Smart Software’s article has won 1st place in the 2022 Supply Chain Brief MVP Awards Forecasting category!

Belmont, Mass., December 2022 –  Smart Software is pleased to announce that Co-Founder Dr. Thomas R. Willemain’s article “Managing Inventory amid Regime Change” has won 1st place in the Forecasting category of the 2022 Supply Chain Brief MVP Awards.

“Regime change” is a statistical term meaning a major change in the character of the demand for an inventory item. An item’s demand history is the fuel that powers demand planners’ forecasting machines. In general, the more fuel the better, giving us a better fix on the average level,  the shape of any seasonality pattern, and the size and direction of any trend. But there is one big exception to the rule that “more data is better data.” If there is a major shift in your business and new demand doesn’t look like old demand, then old data become dangerous.

Read the MVP Award winner article here

Supply Chain Brief brings together the best content from hundreds of industry thought leaders. This MVP Award recognizes the Most Valuable Post as judged by Supply Chain Brief’s audience, award committee, and social media. Smart Software has been recognized to provide the highest value to industry professionals and useful information that is strategic in nature.

Dr. Thomas R. Willemain is Co-Founder and Senior VP for Research at Smart Software.  He has been a professor at MIT and the Harvard Kennedy School of Government and is now Professor Emeritus of Industrial and Systems Engineering at Rensselaer Polytechnic Institute.  Tom was a Distinguished Visiting Professor at the FAA and supported the Intelligence Community as Expert Statistical Consultant (GS15) in NSA’s Mathematics Research Group and later at IDA’s Center for Computing Sciences.  He holds degrees from Princeton University (BSE, summa cum laude) and Massachusetts Institute of Technology (MS and PhD), all in Electrical Engineering.

About Smart Software, Inc.
Founded in 1981, Smart Software, Inc. is a leader in providing businesses with enterprise-wide demand forecasting, planning and inventory optimization solutions. Smart Software’s demand forecasting and inventory optimization solutions have helped thousands of users worldwide, including customers at mid-market enterprises and Fortune 500 companies, such as Otis Elevator, Hitachi, WeatherTech, and Disney. Smart Inventory Planning & Optimization gives demand planners the tools to handle sales seasonality, promotions, new and aging products, multi-dimensional hierarchies, and intermittently demanded service parts and capital goods items. It also provides inventory managers with accurate estimates of the optimal inventory and safety stock required to meet future orders and achieve desired service levels. Smart Software is headquartered in Belmont, Massachusetts, and can be found online at



Scenario-based Forecasting vs. Equations

Why Scenario-based planning helps planners better manage risk and create better outcomes.

If you are reading this, you are probably a supply chain professional with responsibilities for demand forecasting, inventory management or both. If you live in the 21st century, you use software of some kind to help you do your job. But what, fundamentally, does your software do for you?

Traditionally, software has served as a delivery vehicle for equations. Even if you decided early on in life that you and equations don’t get along, they can still do something for you, and you can live with them—provided some software keeps all that math at a safe distance away.

This is fine, as far as it goes. But we at Smart Software think you would do better by trading in your equations for scenarios. Most often, the point of an equation is to give “the answer”, typically in the form of a number, as in “next month’s demand for SKUxxx will be 105 units.” Results like these are helpful, but incomplete.

Forecasting can be thought of as a computing problem, but it is more helpful to think of it as an exercise in risk management. The equation’s forecast of 105 units does not include any indication of the uncertainty in the forecast, though there is always some. It does not help you think about plausible contingencies: what if demand is for more than 105 units? What if it’s for fewer than 105? Could it get as high as 130 or as low as 80? Is 80 even remotely likely?

This is where scenario-based analysis shows its advantage. One definition of “scenario” is “a postulated sequence of events.” Our definition is more extensive: a scenario is “a postulated sequence of events and their associated probabilities of happening.” Scenarios are the ultimate what-if planning tool. Forecasting by equation will predict a demand for 105 units. Scenario forecasting produces a bundle of possible demand figures, some more likely and others less so. If there are few or no scenarios as low as 80, you can let that contingency go.

Plus-or-Minus How Much?

Those who are better versed in equation-based forecasting might protest that equation-based software sometimes provides indications of the “plus or minus” of a forecast, complete with a bell-shaped curve indicating the relative likelihood of various contingencies. However, when you see a perfect bell-shaped distribution, you know you are being asked to rely on a theoretical assumption that is only sometimes valid.

Scenario forecasts do not rely on that assumption.  In fact, they need not rely on any pre-conceived mathematical assumption whose main selling point is that it simplifies analysis. You don’t need a simplified analysis–you need a realistic analysis based on facts.

Cutting-edge software produces scenario forecasts, not just for demand planning but also for inventory management. Demand is a key input to inventory software, along with supplier behavior as reflected in replenishment lead times. Both demand and supply need to be forecasted if you want to see the consequences of, for instance, choosing a reorder point of 15 and an order quantity of 25.

Inventory systems are what is called “path sensitive”, meaning that any particular sequence of demand values will yield different performance than the same demand values in a different order. For example, if all your highest demand periods come bunched up, one after another, you’ll have much more difficulty keeping stocked than if the same high demand periods are spaced apart with time to restock in between. Scenarios reflect these differences in sufficient detail to yield average performance metrics reflective of the various contingencies inherent in uncertain demand.

Figure 1 illustrates the difference between an equation-based forecast and forecast scenarios.  The green cells hold 10 months of demand for a spare part. The blue cells hold an equation-based forecast that calls for average demand of 1.5 units in months 11, 12 and 13. The pistachio-colored cells hold eight scenario forecasts, though in practice our software would generate tens of thousands of scenarios. Now, the scenarios also average out to 1.5 units per month, but they go further and display the wide variety of ways that the next three months could play out. For instance, reading vertically, the monthly demand could range from 0 to 3. Reading horizontally, the three-month totals could range from 0 to 6, compared to the equation-based estimate of 4.5. Continuing with this toy example, if you have 5 units on hand and the replenishment lead time is greater than 3 months, the equation-based model says you will be ok over the next 3 months, but the scenario-based results say you have 1 chance in 8 (12.5%) chance of stocking out. Equivalently, you have an 87.5% service level. If the part is critical and you are aiming for a 95% service level, you are at risk of missing your item availability goal.

Scenario based Forecasting vs Equations hd2

Figure 1: Comparing equation-based and scenario-based forecasts



Remember, equation-based forecasting gives you information, but shallow information. Scenario-based forecasting can tell you not just what result is most likely but also how reliable any of a variety of predictions are—and this allows you to bring your judgment to bear on balancing risk and stocking expenses—all automated to scale to a vast catalog of items.