Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken. Met AI kunnen we de vraag nauwkeuriger voorspellen, overtollige voorraden verminderen, voorraadtekorten voorkomen en uiteindelijk de bedrijfsresultaten van onze organisatie verbeteren. Laten we eens kijken hoe deze aanpak niet alleen de verkoop- en operationele efficiëntie verhoogt, maar ook de klanttevredenheid verhoogt door ervoor te zorgen dat producten altijd beschikbaar zijn wanneer dat nodig is.

 

Inzichten voor verbeterde besluitvorming in voorraadbeheer

  1. Verbeterde voorspellingsnauwkeurigheid Geavanceerde Machine Learning-algoritmen analyseren historische gegevens om patronen te identificeren die mensen mogelijk over het hoofd zien. Technieken als clustering, detectie van regimeveranderingen, detectie van afwijkingen en regressieanalyse bieden diepgaande inzichten in gegevens. Het meten van voorspellingsfouten is essentieel voor het verfijnen van voorspellingsmodellen; Technieken als Mean Absolute Error (MAE) en Root Mean Squared Error (RMSE) helpen bijvoorbeeld bij het kwantificeren van de nauwkeurigheid van voorspellingen. Bedrijven kunnen de nauwkeurigheid verbeteren door voortdurend prognoses te monitoren en aan te passen op basis van deze foutstatistieken. Zoals de Demand Planner bij een Hardware Retailer vermeld, “Met de verbeteringen aan onze prognoses en voorraadplanning die Smart Software mogelijk maakte, hebben we de veiligheidsvoorraad met 20% kunnen verminderen en tegelijkertijd de voorraadtekorten met 35% kunnen verminderen.”
  1. Realtime gegevensanalyse State-of-the-art systemen kunnen enorme hoeveelheden gegevens in realtime verwerken, waardoor bedrijven hun voorraadniveaus dynamisch kunnen aanpassen op basis van de huidige vraagtrends en marktomstandigheden. Afwijkingsdetectiealgoritmen kunnen plotselinge pieken of dalen in de vraag automatisch identificeren en corrigeren, zodat de voorspellingen accuraat blijven. Een opmerkelijk succesverhaal komt van Smart IP&O, waarmee een bedrijf de voorraad tegen 20% kon verminderen en tegelijkertijd de serviceniveaus kon handhaven door voortdurend realtime gegevens te analyseren en de prognoses dienovereenkomstig aan te passen. FedEx Tech's Manager Materials benadrukt, “Wat het verzoek ook is, we moeten aan onze serviceverplichtingen de volgende dag voldoen. Smart stelt ons in staat om onze voorraad aan te passen om er zeker van te zijn dat we de producten en onderdelen bij de hand hebben om de serviceniveaus te bereiken die onze klanten nodig hebben.”
  1. Verbeterde supply chain-efficiëntie Intelligente technologieplatforms kunnen de gehele supply chain optimaliseren, van inkoop tot distributie, door doorlooptijden te voorspellen en orderhoeveelheden te optimaliseren. Dit verkleint het risico op over- en onderbezetting. Met behulp van op prognoses gebaseerd voorraadbeheer heeft Smart Software bijvoorbeeld een fabrikant geholpen zijn toeleveringsketen te stroomlijnen, de doorlooptijden met 15% te verkorten en de algehele efficiëntie te verbeteren. De VP Operations bij Procon Pump verklaarde: “Een van de dingen die ik leuk vind aan deze nieuwe tool... is dat ik de gevolgen van beslissingen over voorraadvoorraden kan evalueren voordat ik ze implementeer.”
  1. Verbeterde besluitvorming AI biedt bruikbare inzichten en aanbevelingen, waardoor managers weloverwogen beslissingen kunnen nemen. Dit omvat het identificeren van langzaam bewegende artikelen, het voorspellen van de toekomstige vraag en het optimaliseren van de voorraadniveaus. Regressieanalyse kan bijvoorbeeld de verkoop relateren aan externe variabelen zoals seizoensinvloeden of economische indicatoren, waardoor een dieper inzicht ontstaat in de vraagfactoren. Een van de klanten van Smart Software rapporteerde een aanzienlijke verbetering in de besluitvormingsprocessen, wat resulteerde in een stijging van het serviceniveau met 30% en een vermindering van de overtollige voorraad met 15%. “Smart IP&O stelde ons in staat de vraag op elke opslaglocatie te modelleren en, met behulp van serviceniveaugestuurde planning, te bepalen hoeveel we op voorraad moesten hebben om het serviceniveau te bereiken dat we nodig hebben”, aldus de Inkoopmanager bij Seneca Companies.
  1. Kostenbesparing Door de voorraadniveaus te optimaliseren kunnen bedrijven de opslagkosten verlagen en verliezen als gevolg van verouderde of verlopen producten minimaliseren. AI-gestuurde systemen verminderen ook de noodzaak van handmatige voorraadcontroles, waardoor tijd en arbeidskosten worden bespaard. Dat blijkt uit een recente casestudy hoe de implementatie van Inventory Planning & Optimization (IP&O) binnen 90 dagen na de start van het project werd gerealiseerd. In de daaropvolgende zes maanden maakte IP&O het mogelijk de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in een voorraadreductie van $9,0 miljoen, terwijl het beoogde serviceniveau behouden bleef.

 

Door gebruik te maken van geavanceerde algoritmen en realtime data-analyse kunnen bedrijven optimale voorraadniveaus handhaven en de algehele prestaties van hun supply chain verbeteren. Inventory Planning & Optimization (IP&O) is een krachtig hulpmiddel dat uw organisatie kan helpen deze doelen te bereiken. Het integreren van de modernste voorraadoptimalisatie in uw organisatie kan leiden tot aanzienlijke verbeteringen op het gebied van efficiëntie, kostenreductie en klanttevredenheid.

 

 

Voorraad beheren te midden van regimeverandering

Als je de uitdrukking "regimeverandering" op het nieuws hoort, denk je meteen aan een beladen geopolitieke gebeurtenis. Statistici gebruiken de uitdrukking anders, op een manier die van groot belang is voor vraagplanning en voorraadoptimalisatie. Deze blog gaat over “regime change” in statistische zin, dat wil zeggen een grote verandering in het karakter van de vraag naar een voorraadartikel.

De vraaggeschiedenis van een artikel is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een betere oplossing hebben voor het gemiddelde niveau, de volatiliteit, de grootte en frequentie van eventuele pieken, de vorm van elk seizoenspatroon en de grootte en richting van elke trend.

Maar er is één grote uitzondering op de regel dat "meer gegevens betere gegevens zijn." Als er een grote verschuiving in uw wereld plaatsvindt en de nieuwe vraag lijkt niet op de oude vraag, dan worden oude gegevens gevaarlijk.

Moderne software kan nauwkeurige prognoses maken van de vraag naar artikelen en verstandige keuzes voorstellen voor voorraadparameters zoals bestelpunten en bestelhoeveelheden. Maar de geldigheid van deze berekeningen hangt af van de relevantie van de gegevens die in hun berekening worden gebruikt. Oude gegevens van een oud regime weerspiegelen niet langer de huidige realiteit, dus door ze in berekeningen op te nemen, ontstaan voorspellingsfouten voor vraagplanners en ofwel overtollige voorraad of onaanvaardbare stockout-percentages voor voorraadplanners.

Dat gezegd hebbende, als je een recente regimewisseling zou doorstaan en de verouderde gegevens zou weggooien, zou je veel minder gegevens hebben om mee te werken. Dit heeft zijn eigen kosten, omdat alle schattingen die op basis van de gegevens worden berekend een grotere statistische onzekerheid zouden hebben, ook al zouden ze minder vertekend zijn. In dit geval zouden uw berekeningen meer moeten steunen op een combinatie van statistische analyse en uw eigen deskundig oordeel.

Op dit punt kunt u zich afvragen: "Hoe kan ik weten of en wanneer er een regimewisseling heeft plaatsgevonden?" Als je al een tijdje aan het werk bent en je je op je gemak voelt bij het bekijken van tijdschema's van de vraag naar items, zul je over het algemeen regimeverandering herkennen wanneer je het ziet, tenminste als het niet te subtiel is. Afbeelding 1 toont enkele praktijkvoorbeelden die voor de hand liggen.

Figure 1 Four examples of regime change in real-world item demand

Afbeelding 1: Vier voorbeelden van regimeverandering in de vraag naar artikelen in de echte wereld

 

Helaas kunnen minder voor de hand liggende veranderingen toch significante effecten hebben. Bovendien hebben de meeste van onze klanten het te druk om alle items die ze beheren zelfs maar één keer per kwartaal handmatig te controleren. Als je bijvoorbeeld 100 items overschrijdt, wordt het een zware taak om al die tijdreeksen te bekijken. Gelukkig kan software goed de vraag naar tienduizenden items monitoren en u waarschuwen voor items die mogelijk uw aandacht nodig hebben. Ook dan kunt u ervoor zorgen dat de software niet alleen regimeverandering detecteert, maar ook automatisch alle gegevens uitsluit die zijn verzameld vóór de meest recente regimeverandering, indien van toepassing. Met andere woorden, u kunt zowel automatische waarschuwing voor regimeverandering als automatische bescherming tegen regimeverandering krijgen.

Zie onze vorige blog over dit onderwerp voor meer informatie over de basisprincipes van regimeverandering: https://smartcorp.com/blog/demandplanningregimechange/  

 

Een voorbeeld met getallen erin

Als u meer wilt weten, lees dan verder om een numeriek voorbeeld te zien van hoeveel regimeverandering de berekening van een bestelpunt voor een kritisch reserveonderdeel kan veranderen. Hier is een scenario om het punt te illustreren.

Scenario

  • Doel: bereken het bestelpunt dat nodig is om het risico van voorraadtekort te beheersen tijdens het wachten op aanvulling. Neem aan dat het beoogde voorraadrisico 5% is.
  • Stel dat het artikel een intermitterende dagelijkse vraag heeft, met vele dagen zonder vraag.
  • Stel dat de dagelijkse vraag een Poisson-verdeling heeft met een gemiddelde van 1,0 eenheden per dag.
  • Stel dat de doorlooptijd van de aanvulling altijd 30 dagen is.
  • De doorlooptijdvraag zal willekeurig zijn, dus het heeft een kansverdeling en het bestelpunt is de 95e percentiel van de verdeling.
  • Neem aan dat het effect van regimewisseling is dat de gemiddelde dagelijkse vraag wordt verhoogd of verlaagd.
  • Neem aan dat er een jaar aan dagelijkse gegevens beschikbaar zijn voor het schatten van de gemiddelde dagelijkse vraag per eenheid.

 

Figure 2 Example of change in mean demand and sample of random daily demand

Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

 

Figuur 2 toont een vorm van dit scenario. Het bovenste paneel laat zien dat de gemiddelde dagelijkse vraag na 270 dagen stijgt van 1,0 naar 1,5. Het onderste paneel toont een manier waarop de dagelijkse vraag van een jaar kan verschijnen. (Op dit moment heb je misschien het gevoel dat het berekenen van al deze dingen ingewikkeld is, zelfs voor wat een vereenvoudigd scenario blijkt te zijn. Daarom hebben we software!)

Analyse

Succesvolle berekening van het juiste bestelpunt hangt af van wanneer regimeverandering plaatsvindt en hoe groot een verandering plaatsvindt. We simuleerden regimewisselingen van verschillende groottes op verschillende tijdstippen binnen een periode van 365 dagen. Rond een basisvraag van 1,0 eenheden per dag hebben we verschuivingen in de vraag ("shift") van ±25% en ±50% bestudeerd, evenals een referentiegeval zonder verandering. We hebben het tijdstip van de wijziging ("t.break") vastgesteld op 90, 180 en 270 dagen. In elk geval hebben we twee schattingen van het bestelpunt berekend: de "ideale" waarde gegeven perfecte kennis van de gemiddelde vraag in het nieuwe regime ("ROP.true"), en de geschatte waarde van de gemiddelde vraag berekend door de regimeverandering te negeren en het gebruik van alle vraaggegevens van het afgelopen jaar (“ROP.all”).

Tabel 1 toont de schattingen van het bestelpunt berekend over 100 simulaties. Het middelste blok is het referentiegeval, waarin er geen verandering is in de dagelijkse vraag, die vast blijft op 1 eenheid per dag. Het gekleurde blok onderaan is het meest extreem stijgende scenario, waarbij de vraag stijgt tot 1,5 eenheden/dag ofwel een derde, de helft of tweederde van het jaar.

Uit deze simulaties kunnen we verschillende conclusies trekken.

ROP.true: De juiste keuze voor bestelpunt neemt toe of af volgens de verandering in de gemiddelde vraag na de regimeverandering. De relatie is niet eenvoudig lineair: de tabel omvat een 600%-bereik van vraagniveaus (0,25 tot 1,50) maar een 467%-bereik van bestelpunten (van 12 tot 56).

ROP.all: Het negeren van de regimewisseling kan leiden tot grove overschattingen van het bestelpunt wanneer de vraag daalt en tot grove onderschattingen wanneer de vraag toeneemt. Zoals we zouden verwachten, hoe later de regimewisseling, hoe erger de fout. Als de vraag bijvoorbeeld twee derde van het jaar onopgemerkt stijgt van 1,0 naar 1,5 eenheden per dag, zou het berekende bestelpunt van 43 eenheden 13 eenheden minder zijn dan het zou moeten zijn.

Een woord van waarschuwing: Tabel 1 laat zien dat het baseren van de berekeningen van bestelpunten met alleen gegevens van na een regimewisseling meestal het juiste antwoord geeft. Wat het niet laat zien, is dat de schattingen onstabiel kunnen zijn als er na de wijziging zeer weinig vraaggeschiedenis is. Daarom moet je in de praktijk wachten met reageren op de regimewisseling totdat er een behoorlijk aantal waarnemingen is verzameld in het nieuwe regime. Dit kan betekenen dat u alle vraaggeschiedenis moet gebruiken, zowel vóór als na de wijziging, totdat bijvoorbeeld 60 of 90 dagen aan geschiedenis zijn verzameld voordat de gegevens vóór de wijziging worden genegeerd.

 

Table 1 Correct and Estimated Reorder Points for different regime change scenarios

Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering