permite a las empresas tomar medidas correctivas antes de que surja un problema real.

Brechas de conciencia situacional

Un comandante militar necesita realizar un seguimiento de lo que está disponible para su uso y de qué tan bien se está utilizando. Los informes disponibles en Analítica operativa inteligente mantenerlo actualizado sobre sus recuentos de inventario, la precisión de sus pronósticos, la capacidad de respuesta de sus proveedores y las tendencias en estas y otras áreas operativas. Sabrá exactamente cuál es su posición en una variedad de KPI de la cadena de suministro, como el nivel de servicio, las tasas de cumplimiento y la rotación de inventario. Sabrá si el desempeño real está alineado con el desempeño planificado y si el plan de inventario (es decir, qué pedir, cuándo, a quién y por qué) se cumple o se ignora.

Brechas de agilidad

El entorno empresarial puede cambiar rápidamente. Todo lo que se necesita es un camión cisterna atrapado de costado en el Canal de Suez, unos cuantos misiles balísticos antibuque en el Mar Rojo o un fenómeno meteorológico que afecte a toda la región. Estas catástrofes pueden recaer tanto sobre la cabeza de sus competidores como sobre la suya, pero ¿quién de ustedes es lo suficientemente ágil como para reaccionar primero? Informe de excepciones en Planificador de la demanda y análisis operativo inteligente puede detectar cambios importantes en el carácter de la demanda para que pueda filtrar rápidamente datos de demanda obsoletos antes de que contaminen todos sus cálculos para pronósticos de demanda u optimización de inventario. Planificador de la demanda puede avisar con antelación de un aumento o disminución pendiente de la demanda. Optimización del inventario puede ayudarle a ajustar sus tácticas de reabastecimiento de inventario para reflejar estos cambios en la demanda.

 

Brechas de innovación

Ya sea que te refieras a tu competencia como "Los otros chicos" o "Todos los demás" o algo que no se pueda imprimir, aquellos de los que debes preocuparte son los que siempre buscan una ventaja. Cuando elige a Smart como su socio, le brindaremos esa ventaja con soluciones predictivas innovadoras pero probadas en el campo. Smart Software ha estado innovando en modelos predictivos desde su nacimiento hace más de 40 años.

  • Nuestros primeros productos introdujeron múltiples innovaciones técnicas: evaluación de la calidad del pronóstico mirando hacia el futuro, no hacia el pasado; selección automática de las mejores entre un conjunto de metodologías competitivas, aprovechando los gráficos de los primeros PC para permitir una fácil gestión de las anulaciones de las previsiones estadísticas.
  • Más tarde inventamos y patentamos un enfoque radicalmente diferente para pronosticar la demanda intermitente que es característica tanto de repuestos como de bienes duraderos costosos. Nuestra tecnología fue patentada y recibió múltiples premios por mejorar drásticamente la gestión del inventario. La solución es ahora un enfoque probado en el campo utilizado por muchas empresas líderes en repuestos, MRO, repuestos de posventa y servicio de campo.
  • Más recientemente, la plataforma en la nube de Smart para pronóstico de demanda, modelado predictivo, optimización de inventario y análisis, toma todos los datos relevantes que de otro modo estarían bloqueados en sus sistemas ERP o EAM, archivos externos y otras fuentes de datos dispares, y los organiza en el canalización de datos inteligente, lo estructura en nuestro modelo de datos comúny lo procesa en nuestro nube de AWS. Inteligente utiliza el poder de nuestro patentado simulaciones probabilísticas de demanda en Smart Inventory Optimization para realizar pruebas de estrés y optimizar las reglas que utiliza para administrar cada uno de los artículos de su inventario.

Es mi trabajo, junto con mi cofundador, el Dr. Nelson Hartunian, nuestro equipo de ciencia de datos y consultores académicos, continuar ampliando los límites del análisis de la cadena de suministro y brindarle los beneficios mediante la implementación continua de nuevas versiones de nuestros productos para que usted no se quede atrapado en una brecha de innovación, ni en ninguna de las otras.

 

Aprovechar las listas de materiales de planificación de ERP con Smart IP&O para pronosticar lo imprevisible

​En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se disparará cuando muchos componentes sean intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede ser poco realista o incluso imposible. Varias soluciones ERP líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, discutiremos esta funcionalidad en ERP y cómo puede aprovecharla con Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

¿Por qué necesitaría una lista de materiales de planificación?

Tradicionalmente, cada producto terminado o SKU tenía una lista de materiales rígidamente definida. Si almacenamos ese producto y queremos planificar en torno a la demanda pronosticada, pronosticaremos la demanda de esos productos y luego alimentaremos MRP para llevar esta demanda pronosticada desde el nivel del producto terminado hasta sus componentes a través de la lista de materiales.

Sin embargo, muchas empresas ofrecen productos altamente configurables donde los clientes pueden seleccionar opciones sobre el producto que están comprando. Como ejemplo, recuerde la última vez que compró una computadora personal. Elegiste una marca y un modelo, pero a partir de ahí probablemente se te presentaron opciones: ¿qué velocidad de CPU deseas? ¿Cuánta RAM quieres? ¿Qué tipo de disco duro y cuánto espacio? Si esa empresa quiere tener estas computadoras listas y disponibles para enviárselas en un tiempo razonable, de repente ya no solo anticipan la demanda de ese modelo: deben pronosticar ese modelo para cada tipo de CPU, para todas las cantidades de RAM, para ¡Todos los tipos de discos duros y todas las combinaciones posibles de ellos también! Para algunos fabricantes, estas configuraciones pueden dar lugar a cientos o miles de posibles permutaciones de productos terminados.

Planning BOM emphasizing the large numbers of permutations Laptops Factory Components

Puede haber tantas personalizaciones posibles que la demanda a nivel del producto terminado sea completamente impredecible en el sentido tradicional. Es posible que se vendan miles de esas computadoras cada año, pero para cada configuración posible, la demanda puede ser extremadamente baja y esporádica; tal vez ciertas combinaciones se vendan una vez y nunca más.

Esto a menudo obliga a estas empresas a planificar puntos de reorden y niveles de existencias de seguridad principalmente a nivel de componentes, mientras reaccionan en gran medida a la demanda firme en el nivel de producto terminado a través de MRP. Si bien este es un enfoque válido, carece de una forma sistemática de aprovechar los pronósticos que puedan dar cuenta de la actividad futura anticipada, como promociones, próximos proyectos u oportunidades de ventas. Hacer pronósticos a nivel “configurado” es efectivamente imposible, y tratar de incorporar estos supuestos de pronóstico a nivel de componentes tampoco es factible.

 

Planificación de la lista de materiales explicada

Aquí es donde entran las listas de materiales de planificación. Quizás el equipo de ventas esté trabajando en una gran oportunidad b2b para ese modelo, o haya una promoción planificada para el Cyber Monday. Si bien no es realista intentar trabajar con esos supuestos para cada configuración posible, hacerlo a nivel de modelo es totalmente factible y tremendamente valioso.

La lista de materiales de planificación puede utilizar un pronóstico a un nivel superior y luego reducir la demanda en función de proporciones predefinidas para su posible componentes. Por ejemplo, el fabricante de computadoras puede saber que la mayoría de las personas optan por 16 GB de RAM, y muchas menos optan por las actualizaciones a 32 o 64. La lista de materiales de planificación permite a la organización (por ejemplo) reducir 60% de la demanda a la opción de 16 GB. , 30% para la opción de 32 GB y 10% para la opción de 64 GB. Podrían hacer lo mismo con las CPU, los discos duros o cualquier otra personalización disponible.  

Planning BOM Explained with computer random access memory ram close hd

 

La empresa ahora puede centrar su pronóstico en este nivel de modelo, dejando que la lista de materiales de planificación determine la combinación de componentes. Claramente, definir estas proporciones requiere algo de reflexión, pero las listas de materiales de planificación permiten efectivamente a las empresas pronosticar lo que de otro modo sería impredecible.

 

La importancia de un buen pronóstico

Por supuesto, todavía Necesita un buen pronóstico para cargarlo en un sistema ERP.. Como se explica en este artículo, si bien ERP puede importar un pronóstico, a menudo no puede generar uno y, cuando lo hace, tiende a requerir una gran cantidad de configuraciones difíciles de usar que no suelen revisarse, lo que genera pronósticos inexactos. Por lo tanto, corresponde a la empresa elaborar sus propios conjuntos de pronósticos, a menudo elaborados manualmente en Excel. La elaboración de pronósticos manualmente generalmente presenta una serie de desafíos, que incluyen, entre otros:

  • La incapacidad de identificar patrones de demanda como estacionalidad o tendencia.
  • Dependencia excesiva de las previsiones de clientes o de ventas
  • Falta de precisión o seguimiento del rendimiento.

No importa qué tan bien configurado esté el MRP con sus listas de materiales de planificación cuidadosamente consideradas, un pronóstico deficiente significa una producción deficiente del MRP y desconfianza en el sistema: basura que entra, basura que sale. Siguiendo con el ejemplo de la “empresa de informática”, sin una forma sistemática de capturar patrones de demanda clave y/o conocimiento del dominio en el pronóstico, MRP nunca podrá verlo.

 

Amplíe su ERP con Smart IP&O

Smart IP&O está diseñado para ampliar su sistema ERP con una serie de soluciones integradas de planificación de la demanda y optimización del inventario. Por ejemplo, puede generar pronósticos estadísticos automáticamente para una gran cantidad de artículos, permite ajustes de pronóstico intuitivos, realiza un seguimiento de la precisión del pronóstico y, en última instancia, le permite generar verdaderos pronósticos basados en consenso para anticipar mejor las necesidades de sus clientes.

Gracias a las jerarquías de productos altamente flexibles, Smart IP&O se adapta perfectamente a la previsión en el nivel de planificación de la lista de materiales para que pueda capturar patrones clave e incorporar conocimiento empresarial en los niveles más importantes. Además, puede analizar e implementar niveles óptimos de existencias de seguridad en cualquier nivel de su lista de materiales.