Het beheren van de voorraad reserveonderdelen: beste praktijken

Het beheren van de voorraad reserveonderdelen is een cruciaal onderdeel voor bedrijven die afhankelijk zijn van de uptime van apparatuur en de betrouwbaarheid van de service. In tegenstelling tot gewone voorraadartikelen hebben reserveonderdelen vaak onvoorspelbare vraagpatronen, waardoor ze moeilijker effectief te beheren zijn. Een efficiënt voorraadbeheer van reserveonderdelen Het systeem helpt voorraadtekorten te voorkomen, die kunnen leiden tot operationele stilstand en kostbare vertragingen. Tegelijkertijd wordt overmatige voorraad vermeden, die onnodig kapitaal vastlegt en de opslagkosten verhoogt.

In deze blog onderzoeken we verschillende effectieve strategieën voor het beheren van de voorraad reserveonderdelen, waarbij we de nadruk leggen op het belang van het optimaliseren van voorraadniveaus, het onderhouden van service niveausen het gebruik van slimme hulpmiddelen ter ondersteuning van de besluitvorming.

Voor veel industrieën, met name productie, transport, nutsbedrijven en elke sector die afhankelijk is van complexe machines, vormen reserveonderdelen de ruggengraat van onderhoudswerkzaamheden. Ineffectief management kan resulteren in aanzienlijke uitvaltijd wanneer kritieke onderdelen niet beschikbaar zijn, wat leidt tot productiestops, serviceonderbrekingen en ontevreden klanten. Aan de andere kant legt een overschot aan artikelen die mogelijk niet direct worden gebruikt beslag op werkkapitaal, verhoogt de opslagkosten en kan leiden tot veroudering.

Aangezien veel reserveonderdelen een intermitterende en onvoorspelbare vraag ervaren, is het essentieel om een duidelijke en proactieve strategie te hebben voor het beheer ervan. Effectief voorraadbeheer van reserveonderdelen zorgt voor operationele efficiëntie, kostenbesparingen en betrouwbaarheid, wat een concurrentievoordeel op de markt kan opleveren.

 

Belangrijkste strategieën voor het beheren van de voorraad reserveonderdelen

1. Voorspelling van intermitterende vraag. Reserveonderdelen vaak onregelmatige vraagpatronen vertonen gekenmerkt door lange periodes van nulvraag onderbroken door plotselinge pieken wanneer apparatuurstoringen optreden. Traditionele prognosemethoden, die vertrouwen op consistente historische datatrends, kunnen dergelijk grillig gebruik niet nauwkeurig voorspellen. Dit kan leiden tot overstocking of stockouts.

Door gebruik te maken van gespecialiseerde prognosetools zoals Slimme IP&O's gepatenteerde intermitterende vraagvoorspellingsalgoritmen kunnen nauwkeurigere voorspellingen bieden. Deze geavanceerde modellen analyseren historische gebruiksgegevens, faalpercentages van apparatuur en onderhoudsschema's om zich aan te passen aan de variabiliteit van de vraag. Door probabilistische voorspelling Dankzij machine learning en AI-technieken kunnen we nu zowel tekorten voorkomen die de bedrijfsvoering zouden kunnen stilleggen als overtollige voorraden die onnodig veel middelen verbruiken.

2. Instellen van optimale veiligheidsvoorraadniveaus. Veiligheidsvoorraad is essentieel om het risico op voorraadtekorten te beperken, met name voor kritieke reserveonderdelen. Veiligheidsvoorraad moet rekening houden met de variabiliteit van de doorlooptijd, schommelingen in de vraag en de criticaliteit van het onderdeel. Door systemen te gebruiken die optimale veiligheidsvoorraadniveaus berekenen op basis van deze factoren, wordt ervoor gezorgd dat uw onderdelen beschikbaar zijn wanneer nodig, zonder overmatige overtollige voorraad. De instellingen voor veiligheidsvoorraden moeten regelmatig worden herzien als onderdeel van een doorlopend voorraadoptimalisatieproces.

3. Gebruik van Min/Max voorraadbeleid. Een veelvoorkomende aanpak voor de voorraad van reserveonderdelen is het gebruik van Min/Max-beleid, waarbij de voorraad wordt aangevuld tot een maximumniveau zodra deze onder een minimumdrempel zakt. Dit systeem biedt flexibiliteit en zorgt ervoor dat de voorraadniveaus worden gehandhaafd zonder dat er voortdurend toezicht nodig is. Door deze parameters aan te passen op basis van serviceniveaudoelen, kunt u ervoor zorgen dat u geen overtollige voorraad hebt en toch aan de vraag voldoet.

4. Voorraadoptimalisatie omvat het in evenwicht brengen van voorraadkosten, voorraadkosten en gewenste serviceniveaus om de meest kosteneffectieve voorraadbeheerstrategie te bereiken. Softwareoplossingen zoals Smart IP&O kan verschillende vraag- en aanbodscenario's simuleren en het optimale voorraadbeleid berekenen.

Door gebruik te maken van geavanceerde AI-algoritmen en data-analyse, Smart IP&O helpt organisaties de juiste voorraadniveaus voor elk reserveonderdeel te bepalen, rekening houdend met factoren zoals vraagvariabiliteit, doorlooptijden en kostenbeperkingen. Dit zorgt ervoor dat u de juiste balans behoudt tussen voldoende voorraad om aan de vraag te voldoen en het minimaliseren van de kosten die gepaard gaan met overbezettingBovendien maken optimalisatietools continue aanpassingen mogelijk op basis van realtimegegevens en veranderende vraagpatronen, waardoor organisaties proactief kunnen reageren op veranderingen in de markt of de toeleveringsketen.

5. Regelmatige beoordeling van de levertijden van leveranciers Leveranciersprestaties en doorlooptijden kunnen een aanzienlijke impact hebben op uw reserveonderdelenstrategie. Leveringsvertragingen kunnen voorraadtekorten veroorzaken als u hier geen rekening mee houdt in uw planning. Het monitoren van de werkelijke doorlooptijden ten opzichte van de verwachte prestaties helpt bij het aanpassen van bestelpunten en veiligheidsvoorraadniveaus. Systemen zoals Smart IP&O gedetailleerde rapportage over leveranciersprestaties, inclusief doorlooptijdvariabiliteit, tijdige leveringspercentages en kwaliteitsstatistieken. Met toegang tot deze informatie kunt u potentiële risico's in uw toeleveringsketen identificeren en proactieve maatregelen nemen, zoals het vinden van alternatieve leveranciers of het aanpassen van voorraadbeleid, om de impact van onbetrouwbaarheid van leveranciers te beperken.

6. Omgaan met veroudering. Reserveonderdelen raken vaak verouderd wanneer apparatuur wordt geüpgraded of uitgefaseerd. Het aanhouden van verouderde voorraad legt kapitaal vast en neemt waardevolle magazijnruimte in beslag. Regelmatig uw voorraad controleren op artikelen die bijna verouderd zijn, kan overtollige voorraad voorkomen. Methoden zoals het gebruik van cyclusvoorraad en veiligheidsvoorraadberekeningen op basis van vraag kunnen helpen de risico's van het aanhouden van verouderde voorraad te beperken.

7. Automatisering van inventarisprocessen. Automatisering in voorraadbeheer kan handmatige fouten aanzienlijk verminderen, de efficiëntie verhogen en zorgen voor tijdige aanvulling van reserveonderdelen. Hulpmiddelen zoals Smart IP&O automatiseer veel prognose-, optimalisatie- en aanvullingstaken die anders arbeidsintensief en foutgevoelig zouden zijn.

Door deze tools te integreren met bestaande  ERP-systemen, kunnen organisaties naadloze updates en aanpassingen bereiken op basis van de laatste vraag- en aanbodgegevens. Automatisering biedt realtime inzicht in voorraadniveaus, vraagtrends en verstoringen in de toeleveringsketen, wat zorgt voor snellere besluitvorming en verbeterde responsiviteit op veranderingen. Bovendien zorgt automatisering ervoor dat personeel zich kan richten op strategische taken in plaats van routinematige gegevensinvoer en berekeningen.

Effectief beheer van de voorraad reserveonderdelen zorgt voor operationele continuïteit en vermijdt onnodige kosten. Door geavanceerde prognosetools te benutten, optimale veiligheidsvoorraadniveaus in te stellen en slimme voorraadoptimalisatiestrategieën te gebruiken, kunnen bedrijven voorraadtekorten minimaliseren, de opslagkosten verlagen en de algehele serviceniveaus verbeteren. Continue verbetering en de integratie van technologie in het voorraadbeheerproces bieden aanzienlijke voordelen op de lange termijn voor elke organisatie die afhankelijk is van reserveonderdelen. Het omarmen van deze best practices draagt niet alleen bij aan operationele efficiëntie, maar ondersteunt ook strategische doelstellingen zoals kostenreductie, klanttevredenheid en concurrentievoordeel. 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    7 belangrijke trends in vraagplanning die de toekomst vormgeven

    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt.

    Datagestuurde inzichten

    Geavanceerde analyses, machine learning en kunstmatige intelligentie (AI) worden integraal onderdeel van vraagplanning. Technologieën zoals Smart UP&O stellen bedrijven in staat om complexe datasets te analyseren, patronen te identificeren en nauwkeurigere voorspellingen te doen. Deze verschuiving naar datagestuurde inzichten helpt bedrijven om snel te reageren op marktveranderingen, voorraadtekorten te minimaliseren en overtollige voorraad te verminderen.

    Probabilistic Forecasting

    Probabilistische voorspellingen richten zich op het voorspellen van een reeks mogelijke uitkomsten in plaats van één enkel getal. Deze trend is met name belangrijk voor het beheren van onzekerheid en risico bij vraagplanning. Het helpt bedrijven zich voor te bereiden op verschillende vraagscenario's, het verbeteren van voorraadbeheer en het verminderen van de kans op voorraadtekorten of overvoorraad.

    Consensusvoorspelling

    Moderne productie beweegt richting een geïntegreerde aanpak waarbij afdelingen en belanghebbenden nauwer samenwerken. Samenwerkende prognoses omvatten het delen van inzichten in de hele toeleveringsketen, van leveranciers tot distributeurs en interne teams. Deze aanpak doorbreekt silo's en zorgt ervoor dat iedereen naar een gemeenschappelijk doel toewerkt, wat leidt tot een meer gesynchroniseerde en efficiënte toeleveringsketen.

    Voorspellende en prescriptieve analyses

    Predictive analytics voorspelt toekomstige uitkomsten op basis van historische data en trends, waardoor bedrijven vraagschommelingen kunnen anticiperen. Smart Demand Planner (SDP) automatiseert bijvoorbeeld prognoses om voorraad- en productieniveaus dienovereenkomstig aan te passen.

    Prescriptieve analyses gaan verder door bruikbare aanbevelingen te bieden. Smart Inventory Planning and Optimization (IP&O) schrijft bijvoorbeeld optimale voorraadbeleidsregels voor op basis van serviceniveaus, kosten en risico's. Samen maken deze tools proactieve besluitvorming mogelijk, waardoor bedrijven hun reacties op toekomstige uitdagingen kunnen voorspellen en optimaliseren.

    Scenariomodellering

    Scenariomodellering wordt een belangrijk onderdeel van vraagplanning, waardoor bedrijven verschillende scenario's kunnen simuleren en hun impact op de bedrijfsvoering kunnen beoordelen. Deze methode helpt bedrijven aanpasbare strategieën te creëren om onzekerheden effectief aan te pakken. Smart IP&O verbetert deze mogelijkheid door Wat als scenario's waarmee gebruikers verschillende voorraadbeleidsregels kunnen testen voordat ze worden geïmplementeerd. Door variabelen zoals serviceniveaus of bestelhoeveelheden aan te passen, kunnen bedrijven de effecten op kosten en serviceniveaus visualiseren, waardoor ze de optimale strategie kunnen selecteren om risico's te minimaliseren en kosten te beheersen.

    Realtime zichtbaarheid

    Naarmate toeleveringsketens globaler en onderling verbonden worden, is realtime inzicht in inventaris en toeleveringsketenactiviteiten cruciaal. Verbeterde samenwerking met leveranciers en distributeurs, gecombineerd met realtimegegevens, stelt bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen. Dit helpt voorraadniveaus te optimaliseren, doorlooptijden te verkorten en de algehele veerkracht van de toeleveringsketen te verbeteren.

    Meervoudige prognose

    Dit omvat prognoses op verschillende niveaus van de producthiërarchie, zoals individuele items, productfamilies of zelfs hele productlijnen. Multilevel-prognoses zijn essentieel voor bedrijven met complexe productportfolio's, omdat ze ervoor zorgen dat prognoses nauwkeurig zijn op zowel micro- als macroniveau.

     

    Vraagplanning is een doorslaggevend aspect van modern supply chain management, dat bedrijven de mogelijkheid biedt om de operationele efficiëntie te verbeteren, kosten te verlagen en beter te voldoen aan de vraag van klanten. Door geavanceerde platforms zoals Smart IP&O te benutten, worden de nauwkeurigheid van voorspellingen en het voorraadbeheer aanzienlijk verbeterd, waardoor snelle reacties op marktschommelingen mogelijk zijn. Geautomatiseerde statistische voorspellingen, gecombineerd met mogelijkheden zoals hiërarchievoorspellingen en voorspellingsoverschrijdingen, zorgen ervoor dat voorspellingen nauwkeurig en aanpasbaar zijn, wat leidt tot realistischere planningsbeslissingen. Bovendien kunnen bedrijven met hulpmiddelen zoals scenariomodellering verschillende vraagscenario's in hun producthiërarchie verkennen, wat geïnformeerde besluitvorming mogelijk maakt door inzicht te bieden in mogelijke uitkomsten en risico's. Deze aanpak stelt bedrijven in staat om de impact van beleidswijzigingen te anticiperen, betere beslissingen te nemen en uiteindelijk hun voorraad en algehele supply chain management te optimaliseren, waarbij ze op de hoogte blijven van belangrijke trends in het proces.

     

     

     

    Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

    The aftermarket sector provides OEMs with a decisive advantage by offering a steady revenue stream and fostering customer loyalty through the reliable and timely delivery of service parts. However, managing inventory and forecasting demand in the aftermarket is fraught with challenges, including unpredictable demand patterns, vast product ranges, and the necessity for quick turnarounds.  Traditional methods often fall short due to the complexity and variability of demand in the aftermarket. The latest technologies can analyze large datasets to predict future demand more accurately and optimize inventory levels, leading to better service and lower costs.

    Deze blog onderzoekt hoe de nieuwste AI-gestuurde technologieën de OEM-aftermarket kunnen transformeren door grote datasets te analyseren om de toekomstige vraag nauwkeuriger te voorspellen, voorraadniveaus te optimaliseren, de nauwkeurigheid van prognoses te verbeteren en de klanttevredenheid te verbeteren, wat uiteindelijk leidt tot betere service en lagere kosten.

     

    Verbetering van de nauwkeurigheid van voorspellingen met AI  

    Met behulp van de modernste technologie kunnen organisaties de nauwkeurigheid van prognoses aanzienlijk verbeteren door historische gegevens te analyseren, patronen te herkennen en de toekomstige vraag te voorspellen. Onze nieuwste (IP&O) Inventory Planning & Optimization-technologie maakt gebruik van AI om realtime inzichten te bieden en besluitvormingsprocessen te automatiseren. Het maakt gebruik van adaptieve voorspellingstechnieken om ervoor te zorgen dat prognoses relevant blijven als de marktomstandigheden veranderen. Het systeem integreert geavanceerde algoritmen om intermitterende gegevens te beheren en realtime wijzigingen aan te brengen, terwijl complexe berekeningen worden verwerkt en rekening wordt gehouden met factoren als doorlooptijden, voorspellingsfouten, seizoensinvloeden en markttrends. Door gebruik te maken van betere gegevensinvoer en geavanceerde analyses kunnen bedrijven prognosefouten aanzienlijk verminderen en de kosten die gepaard gaan met overbevoorrading en stockouts minimaliseren. Ons IP&O-platform is ontworpen om de complexiteit en uitdagingen aan te kunnen die uniek zijn voor het beheer van serviceonderdelen, zoals een intermitterende vraag en grote assortimenten aan onderdelen.

    Reparatie- en retourmodule: Het platform simuleert nauwkeurig de processen van het kapot gaan en repareren van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten die verband houden met de huidige roterende reserveonderdelenpool. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op de korte en lange termijn te voldoen en, in operationele omgevingen, of ze moeten wachten tot de reparaties zijn voltooid en weer in gebruik zijn genomen, of dat ze extra reserveonderdelen moeten kopen bij leveranciers, waardoor onnodige aankopen en reparaties worden vermeden. uitval van apparatuur.

     Intermitterende vraagvoorspelling: De gepatenteerde intermitterende vraagvoorspellingstechnologie van IP&O biedt zeer nauwkeurige voorspellingen voor artikelen met sporadische vraagpatronen die typisch zijn voor de vervangingsmarkt. Deze mogelijkheid is van cruciaal belang voor het optimaliseren van de voorraadniveaus en om ervoor te zorgen dat kritieke onderdelen beschikbaar zijn wanneer dat nodig is, zonder dat er sprake is van overbevoorrading.

    Realtime voorraadoptimalisatie: Onze technologie past het voorraadbeleid dynamisch aan om het aan te passen aan veranderende vraagpatronen en marktomstandigheden. Het berekent optimale bestelpunten en bestelhoeveelheden, waarbij serviceniveaus in evenwicht worden gebracht met voorraadkosten. Dit zorgt ervoor dat OEM's een hoog serviceniveau kunnen handhaven en tegelijkertijd de overtollige voorraad en de bijbehorende transportkosten kunnen minimaliseren.

    Scenarioplanning en What-If-analyse: Met IP&O kunnen gebruikers meerdere inventarisscenario's creëren om de impact van verschillende voorraadbeleidslijnen op serviceniveaus en kosten te evalueren. Deze mogelijkheid helpt OEM's weloverwogen beslissingen te nemen over voorraadstrategieën en proactief te reageren op marktveranderingen of verstoringen van de toeleveringsketen.

    Naadloze ERP-integratie: Het platform biedt naadloze integratie met toonaangevende ERP-systemen, zoals Epicor en NetSuite, waardoor automatische synchronisatie van prognoses en voorraadgegevens mogelijk is. Deze integratie vergemakkelijkt de efficiënte uitvoering van aanvulorders en zorgt ervoor dat de voorraadniveaus voortdurend worden afgestemd op de meest recente vraagprognoses.

    Nauwkeurigheid en rapportage van prognoses:  Ons geavanceerde systeem biedt gedetailleerde rapportage en dashboards die de nauwkeurigheid van de prognoses, de voorraadprestaties en de betrouwbaarheid van leveranciers bijhouden. Door deze statistieken te analyseren, kunnen OEM's hun voorspellingsmodellen voortdurend verfijnen en de algehele prestaties van de supply chain verbeteren.

     

    Voorbeelden uit de praktijk illustreren de substantiële impact van AI-gestuurde forecasting en voorraadoptimalisatie op de OEM-aftermarket. Prevost Parts, een divisie van een toonaangevende Canadese fabrikant van streekbussen en touringcarbehuizingen, gebruikte IP&O om tegemoet te komen aan de periodieke vraag naar meer dan 25.000 actieve onderdelen. Door nauwkeurige verkoopprognoses en veiligheidsvoorraadvereisten in hun ERP-systeem te integreren, ondersteund door AI en realtime machine learning-aanpassingen, hebben ze het aantal backorders met 65% verminderd, de omzet met 59% verloren en de bezettingspercentages in slechts drie maanden verhoogd van 93% naar 96%. Deze transformatie verbeterde de voorraadallocatie aanzienlijk, waardoor de transport- en voorraadkosten daalden.

     

    Het integreren van AI en ML in IP&O-processen is niet alleen een technologische upgrade, maar een strategische zet die de OEM-aftermarket kan transformeren. IP&O-technologie zorgt voor een betere servicekwaliteit en klanttevredenheid door de nauwkeurigheid van de prognoses te verbeteren, de voorraadniveaus te optimaliseren en de kosten te verlagen. Terwijl de aftermarket-sector blijft groeien en evolueren, zal het omarmen van AI de sleutel zijn om concurrerend te blijven en efficiënt aan de verwachtingen van de klant te voldoen.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
      In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken. Met AI kunnen we de vraag nauwkeuriger voorspellen, overtollige voorraden verminderen, voorraadtekorten voorkomen en uiteindelijk de bedrijfsresultaten van onze organisatie verbeteren. Laten we eens kijken hoe deze aanpak niet alleen de verkoop- en operationele efficiëntie verhoogt, maar ook de klanttevredenheid verhoogt door ervoor te zorgen dat producten altijd beschikbaar zijn wanneer dat nodig is.

       

      Inzichten voor verbeterde besluitvorming in voorraadbeheer

      1. Verbeterde voorspellingsnauwkeurigheid Geavanceerde Machine Learning-algoritmen analyseren historische gegevens om patronen te identificeren die mensen mogelijk over het hoofd zien. Technieken als clustering, detectie van regimeveranderingen, detectie van afwijkingen en regressieanalyse bieden diepgaande inzichten in gegevens. Het meten van voorspellingsfouten is essentieel voor het verfijnen van voorspellingsmodellen; Technieken als Mean Absolute Error (MAE) en Root Mean Squared Error (RMSE) helpen bijvoorbeeld bij het kwantificeren van de nauwkeurigheid van voorspellingen. Bedrijven kunnen de nauwkeurigheid verbeteren door voortdurend prognoses te monitoren en aan te passen op basis van deze foutstatistieken. Zoals de Demand Planner bij een Hardware Retailer vermeld, “Met de verbeteringen aan onze prognoses en voorraadplanning die Smart Software mogelijk maakte, hebben we de veiligheidsvoorraad met 20% kunnen verminderen en tegelijkertijd de voorraadtekorten met 35% kunnen verminderen.”
      1. Realtime gegevensanalyse State-of-the-art systemen kunnen enorme hoeveelheden gegevens in realtime verwerken, waardoor bedrijven hun voorraadniveaus dynamisch kunnen aanpassen op basis van de huidige vraagtrends en marktomstandigheden. Afwijkingsdetectiealgoritmen kunnen plotselinge pieken of dalen in de vraag automatisch identificeren en corrigeren, zodat de voorspellingen accuraat blijven. Een opmerkelijk succesverhaal komt van Smart IP&O, waarmee een bedrijf de voorraad tegen 20% kon verminderen en tegelijkertijd de serviceniveaus kon handhaven door voortdurend realtime gegevens te analyseren en de prognoses dienovereenkomstig aan te passen. FedEx Tech's Manager Materials benadrukt, “Wat het verzoek ook is, we moeten aan onze serviceverplichtingen de volgende dag voldoen. Smart stelt ons in staat om onze voorraad aan te passen om er zeker van te zijn dat we de producten en onderdelen bij de hand hebben om de serviceniveaus te bereiken die onze klanten nodig hebben.”
      1. Verbeterde supply chain-efficiëntie Intelligente technologieplatforms kunnen de gehele supply chain optimaliseren, van inkoop tot distributie, door doorlooptijden te voorspellen en orderhoeveelheden te optimaliseren. Dit verkleint het risico op over- en onderbezetting. Met behulp van op prognoses gebaseerd voorraadbeheer heeft Smart Software bijvoorbeeld een fabrikant geholpen zijn toeleveringsketen te stroomlijnen, de doorlooptijden met 15% te verkorten en de algehele efficiëntie te verbeteren. De VP Operations bij Procon Pump verklaarde: “Een van de dingen die ik leuk vind aan deze nieuwe tool... is dat ik de gevolgen van beslissingen over voorraadvoorraden kan evalueren voordat ik ze implementeer.”
      1. Verbeterde besluitvorming AI biedt bruikbare inzichten en aanbevelingen, waardoor managers weloverwogen beslissingen kunnen nemen. Dit omvat het identificeren van langzaam bewegende artikelen, het voorspellen van de toekomstige vraag en het optimaliseren van de voorraadniveaus. Regressieanalyse kan bijvoorbeeld de verkoop relateren aan externe variabelen zoals seizoensinvloeden of economische indicatoren, waardoor een dieper inzicht ontstaat in de vraagfactoren. Een van de klanten van Smart Software rapporteerde een aanzienlijke verbetering in de besluitvormingsprocessen, wat resulteerde in een stijging van het serviceniveau met 30% en een vermindering van de overtollige voorraad met 15%. “Smart IP&O stelde ons in staat de vraag op elke opslaglocatie te modelleren en, met behulp van serviceniveaugestuurde planning, te bepalen hoeveel we op voorraad moesten hebben om het serviceniveau te bereiken dat we nodig hebben”, aldus de Inkoopmanager bij Seneca Companies.
      1. Kostenbesparing Door de voorraadniveaus te optimaliseren kunnen bedrijven de opslagkosten verlagen en verliezen als gevolg van verouderde of verlopen producten minimaliseren. AI-gestuurde systemen verminderen ook de noodzaak van handmatige voorraadcontroles, waardoor tijd en arbeidskosten worden bespaard. Dat blijkt uit een recente casestudy hoe de implementatie van Inventory Planning & Optimization (IP&O) binnen 90 dagen na de start van het project werd gerealiseerd. In de daaropvolgende zes maanden maakte IP&O het mogelijk de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in een voorraadreductie van $9,0 miljoen, terwijl het beoogde serviceniveau behouden bleef.

       

      Door gebruik te maken van geavanceerde algoritmen en realtime data-analyse kunnen bedrijven optimale voorraadniveaus handhaven en de algehele prestaties van hun supply chain verbeteren. Inventory Planning & Optimization (IP&O) is een krachtig hulpmiddel dat uw organisatie kan helpen deze doelen te bereiken. Het integreren van de modernste voorraadoptimalisatie in uw organisatie kan leiden tot aanzienlijke verbeteringen op het gebied van efficiëntie, kostenreductie en klanttevredenheid.

       

       

      Een vraagvoorspelling doorstaan

      Voor sommige van onze klanten heeft het weer een grote invloed op de vraag. Extreme weersomstandigheden op de korte termijn, zoals branden, droogtes, hittegolven, enzovoort, kunnen op de korte termijn een aanzienlijke invloed hebben op de vraag.

      Er zijn twee manieren om het weer mee te nemen in een vraagvoorspelling: indirect en direct. De indirecte route is eenvoudiger met behulp van de scenariogebaseerde aanpak van Smart Demand Planner. De directe aanpak vereist een speciaal project op maat dat aanvullende gegevens en handgemaakte modellen vereist.

      Indirecte boekhouding voor het weer

      Het standaardmodel ingebouwd Smart Demand Planner (SDP) houdt op vier manieren rekening met weerseffecten:

      1. Als de wereld gestaag warmer/kouder/droger/natter wordt op manieren die van invloed zijn op uw omzet, detecteert SDP deze trends automatisch en neemt deze op in de vraagscenario's die het genereert.
      2. Als uw bedrijf een regelmatig ritme heeft waarin bepaalde dagen van de week of bepaalde maanden van het jaar een consistent hogere of lager dan gemiddelde vraag hebben, detecteert SDP deze seizoensinvloeden ook automatisch en neemt deze op in zijn vraagscenario's.
      3. Vaak is het de vervloekte willekeur van het weer die de nauwkeurigheid van de voorspellingen in de weg staat. We noemen dit effect vaak ‘ruis’. Lawaai is een verzamelnaam die allerlei willekeurige problemen omvat. Naast het weer kunnen ook een geopolitieke opflakkering, de verrassende mislukking van een regionale bank of een schip dat vastloopt in het Suezkanaal voor verrassingen zorgen en de vraag naar producten vergroten. SDP beoordeelt de volatiliteit van de vraag en reproduceert deze in zijn vraagscenario's.
      4. Beheeroverschrijvingen. Meestal laten klanten SDP aan de slag om automatisch tienduizenden vraagscenario's te genereren. Maar als gebruikers de behoefte voelen om specifieke prognoses aan te passen met behulp van hun voorkennis, kan SDP dat mogelijk maken door managementoverrides.

      Directe boekhouding voor het weer

      Soms kan een gebruiker inhoudelijke expertise onder woorden brengen door factoren buiten zijn bedrijf (zoals rentetarieven of grondstofkosten of technologietrends) te koppelen aan zijn eigen totale omzet. In deze situaties kan Smart Software eenmalige speciale projecten verzorgen die alternatieve (“causale”) modellen bieden als aanvulling op onze standaard statistische voorspellingsmodellen. Neem contact op met uw Smart Software-vertegenwoordiger om een mogelijk causaal modelleringsproject te bespreken.

      Vergeet intussen uw paraplu niet.