12 Oorzaken van Overstocking en Praktische Oplossingen

Overstocking van voorraden kan zowel de financiële stabiliteit als de operationele efficiëntie schaden. Wanneer een organisatie overstocking heeft, legt het kapitaal vast in overtollige voorraden die mogelijk niet verkocht worden, wat de opslagkosten en het risico op veroudering van de voorraad verhoogt. Bovendien hadden de fondsen die gebruikt werden om de overtollige voorraad te kopen beter geïnvesteerd kunnen worden in andere gebieden van het bedrijf, zoals marketing of onderzoek en ontwikkeling. Overstocking belemmert ook de cashflow, omdat geld vastzit in voorraden in plaats van beschikbaar is voor onmiddellijke operationele behoeften. Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier volgt een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen.

 

1 Onjuiste vraagvoorspelling

Een van de belangrijkste oorzaken van overstocking is onnauwkeurige vraagvoorspelling. Wanneer bedrijven vertrouwen op verouderde voorspellingsmethoden of onvoldoende gegevens, kunnen ze de vraag gemakkelijk overschatten, wat leidt tot overstocking. Een goed voorbeeld is de kledingindustrie, waar modetrends snel kunnen veranderen. Een bekend modemerk kreeg onlangs te maken met uitdagingen nadat het de vraag naar een nieuwe kledinglijn had overschat op basis van gebrekkige data-analyse, wat leidde tot onverkochte voorraad.

Om dit probleem aan te pakken, kunnen bedrijven nieuwe technologieën implementeren die automatisch de beste prognosemethoden voor de gegevens selecteren, waarbij trends en seizoenspatronen worden opgenomen om nauwkeurigheid te garanderen. Door de nauwkeurigheid van de prognose te verbeteren, kunnen bedrijven hun inventaris beter afstemmen op de werkelijke vraag, wat leidt tot nauwkeuriger voorraadbeheer en minder overstockscenario's. Een hardwareretailer die Smart Demand Planner gebruikte, verminderde bijvoorbeeld prognosefouten met 15%, wat het potentieel voor aanzienlijke verbetering in voorraadbeheer aantoont.

 

2 Onjuist voorraadbeheer

Effectief voorraadbeheer is fundamenteel om overstocking te voorkomen. Zonder nauwkeurige systemen om voorraadniveaus bij te houden, kunnen bedrijven overtollige voorraad bestellen en hogere kosten maken. Dit probleem komt vaak voort uit afhankelijkheid van spreadsheets of inefficiënte ERP-systemen die geen realtime data-integratie hebben.

State-of-the-art technologieën bieden realtime inzicht in voorraadniveaus, waardoor bedrijven bestelprocessen kunnen automatiseren en optimaliseren. Een groot elektriciteitsbedrijf had te maken met uitdagingen bij het behouden van de beschikbaarheid van serviceonderdelen zonder overbevoorrading, waarbij meer dan 250.000 onderdeelnummers werden beheerd in een divers netwerk van elektriciteitsopwekkings- en distributiefaciliteiten. Het bedrijf verving zijn verouderde systeem door Smart IP&O en integreerde het in realtime met hun Enterprise Asset Management (EAM)-systeem. Smart IP&O stelde het nutsbedrijf in staat om 'what-if'-scenario's te gebruiken, digitale tweelingen van alternatieve voorraadbeleid te creëren en prestaties te simuleren op basis van belangrijke prestatie-indicatoren, zoals voorraadwaarde, serviceniveaus, vulpercentages en tekortkosten. Hierdoor kon het nutsbedrijf gerichte aanpassingen doen aan hun voorraadparameters, die vervolgens werden geïmplementeerd in hun EAM-systeem, wat leidde tot optimale aanvullingen van reserveonderdelen.

Het resultaat was significant: een vermindering van de voorraad met $9 miljoen, waardoor er geld en waardevolle magazijnruimte vrijkwam, terwijl de beoogde serviceniveaus van meer dan 99% werden gehandhaafd.

 

3 overdreven optimistische verkoopprognoses

Bedrijven, met name die in groeifases, kunnen hogere verkopen voorspellen dan ze realiseren, wat leidt tot overtollige voorraad die bedoeld is om te voldoen aan de verwachte vraag die nooit werkelijkheid wordt. Een voorbeeld hiervan is het recente geval met een fabrikant van elektrische voertuigen die hoge verkopen voor zijn vrachtwagen voorspelde, maar te maken kreeg met vertragingen in de productie en een lagere vraag dan verwacht, wat resulteerde in een overschot aan componenten en onderdelen. Deze verkeerde berekening leidde tot hogere opslagkosten en beperkte financiële middelen.

Een ander bedrijf in de automotive aftermarket had moeite om onderdelen die af en toe werden gevraagd nauwkeurig te voorspellen, wat vaak resulteerde in overstocking en stockouts. Met behulp van AI-gestuurde technologie kon het bedrijf backorders en verloren verkopen aanzienlijk verminderen, met een verbetering van de vulpercentages van 93% naar 96% binnen slechts drie maanden. Door gebruik te maken van Smart IP&O-prognosetechnologieën kon het bedrijf nauwkeurige schattingen genereren van de cumulatieve vraag over doorlooptijden, wat een beter zicht bood op potentiële vraagscenario's. Dit zorgde voor geoptimaliseerde voorraadniveaus, lagere opslagkosten en verbeterde financiële efficiëntie door de voorraad af te stemmen op de werkelijke vraag.

 

4 Kortingen bij bulkaankopen

De aantrekkingskracht van kostenbesparingen door bulkaankopen kan bedrijven ertoe aanzetten om meer te kopen dan nodig is, waardoor kapitaal en opslagruimte worden vastgelegd. Dit leidt vaak tot opslagproblemen wanneer overtollige voorraad wordt besteld om korting te krijgen.

Om deze uitdaging aan te gaan, moeten bedrijven de voordelen van bulkkortingen afwegen tegen de kosten van het aanhouden van overtollige voorraad. Technologie van de volgende generatie kan helpen de meest kosteneffectieve inkoopstrategie te identificeren door directe besparingen in evenwicht te brengen met opslagkosten op de lange termijn. Door Smart IP&O te implementeren, kon MNR de voorraadvereisten nauwkeurig voorspellen en zijn voorraadbeheerprocessen optimaliseren. Dit leidde tot een vermindering van 8% in de onderdelenvoorraad, waardoor een hoog klantenserviceniveau van 98,7% werd bereikt en de voorraadgroei voor nieuwe apparatuur werd teruggebracht van een geprojecteerde 10% naar slechts 6%.

 

5 Seizoensgebonden Vraagschommelingen

Moeilijkheden bij het afstemmen van de voorraad op de seizoensgebonden vraag kunnen leiden tot overtollige voorraad zodra de piekverkoopperiode voorbij is. Speelgoedfabrikanten kunnen bijvoorbeeld te veel speelgoed met een vakantiethema produceren, alleen om na de feestdagen met een lage vraag te worden geconfronteerd. De mode-industrie ervaart vaak soortgelijke uitdagingen, waarbij bepaalde stijlen verouderd raken naarmate de seizoenen veranderen. De nieuwste technologieën kunnen bedrijven helpen om seizoensgebonden vraagverschuivingen te anticiperen en de voorraadniveaus dienovereenkomstig aan te passen. Door eerdere verkoopgegevens te analyseren en toekomstige trends te voorspellen, kunnen bedrijven zich beter voorbereiden op seizoensgebonden schommelingen, het risico op overbevoorrading minimaliseren en de voorraadomzet verbeteren.

 

6 Variabiliteit in de levertijd van leveranciers

Onbetrouwbare levertijden van leveranciers kunnen leiden tot overstocking als buffer tegen vertragingen. Als levertijden verbeteren of de vraag onverwachts afneemt, kunnen bedrijven overtollige voorraad hebben. Een distributeur van auto-onderdelen kan bijvoorbeeld onderdelen opslaan om vertragingen bij leveranciers te beperken, maar dan merken ze dat de levertijden plotseling verbeteren.

12 Oorzaken van Overstocking en Praktische Oplossingen

Geavanceerde technologie kan helpen door realtime data en voorspellende analyses te leveren om de variabiliteit van de doorlooptijd beter te beheren. Deze tools stellen bedrijven in staat om hun orders dynamisch aan te passen, waardoor de behoefte aan overmatige veiligheidsvoorraad afneemt.

 

7 Onvoldoende voorraadbeleid

Verouderde of onjuiste voorraadbeleidsregels, zoals foutieve Min/Max-instellingen, kunnen leiden tot overbestelling. Door echter moderne technologie te gebruiken om voorraadbeleidsregels regelmatig te controleren en bij te werken, wordt ervoor gezorgd dat ze aansluiten bij de huidige bedrijfsbehoeften en marktomstandigheden. Door beleid up-to-date te houden, kunnen bedrijven het risico op overstocking als gevolg van procedurele fouten verminderen. Een recente casestudy liet zien hoe een grote retailer Smart IP&O gebruikte om voorraadbeleidsregels te herzien, wat resulteerde in een 15%-reductie in overstock​​.

 

 

8 Promoties en marketingcampagnes

Een verkeerde afstemming tussen marketinginspanningen en de werkelijke vraag van klanten kan ertoe leiden dat bedrijven de impact van promoties overschatten, wat resulteert in onverkochte voorraad. Een cosmeticabedrijf kan bijvoorbeeld een product in beperkte oplage overproduceren, in de verwachting van een hoge vraag die niet uitkomt. Door Smart IP&O in te zetten, kunnen marketinginitiatieven worden afgestemd op realistische vraagverwachtingen, waardoor overtollige voorraad wordt vermeden. Door marketingplannen te integreren met vraagvoorspellingen, kunnen bedrijven hun promotionele strategieën optimaliseren om beter aan te sluiten bij de werkelijke interesse van klanten.

 

9 Angst voor voorraadtekorten

Bedrijven houden vaak hogere voorraadniveaus aan om voorraadtekorten te voorkomen, wat kan leiden tot omzetverlies en ontevreden klanten. Deze angst kan bedrijven ertoe aanzetten om te veel voorraad aan te leggen als vangnet, vooral in sectoren waar klanttevredenheid en -behoud cruciaal zijn. Een opvallend voorbeeld is een grote winkelketen die zijn voorraad huishoudelijke artikelen aanzienlijk uitbreidde om voorraadtekorten te voorkomen. Hoewel deze strategie aanvankelijk hielp om aan de vraag van klanten te voldoen, resulteerde dit later in overtollige voorraad toen de aankooppatronen van consumenten zich stabiliseerden. Deze overstocking droeg bij aan een winstdaling van bijna 90% in het tweede kwartaal, grotendeels als gevolg van afprijzingen en het opruimen van overtollige voorraad.

Om dergelijke situaties te beperken, kunnen bedrijven geavanceerde voorraadplannings- en optimalisatietools gebruiken om nauwkeurige vraagvoorspellingen te doen. Een toonaangevende elektronicafabrikant gebruikte bijvoorbeeld de Smart IP&O-oplossing om de voorraadniveaus te verlagen met 20% zonder dat dit gevolgen had voor de serviceniveaus. Dit verlaagde effectief de kosten en zorgde ervoor dat de klanttevredenheid behouden bleef door te zorgen dat ze de juiste hoeveelheid voorraad bij de hand hadden.

 

10 Overcompensatie voor problemen in de toeleveringsketen

Bedrijven kunnen te veel voorraad aanleggen om zich te beschermen tegen voortdurende verstoringen in de toeleveringsketen, maar dit kan leiden tot opslagproblemen. Een technologiebedrijf kan bijvoorbeeld componenten opslaan om mogelijke problemen in de toeleveringsketen te voorkomen, wat resulteert in overtollige voorraad en hogere kosten. Geavanceerde systemen kunnen bedrijven helpen om beter te anticiperen op en te reageren op uitdagingen in de toeleveringsketen, door de behoefte aan veiligheidsvoorraad in evenwicht te brengen met het risico van te veel voorraad. Een technologiebedrijf gebruikte Smart IP&O om zijn voorraadstrategie te stroomlijnen, waarbij de overtollige voorraad werd verminderd tegen 20% en de veerkracht van de toeleveringsketen behouden bleef.

 

11 Lange levertijden en onbetrouwbare leveranciers

Lange doorlooptijden en onbetrouwbare leveranciers kunnen ertoe leiden dat bedrijven meer voorraad bestellen dan nodig is om potentiële leveringstekorten te dekken. Minder kritieke artikelen waarvan wordt voorspeld dat ze een zeer hoog serviceniveau bereiken, vertegenwoordigen echter kansen om de voorraad te verminderen. Door lagere serviceniveaus te targeten voor minder kritieke artikelen, zal de voorraad na verloop van tijd de "juiste grootte" hebben voor het nieuwe evenwicht, waardoor de opslagkosten en de waarde van de voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met meer dan $4.000.000 terwijl het serviceniveau werd verbeterd met behulp van onze geavanceerde technologie.

 

12 Gebrek aan realtime inzicht in de voorraad

Zonder realtime inzicht in de voorraad bestellen bedrijven vaak meer voorraad dan nodig is, wat leidt tot inefficiëntie en hogere kosten. Smart IP&O stelde Seneca-bedrijven in staat om de vraag op elke voorraadlocatie te modelleren en, met behulp van servicelevelgestuurde planning, te bepalen hoeveel er moet worden opgeslagen om het vereiste serviceniveau te bereiken. Door verschillende scenario's uit te voeren en te vergelijken, kunnen ze eenvoudig optimale voorraadbeleidsregels definiëren en bijwerken voor elke technische ondersteuningsvertegenwoordiger en voorraadruimten.

De software heeft veldtechnici bewijs geleverd dat ze voorheen niet hadden, door hun werkelijke verbruik, de frequentie van het gebruik van onderdelen en de reden voor het voorraadbeleid te tonen, waarbij 90% werd gebruikt als de beoogde serviceniveaunorm. Veldtechnici hebben het gebruik ervan omarmd, met significante resultaten: de voorraad "Zero Turns" is gedaald van $400K tot minder dan $100K, de "First Fix Rate" overschrijdt 90% en de totale voorraadinvestering is met meer dan 25% gedaald, van $11 miljoen tot $ 8 miljoen .

 

Concluderend vormt overstocking een ernstige bedreiging voor de winstgevendheid en efficiëntie van bedrijven, wat leidt tot hogere opslagkosten, vastgelopen kapitaal en mogelijke veroudering van goederen. Deze problemen kunnen de middelen belasten en het vermogen van een bedrijf om te reageren op marktveranderingen beperken. Overstocking kan echter effectief worden beheerd door de oorzaken ervan te begrijpen, zoals onnauwkeurige vraagvoorspellingen, langere doorlooptijden en onbetrouwbare leveranciers. Het implementeren van robuuste AI-gestuurde oplossingen zoals Smart IP&O kan bedrijven helpen voorraadniveaus te optimaliseren, overtollige voorraad te verminderen en de operationele efficiëntie te verbeteren. Door geavanceerde prognose- en voorraadoptimalisatietools te benutten, kunnen bedrijven de juiste balans vinden tussen het voldoen aan de vraag van klanten en het minimaliseren van voorraadgerelateerde kosten.

 

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methodologie voor vooruitplanning voor het beheer van voorraad. Deze methode zorgt ervoor dat bedrijven aan de vraag kunnen voldoen zonder overbevoorrading, wat kapitaal vastlegt, of onderbevoorrading, wat kan leiden tot omzetverlies en ontevreden klanten.

Door te anticiperen op de vraag en de voorraadniveaus dienovereenkomstig aan te passen, helpt deze aanpak het juiste evenwicht te behouden tussen het hebben van voldoende voorraad om aan de behoeften van de klant te voldoen en het minimaliseren van overtollige voorraadkosten. Bedrijven kunnen hun activiteiten optimaliseren, verspilling verminderen en de klanttevredenheid verbeteren door toekomstige behoeften te voorspellen. Laten we eens kijken hoe dit werkt.

 

Kernconcepten van op prognoses gebaseerd voorraadbeheer

Voorraaddynamiekmodellen: Voorraaddynamiekmodellen zijn van fundamenteel belang voor het begrijpen en beheren van voorraadniveaus. Het eenvoudigste model, bekend als het ‘zaagtandmodel’, laat zien dat voorraadniveaus afnemen naarmate de vraag toeneemt en zich net op tijd aanvult. Real-world scenario's vereisen echter vaak geavanceerdere modellen. Door stochastische elementen en variabiliteit op te nemen, zoals Monte Carlo-simulaties, kunnen bedrijven rekening houden met willekeurige schommelingen in de vraag en doorlooptijd, waardoor een realistischere voorspelling van de voorraadniveaus ontstaat.

IP&O-platform verbetert de modellering van de voorraaddynamiek door middel van geavanceerde data-analyse en simulatiemogelijkheden. Door gebruik te maken van AI en machine learning-algoritmen kan ons IP&O-platform vraagpatronen nauwkeuriger voorspellen en modellen in realtime aanpassen op basis van de nieuwste gegevens. Dit leidt tot nauwkeurigere voorraadniveaus, waardoor het risico op voorraadtekorten en overbevoorrading wordt verminderd.

Bestelhoeveelheid en timing bepalen: Effectief voorraadbeheer vereist dat u weet wanneer en hoeveel u moet bestellen. Dit omvat het voorspellen van de toekomstige vraag en het berekenen van de doorlooptijd voor het aanvullen van de voorraad. Door te voorspellen wanneer de voorraad het veiligheidsvoorraadniveau bereikt, kunnen bedrijven hun bestellingen plannen om een continue levering te garanderen.

Onze nieuwste tools blinken uit in het optimaliseren van bestelhoeveelheden en timing door gebruik te maken van voorspellende analyses en AI. Deze systemen kunnen enorme hoeveelheden gegevens analyseren, inclusief historische verkopen en markttrends. Door dit te doen, bieden ze nauwkeurigere vraagprognoses en optimaliseren ze de bestelpunten, zodat de voorraad precies op tijd wordt aangevuld zonder dat er overtollige voorraad ontstaat.

Doorlooptijd berekenen: Doorlooptijd is de periode vanaf het plaatsen van een bestelling tot het ontvangen van de voorraad. Het varieert afhankelijk van de beschikbaarheid van componenten. Als een product bijvoorbeeld uit meerdere componenten wordt samengesteld, wordt de doorlooptijd bepaald door het onderdeel met de langste doorlooptijd.

Slimme AI-gestuurde oplossingen verbeteren de berekening van de doorlooptijd door te integreren met supply chain managementsystemen. Deze systemen volgen de prestaties van leveranciers en historische doorlooptijden om nauwkeurigere schattingen van de doorlooptijd te bieden. Bovendien kunnen slimme technologieën bedrijven waarschuwen voor mogelijke vertragingen, waardoor proactieve aanpassingen aan voorraadplannen mogelijk worden.

Berekening van de veiligheidsvoorraad: De veiligheidsvoorraad fungeert als buffer om te beschermen tegen variabiliteit in vraag en aanbod. Het berekenen van de veiligheidsvoorraad omvat het analyseren van de variabiliteit van de vraag en het instellen van een voorraadniveau dat de meeste potentiële scenario's dekt, waardoor het risico op voorraadtekorten wordt geminimaliseerd.

IP&O-technologie verbetert de berekening van de veiligheidsvoorraad aanzienlijk door middel van geavanceerde analyses. Door vraagpatronen en supply chain-variabelen voortdurend te monitoren, kunnen slimme systemen de veiligheidsvoorraadniveaus dynamisch aanpassen. Machine learning-algoritmen kunnen vraagpieken of -dalingen voorspellen en de veiligheidsvoorraad dienovereenkomstig aanpassen, waardoor optimale voorraadniveaus worden gegarandeerd en de voorraadkosten worden geminimaliseerd.

Het belang van nauwkeurige prognoses bij voorraadbeheer

Nauwkeurige prognoses zijn essentieel voor het minimaliseren van prognosefouten, die kunnen leiden tot overtollige voorraad of voorraadtekorten. Technieken zoals het gebruik van historische gegevens, het verbeteren van gegevensinvoer en het toepassen van geavanceerde voorspellingsmethoden helpen een betere nauwkeurigheid te bereiken. Voorspellingsfouten kunnen aanzienlijke financiële gevolgen hebben: te hoge prognoses resulteren in overtollige voorraad, terwijl te lage prognoses leiden tot gemiste verkoopkansen. Het beheren van deze fouten door middel van het systematisch volgen en aanpassen van prognosemethoden is cruciaal voor het handhaven van optimale voorraadniveaus.

De veiligheidsvoorraad zorgt ervoor dat bedrijven aan de behoeften van de klant kunnen voldoen, zelfs als de werkelijke vraag afwijkt van de prognose. Dit kussen beschermt tegen onvoorziene vraagpieken of vertragingen bij de bevoorrading. Nauwkeurige prognoses, effectief foutenbeheer en strategisch gebruik van de veiligheidsvoorraad verbeteren het op prognoses gebaseerde voorraadbeheer. Bedrijven kunnen de voorraaddynamiek begrijpen, de juiste bestelhoeveelheden en timing bepalen, nauwkeurige doorlooptijden berekenen en de juiste veiligheidsvoorraadniveaus instellen.

Het gebruik van state-of-the-art technologie zoals IP&O biedt aanzienlijke voordelen door het bieden van realtime data-inzichten, voorspellende analyses en adaptieve modellen. Dit leidt tot efficiënter voorraadbeheer, lagere kosten en verbeterde klanttevredenheid. Over het geheel genomen stelt IP&O bedrijven in staat beter te plannen en snel te reageren op marktveranderingen, waardoor ze de juiste voorraadbalans behouden om aan de behoeften van de klant te voldoen zonder onnodige kosten te maken.

 

 

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

Functies zoals het voorspellen van meerdere artikelen als groep, het rekening houden met promotiegestuurde vraag en het omgaan met intermitterende vraagpatronen zijn essentiële mogelijkheden voor bedrijven die te maken hebben met uiteenlopende productportfolio's en dynamische marktomstandigheden. Een juiste implementatie van deze toepassingen geeft bedrijven de beschikking over veelzijdige prognosetools, die aanzienlijk bijdragen aan geïnformeerde besluitvorming en operationele efficiëntie.

Extrapolatieve modellen

Onze oplossingen voor vraagvoorspelling ondersteunen een verscheidenheid aan voorspellingsbenaderingen, waaronder extrapolatieve of op afvlakking gebaseerde voorspellingsmodellen, zoals exponentiële afvlakking en voortschrijdende gemiddelden. De filosofie achter deze modellen is eenvoudig: ze proberen zich herhalende patronen in de historische gegevens te detecteren, kwantificeren en in de toekomst te projecteren.

  Er zijn twee soorten patronen die in de historische gegevens kunnen worden aangetroffen:

  • Trend
  • Seizoensgebondenheid

Deze patronen worden in de volgende afbeelding geïllustreerd, samen met willekeurige gegevens.

De methoden voor voorspelling

 

Ter illustratie van trend-, seizoens- en willekeurige tijdreeksgegevens

Als het patroon een trend is, schatten extrapolatieve modellen zoals dubbele exponentiële afvlakking en lineair voortschrijdend gemiddelde het tempo van de stijging of daling van het niveau van de variabele en projecteren dat tempo naar de toekomst.

Als het patroon seizoensgebonden is, schatten modellen zoals Winters en drievoudige exponentiële afvlakking seizoensvermenigvuldigers of seizoensgebonden optellingsfactoren en passen deze vervolgens toe op projecties van het niet-seizoensgebonden deel van de gegevens.

Heel vaak, vooral bij gegevens over detailhandelsverkopen, zijn zowel trend- als seizoenspatronen betrokken. Als deze patronen stabiel zijn, kunnen ze worden benut om zeer nauwkeurige voorspellingen te doen.

Soms zijn er echter geen duidelijke patronen, zodat de plots van de gegevens op willekeurige ruis lijken. Soms zijn patronen duidelijk zichtbaar, maar ze veranderen in de loop van de tijd en er kan niet op worden vertrouwd dat ze zich herhalen. In deze gevallen proberen de extrapolatieve modellen geen patronen te kwantificeren en te projecteren. In plaats daarvan proberen ze de ruis te middelen en goede schattingen te maken van het midden van de verdeling van gegevenswaarden. Deze typische waarden worden dan de voorspellingen. Wanneer gebruikers een historisch plot met veel ups en downs zien, maken ze zich soms zorgen omdat de voorspelling deze ups en downs niet repliceert. Normaal gesproken hoeft dit geen reden tot bezorgdheid te zijn. Dit gebeurt wanneer de historische patronen niet sterk genoeg zijn om het gebruik van een voorspellingsmethode te rechtvaardigen die het patroon repliceert. U wilt er zeker van zijn dat uw prognoses niet lijden onder het “wiebeleffect” dat hierin wordt beschreven blogpost.

Het verleden als voorspeller van de toekomst

De belangrijkste aanname die inherent is aan extrapolatieve modellen is dat het verleden een goede leidraad is voor de toekomst. Deze veronderstelling kan echter mislukken. Sommige historische gegevens kunnen verouderd zijn. De gegevens kunnen bijvoorbeeld een bedrijfsomgeving beschrijven die niet meer bestaat. Of de wereld die het model vertegenwoordigt, kan binnenkort veranderen, waardoor alle gegevens overbodig worden. Vanwege dergelijke complicerende factoren zijn de risico's van extrapolatieve voorspellingen kleiner als er slechts korte tijd in de toekomst wordt voorspeld.

Extrapolatieve modellen hebben het praktische voordeel dat ze goedkoop zijn en gemakkelijk te bouwen, te onderhouden en te gebruiken. Ze vereisen alleen nauwkeurige registraties van waarden uit het verleden van de variabelen die u moet voorspellen. Naarmate de tijd verstrijkt, voegt u eenvoudigweg de nieuwste gegevenspunten toe aan de tijdreeks en maakt u een nieuwe voorspelling. De hieronder beschreven causale modellen vereisen daarentegen meer denkwerk en meer gegevens. De eenvoud van extrapolatieve modellen wordt het meest op prijs gesteld als u met een enorm voorspellingsprobleem kampt, zoals het maken van nachtelijke prognoses van de vraag naar alle 30.000 artikelen die in een magazijn op voorraad zijn.

Oordelende aanpassingen

Extrapolatieve modellen kunnen met Demand Planner volledig automatisch worden uitgevoerd, zonder dat tussenkomst vereist is. Causale modellen vereisen inhoudelijk oordeel voor een verstandige selectie van onafhankelijke variabelen. Beide soorten statistische modellen kunnen echter worden verbeterd door oordelende aanpassingen. Beiden kunnen profiteren van uw inzichten.

Zowel causale als extrapolatieve modellen zijn gebaseerd op historische gegevens. Het is echter mogelijk dat u over aanvullende informatie beschikt die niet wordt weerspiegeld in de cijfers in het historische record. U weet bijvoorbeeld misschien dat de concurrentieomstandigheden binnenkort zullen veranderen, misschien als gevolg van prijskortingen of trends in de sector, of de opkomst van nieuwe concurrenten, of de aankondiging van een nieuwe generatie van uw eigen producten. Als deze gebeurtenissen plaatsvinden tijdens de periode waarvoor u voorspellingen doet, kunnen ze de nauwkeurigheid van puur statistische voorspellingen aantasten. Met de grafische aanpassingsfunctie van Smart Demand Planner kunt u deze extra factoren in uw prognoses opnemen via het proces van grafische aanpassing op het scherm.

Houd er rekening mee dat het toepassen van gebruikersaanpassingen op de prognose een tweesnijdend zwaard is. Als het op de juiste manier wordt gebruikt, kan het de nauwkeurigheid van voorspellingen verbeteren door gebruik te maken van een rijkere reeks informatie. Als het promiscue wordt gebruikt, kan het extra ruis aan het proces toevoegen en de nauwkeurigheid verminderen. Wij raden u aan spaarzaam om te gaan met oordelende aanpassingen, maar nooit blindelings de voorspellingen van een puur statistische voorspellingsmethode te aanvaarden. Het is ook erg belangrijk om de verwachte toegevoegde waarde te meten. Dat wil zeggen de waarde die door elke incrementele stap aan het prognoseproces wordt toegevoegd. Als u bijvoorbeeld aanpassingen toepast op basis van bedrijfskennis, is het belangrijk om te meten of deze aanpassingen waarde toevoegen door de nauwkeurigheid van de prognoses te verbeteren. Smart Demand Planner ondersteunt het meten van de verwachte toegevoegde waarde door elke overwogen prognose bij te houden en de nauwkeurigheidsrapporten van de prognoses te automatiseren. U kunt statistische prognoses selecteren, de fouten ervan meten en deze vergelijken met de overschreven voorspellingen. Door dit te doen informeert u het prognoseproces, zodat in de toekomst betere beslissingen kunnen worden genomen. 

Voorspellingen op meerdere niveaus

Een andere veel voorkomende situatie betreft prognoses op meerdere niveaus, waarbij er meerdere items als groep worden voorspeld of er zelfs meerdere groepen kunnen zijn, waarbij elke groep meerdere items bevat. We zullen dit soort prognoses over het algemeen Multilevel Forecasting noemen. Het belangrijkste voorbeeld is de productlijnprognose, waarbij elk artikel lid is van een artikelfamilie en het totaal van alle artikelen in de familie een betekenisvolle hoeveelheid is.

U heeft bijvoorbeeld, zoals in de volgende afbeelding, mogelijk een lijn tractoren en u wilt verkoopprognoses voor elk type tractor en voor de gehele tractorlijn.

De methoden voor het voorspellen 2

Ter illustratie van productprognoses op meerdere niveaus

 Smart Demand Planner biedt roll-up/roll-down-prognoses. Deze functie is cruciaal voor het verkrijgen van uitgebreide prognoses van alle productartikelen en hun groepstotaal. De Roll Down/Roll Up-methode binnen deze functie biedt twee opties voor het verkrijgen van deze prognoses:

Samenvatten (Bottom-Up): Deze optie voorspelt in eerste instantie elk item afzonderlijk en voegt vervolgens de prognoses op itemniveau samen om een prognose op familieniveau te genereren.

Roll-down (van boven naar beneden): Als alternatief begint de roll-down-optie met het vormen van het historische totaal op familieniveau, voorspelt het en wijst het totaal vervolgens proportioneel toe tot op itemniveau.

Wanneer u Roll Down/Roll Up gebruikt, heeft u toegang tot het volledige scala aan prognosemethoden van Smart Demand Planner, zowel op artikel- als op familieniveau. Dit zorgt voor flexibiliteit en nauwkeurigheid bij het voorspellen, waarbij wordt voldaan aan de specifieke behoeften van uw bedrijf op verschillende hiërarchische niveaus.

Onderzoek naar prognoses heeft geen duidelijke voorwaarden geschapen die de voorkeur geven aan een top-down- of bottom-up-benadering van prognoses. De bottom-up benadering lijkt echter de voorkeur te hebben als de geschiedenis van items stabiel is en de nadruk ligt op de trends en seizoenspatronen van de individuele items. Top-down is normaal gesproken een betere keuze als sommige items een zeer luidruchtige geschiedenis hebben of als de nadruk ligt op prognoses op groepsniveau. Omdat Smart Demand Planner het snel en gemakkelijk maakt om zowel een bottom-up als een top-down benadering te proberen, moet u beide methoden proberen en de resultaten vergelijken. U kunt de functie 'Hold back on Current' van Smart Demand Planner in 'Prognose vs. Actueel' gebruiken om beide benaderingen op uw eigen gegevens te testen en te zien welke een nauwkeurigere voorspelling voor uw bedrijf oplevert. 

 

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Nauwkeurigheid wordt weergegeven als een percentage tussen nul en 100, terwijl foutpercentages bij nul beginnen maar geen bovengrens hebben. Rapporten van MAPE (gemiddelde absolute procentuele fout) of andere foutstatistieken kunnen de titel 'voorspellingsnauwkeurigheid'-rapporten krijgen, waardoor het onderscheid vervaagt. Het kan dus zijn dat u wilt weten hoe u vanuit het foutenperspectief kunt overstappen naar het nauwkeurigheidsperspectief dat uw bedrijf omarmt. In deze blog wordt aan de hand van enkele voorbeelden beschreven hoe.

Nauwkeurigheidsgegevens worden zo berekend dat wanneer de werkelijke waarde gelijk is aan de voorspelling, de nauwkeurigheid 100% is en wanneer de voorspelling het dubbele of de helft is van de werkelijke, de nauwkeurigheid 0% is. Rapporten waarin de voorspelling met de werkelijkheid wordt vergeleken, bevatten vaak het volgende:

  • De daadwerkelijke
  • De prognose
  • Eenheidsfout = Prognose – Werkelijk
  • Absolute fout = Absolute waarde van eenheidsfout
  • Absolute %-fout = Abs-fout / Werkelijk, als een %
  • Nauwkeurigheid % = 100% – Absolute %-fout

Bekijk een paar voorbeelden die het verschil in aanpak illustreren. Stel dat de Werkelijke = 8 en de voorspelling is 10.

Eenheidsfout is 10 – 8 = 2

Absolute %-fout = 2/8, als % = 0,25 * 100 = 25%

Nauwkeurigheid = 100% – 25% = 75%.

Laten we nu zeggen dat de werkelijke waarde 8 is en de voorspelling 24.

Eenheidsfout is 24– 8 = 16

Absolute %-fout = 16/8 als % = 2 * 100 = 200%

Nauwkeurigheid = 100% – 200% = negatief is ingesteld op 0%.

In het eerste voorbeeld leveren nauwkeurigheidsmetingen dezelfde informatie op als foutmetingen, aangezien de voorspelling en de werkelijke situatie al relatief dicht bij elkaar liggen. Maar als de fout meer dan het dubbele is van de werkelijke, komen de nauwkeurigheidsmetingen uit op nul. Het geeft wel correct aan dat de voorspelling helemaal niet accuraat was. Maar het tweede voorbeeld is nauwkeuriger dan een derde, waarbij de werkelijke waarde 8 is en de voorspelling 200. Dat is een onderscheid dat een nauwkeurigheidsbereik van 0 tot 100% niet registreert. In dit laatste voorbeeld:

Eenheidsfout is 200 – 8 = 192

Absolute %-fout = 192/8, als % = 24 * 100 = 2,400%

Nauwkeurigheid = 100% – 2.400% = negatief is ingesteld op 0%.

Foutstatistieken blijven informatie verschaffen over hoe ver de voorspelling afwijkt van de werkelijke en geven aantoonbaar een betere weergave van de nauwkeurigheid van de voorspelling.

Wij moedigen aan om het foutperspectief te hanteren. U hoopt eenvoudigweg op een klein foutpercentage dat aangeeft dat de voorspelling niet ver van de werkelijkheid ligt, in plaats van te hopen op een groot nauwkeurigheidspercentage dat aangeeft dat de voorspelling dicht bij de werkelijkheid ligt. Deze mentaliteitsverandering biedt dezelfde inzichten en elimineert vervormingen.

 

 

 

 

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Overzicht

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Opstarten

Bootstrapping, ook wel "resampling" genoemd, is een methode van computationele statistieken die we gebruiken om vraagscenario's voor prognoses te creëren. De essentie van het prognoseprobleem is het blootleggen van mogelijke toekomsten waarmee uw bedrijf te maken kan krijgen, zodat u kunt uitzoeken hoe u bedrijfsrisico's kunt beheersen. Traditionele prognosemethoden richten zich op het berekenen van de "meest waarschijnlijke" toekomst, maar ze geven niet het volledige risicobeeld weer. Bootstrapping biedt een onbeperkt aantal realistische wat-als-scenario's.

Bootstrapping doet dit zonder onrealistische aannames te doen over de vraag, dwz dat deze niet intermitterend is, of dat deze een klokvormige verdeling van groottes heeft. Die aannames zijn krukken om de wiskunde eenvoudiger te maken, maar de bootstrap is een procedure, geen vergelijking, dus dergelijke vereenvoudigingen zijn niet nodig.

Voor het eenvoudigste vraagtype, dat een stabiele willekeur is zonder seizoensgebondenheid of trend, is bootstrapping doodeenvoudig. Om een redelijk idee te krijgen van wat een enkele toekomstige vraagwaarde zou kunnen zijn, kiest u willekeurig een van de historische eisen. Om een vraagscenario te creëren, maakt u meerdere willekeurige selecties uit het verleden en rijgt u ze aan elkaar. Klaar. Het is mogelijk om wat meer realisme toe te voegen door de gevraagde waarden te "jitteren", dwz een beetje extra willekeur aan elke waarde toe te voegen of af te trekken, maar zelfs dat is eenvoudig.

Figuur 1 toont een eenvoudige bootstrap. De eerste regel is een korte reeks historische vraag naar een SKU. De volgende regels tonen scenario's van toekomstige vraag die zijn gemaakt door willekeurig waarden uit de vraaggeschiedenis te selecteren. De volgende drie eisen kunnen bijvoorbeeld zijn (0, 14, 6), of (2, 3, 5), enz.

Statistische bootstrapping en Monte Carlo-simulatie 1

Afbeelding 1: voorbeeld van vraagscenario's gegenereerd door een eenvoudige bootstrap

 

Bewerkingen met een hogere frequentie, zoals dagelijkse prognoses, brengen complexere vraagpatronen met zich mee, zoals dubbele seizoensgebondenheid (bijv. dag van de week en maand van het jaar) en/of trend. Dit daagde ons uit om een nieuwe generatie bootstrapping-algoritmen uit te vinden. We hebben onlangs een Amerikaans patent gewonnen voor deze doorbraak, maar de essentie is zoals hierboven beschreven.

Monte Carlo simulatie

Monte Carlo staat bekend om zijn casino's, die net als bootstrapping het idee van willekeur oproepen. Monte Carlo-methoden gaan ver terug, maar de moderne impuls kwam met de noodzaak om wat harige berekeningen te maken over waar neutronen zouden vliegen als een A-bom ontploft.

De essentie van Monte Carlo-analyse is deze: “Ons probleem is te ingewikkeld om te analyseren met vergelijkingen van papier en potlood. Dus, laten we een computerprogramma schrijven dat de individuele stappen van het proces codeert, de willekeurige elementen erin stoppen (bijvoorbeeld welke kant een neutron op schiet), het opwinden en kijken hoe het gaat. Aangezien er veel willekeur is, laten we het programma een ontelbaar aantal keren uitvoeren en het gemiddelde van de resultaten nemen.”

Als we deze benadering toepassen op voorraadbeheer, hebben we een andere reeks willekeurig voorkomende gebeurtenissen: een vraag van een bepaalde omvang komt bijvoorbeeld op een willekeurige dag binnen, een aanvulling van een bepaalde omvang arriveert na een willekeurige doorlooptijd, we snijden een aanvullings-PO van een bepaalde maat wanneer de voorraad daalt tot of onder een bepaald bestelpunt. We coderen de logica die deze gebeurtenissen met elkaar in verband brengt in een programma. We voeden het met een willekeurige vraagvolgorde (zie bootstrapping hierboven), voeren het programma een tijdje uit, laten we zeggen een jaar dagelijkse bewerkingen, berekenen prestatiestatistieken zoals Fill Rate en Average On Hand-inventaris, en "gooi de dobbelstenen" door het opnieuw uit te voeren het programma vele malen en het gemiddelde van de resultaten van vele gesimuleerde jaren. Het resultaat is een goede inschatting van wat er gebeurt als we belangrijke managementbeslissingen nemen: “Als we het bestelpunt op 10 eenheden zetten en de bestelhoeveelheid op 15 eenheden, kunnen we een serviceniveau verwachten van 89% en een gemiddelde beschikbaarheid van 21 eenheden.” Wat de simulatie voor ons doet, is het blootleggen van de gevolgen van managementbeslissingen op basis van realistische vraagscenario's en solide wiskunde. Het giswerk is weg.

Figuur 2 toont enkele van de innerlijke werkingen van een Monte Carlo-simulatie van een voorraadsysteem in vier panelen. Het systeem gebruikt een Min/Max voorraadbeheerbeleid met Min=10 en Max=25. Nabestellingen zijn niet toegestaan: u heeft het goed of u verliest het bedrijf. Doorlooptijden voor aanvulling zijn meestal 7 dagen, maar soms ook 14. Deze simulatie duurde een jaar.

Het eerste paneel toont een complex willekeurig vraagscenario waarin er geen vraag is in het weekend, maar de vraag over het algemeen elke dag toeneemt van maandag tot en met vrijdag. Het tweede paneel toont het willekeurige aantal beschikbare eenheden, dat ebt en vloeit met elke aanvullingscyclus. Het derde paneel toont de willekeurige groottes en tijdstippen van aanvullingsorders die binnenkomen van de leverancier. Het laatste paneel toont de onbevredigde vraag die de klantrelaties in gevaar brengt. Dit soort detail kan erg handig zijn om inzicht te krijgen in de dynamiek van een voorraadsysteem.

Statistische bootstrapping en Monte Carlo-simulatie 2

Figuur 2: Details van een Monte Carlo-simulatie

 

Figuur 2 toont slechts een van de talloze manieren waarop het jaar zou kunnen verlopen. Over het algemeen willen we de resultaten van vele gesimuleerde jaren middelen. Niemand zou tenslotte een munt opgooien om te beslissen of het een eerlijke munt was. Figuur 3 laat zien hoe vier key performance metrics (KPI's) van jaar tot jaar variëren voor dit systeem. Sommige statistieken zijn relatief stabiel in simulaties (Fill Rate), maar andere laten meer relatieve variabiliteit zien (Operating Cost = Holding Cost + Ordering Cost + Shortage Cost). Als we de grafieken bekijken, kunnen we schatten dat de keuzes van Min=10, Max=25 leiden tot gemiddelde bedrijfskosten van ongeveer $3.000 per jaar, een opvullingspercentage van ongeveer 90%, een serviceniveau van ongeveer 75% en een gemiddelde aan Hand van ongeveer 10

Statistische bootstrapping en Monte Carlo-simulatie 3

Figuur 3: Variatie in KPI's berekend over 1000 gesimuleerde jaren

 

Het is nu zelfs mogelijk om een managementvraag van een hoger niveau te beantwoorden. We kunnen verder gaan dan "Wat gebeurt er als ik zus-en-zo doe?" naar “Wat is de best wat ik kan doen om een opvullingspercentage van ten minste 90% voor dit item te bereiken tegen de laagst mogelijke kosten?” De wiskundige  achter deze sprong zit nog een andere sleuteltechnologie genaamd "stochastische optimalisatie", maar we stoppen hier voor nu. Het volstaat te zeggen dat de SIO&P-software van Smart de "ontwerpruimte" van min- en max-waarden kan doorzoeken om automatisch de beste keuze te vinden.