Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Nauwkeurigheid wordt weergegeven als een percentage tussen nul en 100, terwijl foutpercentages bij nul beginnen maar geen bovengrens hebben. Rapporten van MAPE (gemiddelde absolute procentuele fout) of andere foutstatistieken kunnen de titel 'voorspellingsnauwkeurigheid'-rapporten krijgen, waardoor het onderscheid vervaagt. Het kan dus zijn dat u wilt weten hoe u vanuit het foutenperspectief kunt overstappen naar het nauwkeurigheidsperspectief dat uw bedrijf omarmt. In deze blog wordt aan de hand van enkele voorbeelden beschreven hoe.

Nauwkeurigheidsgegevens worden zo berekend dat wanneer de werkelijke waarde gelijk is aan de voorspelling, de nauwkeurigheid 100% is en wanneer de voorspelling het dubbele of de helft is van de werkelijke, de nauwkeurigheid 0% is. Rapporten waarin de voorspelling met de werkelijkheid wordt vergeleken, bevatten vaak het volgende:

  • De daadwerkelijke
  • De prognose
  • Eenheidsfout = Prognose – Werkelijk
  • Absolute fout = Absolute waarde van eenheidsfout
  • Absolute %-fout = Abs-fout / Werkelijk, als een %
  • Nauwkeurigheid % = 100% – Absolute %-fout

Bekijk een paar voorbeelden die het verschil in aanpak illustreren. Stel dat de Werkelijke = 8 en de voorspelling is 10.

Eenheidsfout is 10 – 8 = 2

Absolute %-fout = 2/8, als % = 0,25 * 100 = 25%

Nauwkeurigheid = 100% – 25% = 75%.

Laten we nu zeggen dat de werkelijke waarde 8 is en de voorspelling 24.

Eenheidsfout is 24– 8 = 16

Absolute %-fout = 16/8 als % = 2 * 100 = 200%

Nauwkeurigheid = 100% – 200% = negatief is ingesteld op 0%.

In het eerste voorbeeld leveren nauwkeurigheidsmetingen dezelfde informatie op als foutmetingen, aangezien de voorspelling en de werkelijke situatie al relatief dicht bij elkaar liggen. Maar als de fout meer dan het dubbele is van de werkelijke, komen de nauwkeurigheidsmetingen uit op nul. Het geeft wel correct aan dat de voorspelling helemaal niet accuraat was. Maar het tweede voorbeeld is nauwkeuriger dan een derde, waarbij de werkelijke waarde 8 is en de voorspelling 200. Dat is een onderscheid dat een nauwkeurigheidsbereik van 0 tot 100% niet registreert. In dit laatste voorbeeld:

Eenheidsfout is 200 – 8 = 192

Absolute %-fout = 192/8, als % = 24 * 100 = 2,400%

Nauwkeurigheid = 100% – 2.400% = negatief is ingesteld op 0%.

Foutstatistieken blijven informatie verschaffen over hoe ver de voorspelling afwijkt van de werkelijke en geven aantoonbaar een betere weergave van de nauwkeurigheid van de voorspelling.

Wij moedigen aan om het foutperspectief te hanteren. U hoopt eenvoudigweg op een klein foutpercentage dat aangeeft dat de voorspelling niet ver van de werkelijkheid ligt, in plaats van te hopen op een groot nauwkeurigheidspercentage dat aangeeft dat de voorspelling dicht bij de werkelijkheid ligt. Deze mentaliteitsverandering biedt dezelfde inzichten en elimineert vervormingen.

 

 

 

 

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Overzicht

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Opstarten

Bootstrapping, ook wel "resampling" genoemd, is een methode van computationele statistieken die we gebruiken om vraagscenario's voor prognoses te creëren. De essentie van het prognoseprobleem is het blootleggen van mogelijke toekomsten waarmee uw bedrijf te maken kan krijgen, zodat u kunt uitzoeken hoe u bedrijfsrisico's kunt beheersen. Traditionele prognosemethoden richten zich op het berekenen van de "meest waarschijnlijke" toekomst, maar ze geven niet het volledige risicobeeld weer. Bootstrapping biedt een onbeperkt aantal realistische wat-als-scenario's.

Bootstrapping doet dit zonder onrealistische aannames te doen over de vraag, dwz dat deze niet intermitterend is, of dat deze een klokvormige verdeling van groottes heeft. Die aannames zijn krukken om de wiskunde eenvoudiger te maken, maar de bootstrap is een procedure, geen vergelijking, dus dergelijke vereenvoudigingen zijn niet nodig.

Voor het eenvoudigste vraagtype, dat een stabiele willekeur is zonder seizoensgebondenheid of trend, is bootstrapping doodeenvoudig. Om een redelijk idee te krijgen van wat een enkele toekomstige vraagwaarde zou kunnen zijn, kiest u willekeurig een van de historische eisen. Om een vraagscenario te creëren, maakt u meerdere willekeurige selecties uit het verleden en rijgt u ze aan elkaar. Klaar. Het is mogelijk om wat meer realisme toe te voegen door de gevraagde waarden te "jitteren", dwz een beetje extra willekeur aan elke waarde toe te voegen of af te trekken, maar zelfs dat is eenvoudig.

Figuur 1 toont een eenvoudige bootstrap. De eerste regel is een korte reeks historische vraag naar een SKU. De volgende regels tonen scenario's van toekomstige vraag die zijn gemaakt door willekeurig waarden uit de vraaggeschiedenis te selecteren. De volgende drie eisen kunnen bijvoorbeeld zijn (0, 14, 6), of (2, 3, 5), enz.

Statistische bootstrapping en Monte Carlo-simulatie 1

Afbeelding 1: voorbeeld van vraagscenario's gegenereerd door een eenvoudige bootstrap

 

Bewerkingen met een hogere frequentie, zoals dagelijkse prognoses, brengen complexere vraagpatronen met zich mee, zoals dubbele seizoensgebondenheid (bijv. dag van de week en maand van het jaar) en/of trend. Dit daagde ons uit om een nieuwe generatie bootstrapping-algoritmen uit te vinden. We hebben onlangs een Amerikaans patent gewonnen voor deze doorbraak, maar de essentie is zoals hierboven beschreven.

Monte Carlo simulatie

Monte Carlo staat bekend om zijn casino's, die net als bootstrapping het idee van willekeur oproepen. Monte Carlo-methoden gaan ver terug, maar de moderne impuls kwam met de noodzaak om wat harige berekeningen te maken over waar neutronen zouden vliegen als een A-bom ontploft.

De essentie van Monte Carlo-analyse is deze: “Ons probleem is te ingewikkeld om te analyseren met vergelijkingen van papier en potlood. Dus, laten we een computerprogramma schrijven dat de individuele stappen van het proces codeert, de willekeurige elementen erin stoppen (bijvoorbeeld welke kant een neutron op schiet), het opwinden en kijken hoe het gaat. Aangezien er veel willekeur is, laten we het programma een ontelbaar aantal keren uitvoeren en het gemiddelde van de resultaten nemen.”

Als we deze benadering toepassen op voorraadbeheer, hebben we een andere reeks willekeurig voorkomende gebeurtenissen: een vraag van een bepaalde omvang komt bijvoorbeeld op een willekeurige dag binnen, een aanvulling van een bepaalde omvang arriveert na een willekeurige doorlooptijd, we snijden een aanvullings-PO van een bepaalde maat wanneer de voorraad daalt tot of onder een bepaald bestelpunt. We coderen de logica die deze gebeurtenissen met elkaar in verband brengt in een programma. We voeden het met een willekeurige vraagvolgorde (zie bootstrapping hierboven), voeren het programma een tijdje uit, laten we zeggen een jaar dagelijkse bewerkingen, berekenen prestatiestatistieken zoals Fill Rate en Average On Hand-inventaris, en "gooi de dobbelstenen" door het opnieuw uit te voeren het programma vele malen en het gemiddelde van de resultaten van vele gesimuleerde jaren. Het resultaat is een goede inschatting van wat er gebeurt als we belangrijke managementbeslissingen nemen: “Als we het bestelpunt op 10 eenheden zetten en de bestelhoeveelheid op 15 eenheden, kunnen we een serviceniveau verwachten van 89% en een gemiddelde beschikbaarheid van 21 eenheden.” Wat de simulatie voor ons doet, is het blootleggen van de gevolgen van managementbeslissingen op basis van realistische vraagscenario's en solide wiskunde. Het giswerk is weg.

Figuur 2 toont enkele van de innerlijke werkingen van een Monte Carlo-simulatie van een voorraadsysteem in vier panelen. Het systeem gebruikt een Min/Max voorraadbeheerbeleid met Min=10 en Max=25. Nabestellingen zijn niet toegestaan: u heeft het goed of u verliest het bedrijf. Doorlooptijden voor aanvulling zijn meestal 7 dagen, maar soms ook 14. Deze simulatie duurde een jaar.

Het eerste paneel toont een complex willekeurig vraagscenario waarin er geen vraag is in het weekend, maar de vraag over het algemeen elke dag toeneemt van maandag tot en met vrijdag. Het tweede paneel toont het willekeurige aantal beschikbare eenheden, dat ebt en vloeit met elke aanvullingscyclus. Het derde paneel toont de willekeurige groottes en tijdstippen van aanvullingsorders die binnenkomen van de leverancier. Het laatste paneel toont de onbevredigde vraag die de klantrelaties in gevaar brengt. Dit soort detail kan erg handig zijn om inzicht te krijgen in de dynamiek van een voorraadsysteem.

Statistische bootstrapping en Monte Carlo-simulatie 2

Figuur 2: Details van een Monte Carlo-simulatie

 

Figuur 2 toont slechts een van de talloze manieren waarop het jaar zou kunnen verlopen. Over het algemeen willen we de resultaten van vele gesimuleerde jaren middelen. Niemand zou tenslotte een munt opgooien om te beslissen of het een eerlijke munt was. Figuur 3 laat zien hoe vier key performance metrics (KPI's) van jaar tot jaar variëren voor dit systeem. Sommige statistieken zijn relatief stabiel in simulaties (Fill Rate), maar andere laten meer relatieve variabiliteit zien (Operating Cost = Holding Cost + Ordering Cost + Shortage Cost). Als we de grafieken bekijken, kunnen we schatten dat de keuzes van Min=10, Max=25 leiden tot gemiddelde bedrijfskosten van ongeveer $3.000 per jaar, een opvullingspercentage van ongeveer 90%, een serviceniveau van ongeveer 75% en een gemiddelde aan Hand van ongeveer 10

Statistische bootstrapping en Monte Carlo-simulatie 3

Figuur 3: Variatie in KPI's berekend over 1000 gesimuleerde jaren

 

Het is nu zelfs mogelijk om een managementvraag van een hoger niveau te beantwoorden. We kunnen verder gaan dan "Wat gebeurt er als ik zus-en-zo doe?" naar “Wat is de best wat ik kan doen om een opvullingspercentage van ten minste 90% voor dit item te bereiken tegen de laagst mogelijke kosten?” De wiskundige  achter deze sprong zit nog een andere sleuteltechnologie genaamd "stochastische optimalisatie", maar we stoppen hier voor nu. Het volstaat te zeggen dat de SIO&P-software van Smart de "ontwerpruimte" van min- en max-waarden kan doorzoeken om automatisch de beste keuze te vinden.

 

6 observaties over succesvolle vraagvoorspellingsprocessen

1. Voorspellen is een kunst die een combinatie van professioneel oordeel en objectieve statistische analyse vereist. Succesvolle vraagprognoses vereisen een basisvoorspelling die gebruikmaakt van statistische prognosemethoden. Eenmaal vastgesteld, kan het proces zich richten op hoe u statistische prognoses het beste kunt aanpassen op basis van uw eigen inzichten en zakelijke kennis.

2. Het prognoseproces is meestal iteratief. Het kan zijn dat u uw aanvankelijke prognose een aantal keer moet verfijnen voordat u tevreden bent. Het is belangrijk om snel en eenvoudig alternatieve prognoses te kunnen genereren en vergelijken. Het volgen van de nauwkeurigheid van deze prognoses in de loop van de tijd, inclusief alternatieven die niet werden gebruikt, helpt het proces te informeren en te verbeteren.

3. De geloofwaardigheid van prognoses hangt sterk af van grafische vergelijkingen met historische gegevens. Een beeld zegt meer dan duizend woorden, dus geef prognoses altijd weer via direct beschikbare grafische displays met ondersteunende numerieke rapporten.

4. Een van de belangrijkste technische taken bij prognoses is om de keuze van de prognosetechniek af te stemmen op de aard van de gegevens. Effectieve vraagvoorspellingsprocessen maken gebruik van mogelijkheden die de juiste methode identificeren om te gebruiken. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere. Een automatische selectie, die automatisch de juiste prognosemethode selecteert en gebruikt, bespaart tijd en zorgt ervoor dat uw basisvoorspelling zo nauwkeurig mogelijk is.

5. Succesvolle vraagvoorspellingsprocessen werken samen met andere bedrijfsprocessen. Prognoses kunnen bijvoorbeeld een essentiële eerste stap zijn in financiële analyse. Bovendien zijn nauwkeurige prognoses voor verkoop en productvraag fundamentele input voor de processen voor productieplanning en voorraadbeheer van een productiebedrijf.

6. Een goed planningsproces erkent dat prognoses nooit precies kloppen. Omdat zelfs in het beste prognoseproces een fout sluipt, zijn eerlijke schattingen van de foutmarge en prognosebias een van de nuttigste aanvullingen op een prognose.

 

 

 

 

Wat maakt een probabilistische voorspelling?

Wat is al die heisa rond de term 'probabilistische prognoses'? Is het gewoon een recentere marketingterm die sommige softwareleveranciers en consultants hebben bedacht om innovatie te veinzen? Is er een echt tastbaar verschil in vergelijking met voorgaande "best passende" technieken? Zijn toch niet alle voorspellingen probabilistisch?

Om deze vraag te beantwoorden, is het nuttig om na te denken over wat de voorspelling u werkelijk vertelt in termen van kansen. Een "goede" voorspelling moet onbevooroordeeld zijn en daarom een 50/50 waarschijnlijkheid opleveren die hoger of lager is dan de werkelijke. Een "slechte" voorspelling zal subjectieve buffers inbouwen (of de voorspelling kunstmatig verlagen) en resulteren in een hoge of lage vraag. Overweeg een verkoper die opzettelijk zijn prognose verlaagt door geen verkopen te rapporteren die hij verwacht te sluiten als 'conservatief'. Hun voorspellingen zullen een negatieve voorspellingsbias hebben, aangezien de werkelijke waarden bijna altijd hoger zullen zijn dan wat ze voorspelden. Overweeg aan de andere kant een klant die een opgeblazen prognose aan zijn fabrikant geeft. Bezorgd over stockouts, overschatten ze de vraag om hun aanbod zeker te stellen. Hun voorspelling zal een positieve bias hebben, aangezien de werkelijke waarden bijna altijd lager zullen zijn dan wat ze voorspelden. 

Dit soort ééncijferige voorspellingen die hierboven zijn beschreven, zijn problematisch. We verwijzen naar deze voorspellingen als "puntvoorspellingen", omdat ze één punt (of een reeks punten in de tijd) vertegenwoordigen op een plot van wat er in de toekomst zou kunnen gebeuren. Ze geven geen volledig beeld, want om effectieve zakelijke beslissingen te nemen, zoals het bepalen hoeveel voorraad er moet worden opgeslagen of het aantal werknemers dat beschikbaar moet zijn om aan de vraag te voldoen, is gedetailleerde informatie vereist over hoeveel lager of hoger de werkelijke waarde zal zijn! Met andere woorden, u hebt de kansen nodig voor elke mogelijke uitkomst die zich kan voordoen. Dus op zichzelf is de puntvoorspelling niet probabilistisch.   

Om een probabilistische voorspelling te krijgen, moet u de verdeling van mogelijke eisen rond die voorspelling kennen. Zodra u dit hebt berekend, wordt de voorspelling 'probabilistisch'. Hoe prognosesystemen en beoefenaars zoals vraagplanners, voorraadanalisten, materiaalmanagers en CFO's deze waarschijnlijkheden bepalen, is de kern van de vraag: "wat maakt een prognose probabilistisch?"     

Normale verdelingen
De meeste prognoses en de systemen/software die ze produceren, beginnen met een voorspelling van de vraag. Vervolgens berekenen ze het bereik van mogelijke eisen rond die voorspelling door onjuiste theoretische aannames te doen over de verdeling. Als u ooit een "betrouwbaarheidsinterval" in uw voorspellingssoftware hebt gebruikt, is dit gebaseerd op een kansverdeling rond de voorspelling. De manier waarop dit vraagbereik wordt bepaald, is door uit te gaan van een bepaald type distributie. Meestal betekent dit dat we uitgaan van een klokvormige verdeling, ook wel bekend als een normale verdeling. Wanneer de vraag intermitterend is, kunnen sommige systemen voor voorraadoptimalisatie en vraagvoorspelling aannemen dat de vraag Poisson-vormig is. 

Nadat de prognose is gemaakt, wordt de veronderstelde verdeling rond de vraagprognose gegooid en hebt u uw schatting van kansen voor elke mogelijke vraag - dat wil zeggen, een "probabilistische prognose". Deze schattingen van de vraag en de bijbehorende waarschijnlijkheden kunnen vervolgens worden gebruikt om desgewenst extreme waarden of iets daartussenin te bepalen. De extreme waarden in de bovenste percentielen van de distributie (dwz 92%, 95%, 99%, enz.) worden meestal gebruikt als invoer voor voorraadbeheermodellen. Bestelpunten voor kritieke reserveonderdelen in een elektriciteitsbedrijf kunnen bijvoorbeeld worden gepland op basis van een 99.5%-serviceniveau of zelfs hoger. Terwijl een niet-kritiek serviceonderdeel kan worden gepland op een 85%- of 90%-serviceniveau.

Het probleem met het maken van aannames over de verdeling is dat je deze kansen verkeerd zult interpreteren. Als de vraag bijvoorbeeld niet normaal verdeeld is, maar u een klokvormige/normale curve op de voorspelling afdwingt, hoe kan het dan dat de kansen onjuist zijn. In het bijzonder wilt u misschien het voorraadniveau weten dat nodig is om een 99%-kans te bereiken dat de voorraad niet opraakt en de normale distributie zal u vertellen om 200 eenheden in voorraad te hebben. Maar als je het vergelijkt met de daadwerkelijke vraag, kom je erachter dat 200 eenheden slechts in 40/50 waarnemingen volledig aan de vraag voldeden. Dus in plaats van een 99%-serviceniveau te krijgen, behaalde u alleen een 80%-serviceniveau! Dit is een gigantische misser die het gevolg is van het proberen een vierkante pin in een rond gat te passen. De misser zou ertoe hebben geleid dat u een onjuiste voorraadvermindering had genomen.

Empirisch geschatte verdelingen zijn slim
Om een slimme (lees nauwkeurige) probabilistische voorspelling te maken, moet u eerst de verdeling van de vraag empirisch schatten zonder enige naïeve aannames over de vorm van de verdeling. Smart Software doet dit door tienduizenden gesimuleerde vraag- en doorlooptijdscenario's uit te voeren. Onze oplossing maakt gebruik van gepatenteerde technieken die Monte Carlo-simulatie, statistische bootstrapping en andere methoden bevatten. De scenario's zijn ontworpen om reële onzekerheid en willekeur van zowel vraag als doorlooptijden te simuleren. Actuele historische waarnemingen worden gebruikt als de primaire invoer, maar de oplossing geeft u de mogelijkheid om ook te simuleren van niet-waargenomen waarden. Alleen al omdat 100 eenheden de historische piekvraag was, wil dat nog niet zeggen dat u in de toekomst gegarandeerd op 100 piekt. Nadat de scenario's zijn voltooid, weet u de exacte waarschijnlijkheid voor elke uitkomst. De "punt"-voorspelling wordt dan het middelpunt van die verdeling. Elke toekomstige periode in de tijd wordt uitgedrukt in termen van de kansverdeling die bij die periode hoort.

Leiders in probabilistische prognoses
Smart Software, Inc. was twintig jaar geleden het eerste bedrijf dat ooit statistische bootstrapping introduceerde als onderdeel van een commercieel verkrijgbaar softwaresysteem voor vraagvoorspelling. We kregen er destijds een Amerikaans patent voor en werden finalist genoemd in de APICS Corporate Awards of Excellence for Technological Innovation. Ons NSF gesponsord onderzoek die tot deze en andere ontdekkingen leidden, speelden een belangrijke rol bij het bevorderen van prognoses en voorraadoptimalisatie. Wij zetten ons in voor voortdurende innovatie, en dat kunt u ook vind hier meer informatie over ons meest recente patent.

 

 

Een praktische gids voor het opzetten van een professioneel prognoseproces

Veel bedrijven die hun prognoseproces willen verbeteren, weten niet waar ze moeten beginnen. Het kan verwarrend zijn om te worstelen met het leren van nieuwe statistische methoden, ervoor zorgen dat gegevens correct zijn gestructureerd en bijgewerkt, het eens worden over wie "eigenaar" is van de prognose, definiëren wat eigendom betekent en meetnauwkeurigheid. Na meer dan veertig jaar oefenen hebben we deze blog geschreven om de belangrijkste focus te schetsen en om u aan te moedigen om het in het begin simpel te houden.

1. Objectiviteit. Begrijp en communiceer eerst dat het proces van vraagplanning en -prognose een oefening in objectiviteit is. De focus ligt op het verkrijgen van input uit verschillende bronnen (stakeholders, klanten, functioneel beheerders, databases, leveranciers, enz.) en het bepalen of die input waarde toevoegt. Als u bijvoorbeeld een statistische prognose overschrijft en 20% aan de projectie toevoegt, moet u er niet zomaar van uitgaan dat u het automatisch goed had. Wees in plaats daarvan objectief en controleer of die opheffing de prognosenauwkeurigheid heeft vergroot of verkleind. Als u merkt dat uw overrides de zaken erger hebben gemaakt, heeft u iets gewonnen: dit informeert het proces en u weet dat u in de toekomst override-beslissingen beter kunt onderzoeken.

2. Teamwerk. Erken dat prognoses en vraagplanning teamsporten zijn. Maak afspraken over wie het team zal aanvoeren. De kapitein is verantwoordelijk voor het maken van de statistische basisprognoses en het toezicht houden op het vraagplanningsproces. Maar de resultaten zijn afhankelijk van het feit of iedereen in het team een positieve bijdrage levert, gegevens verstrekt, alternatieve methoden voorstelt, aannames in twijfel trekt en aanbevolen acties uitvoert. De uiteindelijke resultaten zijn eigendom van het bedrijf en elke afzonderlijke belanghebbende.

3. Meting. Fixeer u niet op benchmarks voor de nauwkeurigheid van prognoses in de branche. Elke SKU heeft zijn eigen niveau van "voorspelbaarheid", en u kunt een aantal moeilijke items beheren. Creëer in plaats daarvan uw eigen benchmarks op basis van een reeks steeds geavanceerdere prognosemethoden. Geavanceerde statistische prognoses lijken in het begin misschien ontmoedigend ingewikkeld, dus begin eenvoudig met een basismethode, zoals het voorspellen van de historische gemiddelde vraag. Meet vervolgens hoe dicht die simpele voorspelling de werkelijk waargenomen vraag benadert. Werk van daaruit verder naar technieken die te maken hebben met complicaties zoals trend en seizoensinvloeden. Meet de voortgang met behulp van nauwkeurigheidsstatistieken die door uw software zijn berekend, zoals de gemiddelde absolute procentuele fout (MAPE). Hierdoor kan uw bedrijf elke prognosecyclus een beetje beter worden.

4. Tempo. Richt u vervolgens op het maken van prognoses tot een op zichzelf staand proces dat niet wordt gecombineerd met het complexe proces van voorraadoptimalisatie. Voorraadbeheer is gebaseerd op een solide vraagvoorspelling, maar is gericht op andere onderwerpen: wat te kopen, wanneer te kopen, minimale bestelhoeveelheden, veiligheidsvoorraden, voorraadniveaus, doorlooptijden van leveranciers, enz. Laat voorraadbeheer later verder gaan . Bouw eerst "voorspellingskracht" op door het voorspellingsproces te creëren, te herzien en te ontwikkelen om een regelmatige cadans te hebben. Wanneer uw proces voldoende volwassen is, kunt u de toenemende snelheid van het bedrijfsleven bijbenen door het tempo van uw prognoseproces te verhogen tot ten minste een maandelijks tempo.

Opmerkingen

Het herzien van het prognoseproces van een bedrijf kan een grote stap zijn. Soms gebeurt het als er personeelsverloop is, soms als er een nieuw ERP-systeem is, soms als er nieuwe prognosesoftware is. Wat de overhaaste gebeurtenis ook is, deze verandering is een kans om het proces dat je eerder had te heroverwegen en te verfijnen. Maar proberen de hele olifant in één keer op te eten is een vergissing. In deze blog hebben we enkele discrete stappen uiteengezet die u kunt nemen om een succesvolle evolutie naar een beter prognoseproces te maken.