Saving Billions? How Far the ‘Center for Innovation in Logistics Systems’ Might Take the US Army

The Smart Forecaster

Pursuing best practices in demand planning,

forecasting and inventory optimization

Contributed to The Smart Forecaster by Dr. Greg Parlier (Colonel, U.S. Army, retired). Details on Dr. Parlier’s background conclude the post.

For over two decades, the General Accounting Office (GAO) has indicated that the Defense Department’s logistics management has been ineffective and wasteful, and that the Services lack strategic plans to improve overall inventory management and supply chain performance.

For the US Army, this problem is directly related to a persistent inability to link inventory investment levels and policies with supply chain effectiveness to achieve combat equipment readiness objectives required for globally deployed forces. This shortcoming has been attributed to numerous complexities associated with managing geographically dispersed, independently operating organizations, further compounded by a lack of visibility, authority and accountability across this vast global enterprise.

Unlike the corporate world, where powerful forces encourage innovation to drive competitiveness and efficiency, the Army is not a revenue generating organization focused on “quarterly earnings” and profitability. Certainly, the Army wants to be an efficient consumer of resources—but unlike the private sector’s focus on profit as a bottom line, the surrogate motivator for the Army is ‘force readiness’. This includes equipment availability and weapon system readiness for current operations in Afghanistan, as well as future capability requirements directed by the National Command Authority.

To sustain that equipment availability, the Army must synchronize disparate organizational components using myriad processes with disconnected legacy management information systems across numerous supply support activities which frequently relocate to support deploying forces.

Today, while still engaged in Afghanistan, the Army is also committed to a comprehensive and ongoing transformation. Central to this effort is recognition that dramatic improvements must be achieved in logistics operations and supply chain management. Owning one of the world’s largest and most complex supply chains, the Army is now investing in historically unprecedented efforts to fully capitalize on the promises offered by new information-based technologies. For example, the “Single Army Logistics Enterprise” is believed to be the most ambitious and expensive Enterprise Resource Planning (ERP) implementation project ever undertaken.

These ERP implementation projects have met with very mixed results. While the evidence suggests that dramatic performance improvements for competitive advantage can be achieved in the commercial sector, this has occurred only where so called “IT solutions” are applied to an underlying foundation of mature, efficient and appropriate business processes.

The reality of most cases in recent years, however, has not been this success. Rather, attempts have been made to “bolt on” a solution (like an ERP system, for example) to existing business processes, in misguided efforts to replicate legacy management practices. Such efforts to automate existing processes have, all too often, simply created chaos. In fact, these attempts have not only failed to achieve anticipated improvements, but have actually resulted in reduced performance.

The general pattern has been: the greater the IT investment and organizational scope, the more likely “failure” occurs, in the form of cost overruns, missed schedules, and even project failure—where the effort has finally been abandoned.

We believe the way to enable a coordinated, comprehensive approach for logistics transformation is by creating an “engine for innovation” to accelerate and sustain continuous performance improvement for Army logistics and supply chain management. We are developing a ‘Center for Innovation in Logistics Systems’ to systematically evaluate major organizational components, conduct root cause analyses, diagnose structural disorders and prescribe integrated solutions. We have now identified several ‘catalysts for innovation’ to reduce supply side variability and demand uncertainty—the proximate causes of the notorious ‘bull whip effect’. These include what we refer to as the ‘readiness equation’, ‘mission-based forecasting’, ‘readiness-based sparing’ and ‘readiness responsive retrograde’.

Our goal is to develop a comprehensive modeling capacity to generate and test these innovation catalysts along with several other initiatives in order to estimate cost effective approaches before they are adopted as policy and implemented in practice. We are looking at performance analysis, organizational design, management information and decision support concepts, enterprise systems engineering and workforce considerations including human capital investment needs.

Examining the ‘catalysts’ in isolation, we have seen significant potential for improvement which could yield hundreds of millions of dollars in savings. When combined into new, integrated management practices, however, the potential magnitude for improvement is truly dramatic—billions of dollars in further savings are likely. More importantly, it becomes possible to relate investment levels to current readiness and future capabilities.

The center is capable of developing ‘management innovation as a strategic technology’ by integrating advanced analytics with transformational strategic planning. By harnessing, focusing and applying the power of analysis, we are promoting both qualitative and quantitative common sense—the compelling analytical arguments for necessary change to pursue a common vision. With this power, we are beginning to educate the Army’s leadership, motivate logistics managers to action and provide a source for innovation the culture can embrace. During our journey, we have certainly adapted and applied much from both academic domains and the corporate sector. They, in turn, might now benefit from what we have been able to learn and achieve as well.

Prior to his retirement, Colonel Parlier was the Army’s senior, most experienced operations research analyst and served as Army Aviation and Missile Command’s (AMCOM) Deputy Commander for Transformation. He is the author of Transforming U.S. Army Supply Chains: Strategies for Management Innovation, describing the analytical framework of a multi-year Army Materiel Command (AMC) research and development project providing operations research insights for use by the Army and Department of Defense.

Leave a Comment

Related Posts

Extend Microsoft 365 BC and NAV with Smart IP&O

Extend Microsoft 365 BC and NAV with Smart IP&O

Microsoft 365 BC and NAV can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. The problem is that the ERP system requires that the user manually specify these reorder points and/or forecasts. In this article, we will review the inventory ordering functionality in Microsoft BC & NAV, explain its limitations, and summarize how to reduce inventory, and minimize stockouts by providing the robust predictive functionality that is missing in Dynamics 365.

Recent Posts

  • Epicor Prophet 21 with Forecasting Inventory PlanningExtend Epicor Prophet 21 with Smart IP&O’s Forecasting & Dynamic Reorder Point Planning
    Smart Inventory Planning & Optimization (Smart IP&O) can help with inventory ordering functionality in Epicor P21, reduce inventory, minimize stockouts and restore your organization’s trust by providing robust predictive analytics, consensus-based forecasting, and what-if scenario planning. […]
  • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
    Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
  • Mature bearded mechanic in uniform examining the machine and repairing it in factoryService Parts Planning: Planning for consumable parts vs. Repairable Parts
    When deciding on the right stocking parameters for spare and replacement parts, it is important to distinguish between consumable and repairable servoce parts. These differences are often overlooked by inventory planning software and can result in incorrect estimates of what to stock. Different approaches are required when planning for consumables vs. repairable service parts. […]
  • Four Common Mistakes when Planning Replenishment TargetsFour Common Mistakes when Planning Replenishment Targets
    How often do you recalibrate your stocking policies? Why? Learn how to avoid key mistakes when planning replenishment targets by automating the process, recalibrating parts, using targeting forecasting methods, and reviewing exceptions. […]
  • Smart Software is pleased to introduce our series of webinars, offered exclusively for Epicor Users.Extend Epicor Kinetic’s Forecasting & Min/Max Planning with Smart IP&O
    Epicor Kinetic can manage replenishment by suggesting what to order and when via reorder point-based inventory policies. The problem is that the ERP system requires that the user either manually specify these reorder points, or use a rudimentary “rule of thumb” approach based on daily averages. In this article, we will review the inventory ordering functionality in Epicor Kinetic, explain its limitations, and summarize how to reduce inventory, and minimize stockouts by providing the robust predictive functionality that is missing in Epicor. […]

    Inventory Optimization for Manufacturers, Distributors, and MRO

    • Blanket Orders Smart Software Demand and Inventory Planning HDBlanket Orders
      Our customers are great teachers who have always helped us bridge the gap between textbook theory and practical application. A prime example happened over twenty years ago, when we were introduced to the phenomenon of intermittent demand, which is common among spare parts but rare among the finished goods managed by our original customers working in sales and marketing. This revelation soon led to our preeminent position as vendors of software for managing inventories of spare parts. Our latest bit of schooling concerns “blanket orders.” […]
    • Hand placing pieces to build an arrowProbabilistic Forecasting for Intermittent Demand
      The New Forecasting Technology derives from Probabilistic Forecasting, a statistical method that accurately forecasts both average product demand per period and customer service level inventory requirements. […]
    • Engineering to Order at Kratos Space – Making Parts Availability a Strategic Advantage
      The Kratos Space group within National Security technology innovator Kratos Defense & Security Solutions, Inc., produces COTS s software and component products for space communications - Making Parts Availability a Strategic Advantage […]
    • wooden-figures-of-people-and-a-magnet-team-management-warehouse inventoryManaging the Inventory of Promoted Items
      In a previous post, I discussed one of the thornier problems demand planners sometimes face: working with product demand data characterized by what statisticians call skewness—a situation that can necessitate costly inventory investments. This sort of problematic data is found in several different scenarios. In at least one, the combination of intermittent demand and very effective sales promotions, the problem lends itself to an effective solution. […]