Belangrijke overwegingen bij het evalueren van de prognosemogelijkheden van uw ERP-systeem

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

 

1. Ingebouwde ERP-functionaliteit is ingebakken in Order Management.

Overweeg wat wordt bedoeld met "vraagbeheer", "vraagplanning" en "voorspelling". Deze voorwaarden impliceren bepaalde standaardfuncties voor samenwerking, statistische analyse en rapportage ter ondersteuning van een professioneel vraagplanningsproces. In de meeste ERP-systemen bestaat 'vraagbeheer' echter uit het uitvoeren van MRP en het afstemmen van vraag en aanbod met als doel het plaatsen van bestellingen, oftewel 'orderbeheer'. Het heeft weinig te maken met vraagplanning, een discreet proces dat gericht is op het ontwikkelen van de best mogelijke voorspellingen van de toekomstige vraag door statistische analyse te combineren met zakelijke kennis van evenementen, promoties en informatie over het verkoopteam. De meeste ERP-systemen bieden weinig statistische mogelijkheden en als ze worden aangeboden, heeft de gebruiker de keuze uit een paar statistische methoden die hij handmatig moet toepassen vanuit een vervolgkeuzelijst of zelf moet programmeren. Het is ingebakken in het orderbeheerproces, waardoor de gebruiker mogelijk kan zien hoe de prognose van invloed kan zijn op de voorraad. Er is echter geen enkele mogelijkheid om de prognose te beheren, de kwaliteit van de prognose te verbeteren, beheeronderdrukkingen toe te passen en te volgen, samen te werken, de nauwkeurigheid van de prognose te meten en bij te houden “voorspelbare toegevoegde waarde.” 

2. ERP-planningsmethoden zijn vaak gebaseerd op simplistische vuistregels.

ERP-systemen bieden altijd min, max, veiligheidsvoorraad, bestelpunt, bestelhoeveelheid en prognoses om bevoorradingsbeslissingen te stimuleren. Maar hoe zit het met de onderliggende methoden die worden gebruikt om deze belangrijke drijfveren te berekenen? In bijna alle gevallen zijn de aangeboden methoden niets meer dan vuistregel benaderingen die geen rekening houden met de variabiliteit van vraag of leverancier. Sommige bieden wel "targeting op serviceniveau", maar vertrouwen ten onrechte op de aanname van een normale verdeling ("klokvormige curve"), wat betekent dat de vereiste veiligheidsvoorraden en bestelpunten die door het systeem worden aanbevolen om het serviceniveaudoel te bereiken, vlak zullen zijn verkeerd uit als uw gegevens niet passen in het ideale theoretische model, wat vaak erg onrealistisch is. Dergelijke te vereenvoudigde berekeningen doen meestal meer kwaad dan goed.  

3. Waarschijnlijk gebruik je spreadsheets nog minimaal 2 jaar na aanschaf.

Als u een nieuwe ERP-oplossing zou implementeren, zouden uw oude gegevens meestal vastlopen. Alle systeemeigen ERP-functionaliteiten voor prognoses, het instellen van voorraadbeleid zoals min/max, enz. kunnen dus niet worden gebruikt en u zult gedwongen worden om gedurende ten minste twee jaar terug te grijpen op omslachtige en foutgevoelige spreadsheets (een jaar om te implementeren). op zijn vroegst en nog een jaar om ten minste 12 maanden geschiedenis te verzamelen). Nauwelijks een digitale transformatie. Het gebruik van een best-of-breed oplossing voorkomt dit probleem. U kunt gegevens uit uw oude ERP-systeem laden en uw ERP-implementatie niet verstoren. Dit betekent dat u op dag 1 van ERP-go-live uw nieuwe ERP-systeem kunt vullen met betere invoer voor vraagprognoses, veiligheidsvoorraden, bestelpunten en min/max-instellingen.

4. ERP is niet ontworpen om alles te doen

De "Doe alles in ERP/One-Vendor"-mentaliteit was een marketingboodschap die werd gepromoot door ERP-bedrijven, met name SAP, om u, de klant, 100% van uw IT-budget bij hen te laten uitgeven. Die marketingboodschap is door analistengroepen, IT-firma's en systeemintegrators aan de gebruikers nagepraat, waarbij rationele stemmen werden overstemd die vroegen: "Waarom wil je zo afhankelijk zijn van één bedrijf dat je inferieure technologie voor prognoses en voorraadplanning gebruikt?" ” Het enorme aantal IT-storingen en de enorme implementatiekosten hebben ertoe geleid dat veel bedrijven hun benadering van ERP hebben heroverwogen. Met de komst van gespecialiseerde planning-apps die in de cloud zijn geboren zonder IT-footprint, is de juiste keuze een "dunne" ERP gericht op de basisprincipes - boekhouding, orderbeheer, financiën - maar ondersteund door gespecialiseerde planning-apps. 

De expertise van ERP-consultants ligt in hoe hun systeem is ontworpen om bepaalde bedrijfsprocessen te automatiseren en hoe het systeem kan worden geconfigureerd of aangepast. Hun adviseurs zijn geen specialisten in de juiste aanpak van voorraadplanning, prognoses en voorraadplanning. Dus als u probeert te begrijpen welke aanpak voor vraagplanning geschikt is voor uw bedrijf, hoe moet u dan goed bufferen (bijv. "Moeten we min/max of op prognoses gebaseerde aanvulling doen?" "Moeten we voorspellingsmethode X gebruiken?"), zul je het over het algemeen niet vinden en als je dat wel doet, zal die bron vrij dun verspreid zijn. 

 

 

 

Laat een reactie achter

gerelateerde berichten

Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Make AI-Driven Inventory Optimization an Ally for Your Organization

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De 3 soorten supply chain-analyse

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Er is een oud grapje: "Er zijn twee soorten mensen - zij die geloven dat er twee soorten mensen zijn, en zij die dat niet doen." We kunnen die grap aanpassen: "Er zijn twee soorten mensen - zij die weten dat er drie soorten supply chain-analyse zijn, en zij die deze blog nog niet hebben gelezen."

      De drie typen supply chain-analyse zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het helpen bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie benutten.

      Beschrijvende analyses

      Beschrijvende analyses zijn het spul van dashboards. Ze vertellen je "wat er nu gebeurt." In deze categorie zijn samenvattingscijfers opgenomen zoals dollars die momenteel in voorraad zijn geïnvesteerd, het huidige niveau van klantenservice en opvullingspercentage, en gemiddelde doorlooptijden van leveranciers. Deze statistieken zijn handig om uw activiteiten bij te houden, vooral wanneer u wijzigingen daarin van maand tot maand bijhoudt. U zult elke dag op hen vertrouwen. Ze vereisen nauwkeurige bedrijfsdatabases, statistisch verwerkt.

      Voorspellende analyse

      Voorspellende analyses manifesteren zich meestal als prognoses van de vraag, vaak opgesplitst per product en locatie en soms ook per klant. Deze statistieken geven vroegtijdige waarschuwingen, zodat u productie, personeel en inkoop van grondstoffen kunt versnellen om aan de vraag te voldoen. Ze bieden ook voorspellingen van het effect van wijzigingen in het bedrijfsbeleid, bijvoorbeeld: wat gebeurt er als we onze bestelhoeveelheid voor product X verhogen van 20 naar 25 eenheden? U kunt periodiek, misschien wekelijks of maandelijks, vertrouwen op Predictive Analytics wanneer u opkijkt van wat er nu gebeurt om te zien wat er daarna zal gebeuren. Predictive Analytics gebruikt beschrijvende analyse als basis, maar voegt meer mogelijkheden toe. Predictive Analytics voor vraagprognoses vereist geavanceerde statistische verwerking om kenmerken van de productvraag zoals trend, seizoensinvloeden en verandering van regime. Predictive Analytics voor voorraadbeheer gebruikt prognoses van de vraag als invoer in modellen van de werking van voorraadbeleid, die op hun beurt schattingen geven van belangrijke prestatiestatistieken zoals serviceniveaus, opvullingspercentages, en werkingskosten.

      Prescriptieve analyses

      Prescriptieve analyses gaan niet over wat er nu gebeurt of wat er daarna gaat gebeuren, maar over wat u vervolgens zou moeten doen, dwz ze bevelen beslissingen aan die gericht zijn op het maximaliseren van de prestaties van het inventarisatiesysteem. U kunt op Prescriptive Analytics vertrouwen om uw gehele voorraadbeleid zo goed mogelijk vorm te geven. Prescriptive Analytics gebruikt Predictive Analytics als basis en voegt vervolgens optimalisatiemogelijkheden toe. Prescriptive Analytics-software kan bijvoorbeeld automatisch de beste keuzes maken voor toekomstige waarden van min's en max's voor duizenden inventarisitems. Hier kan 'beste' de waarde van Min en Max voor elk artikel betekenen die de bedrijfskosten minimaliseert (de som van kosten voor vasthouden, bestellen en tekorten) terwijl een 90%-minimum voor het opvullingspercentage van artikelen wordt gehandhaafd.

      Voorbeeld

      Onderstaande figuur laat zien hoe supply chain analytics de voorraadbeheerder kan helpen. De kolommen tonen drie voorspelde Key Performance Indicators (KPI's): serviceniveau, voorraadinvestering en bedrijfskosten (holdingkosten + bestelkosten + tekortkosten).

       Afbeelding 1: de drie soorten analyses die worden gebruikt om planningsscenario's te evalueren

      De rijen tonen vier alternatieve voorraadbeleidslijnen, uitgedrukt als scenario's. Het “Live” scenario rapporteert over de waarden van de KPI's op 1 juli 2018. Het “99% All” scenario wijzigt het huidige beleid door het serviceniveau van alle artikelen te verhogen naar 99%. Het scenario "75 verdieping/99 plafond" verhoogt serviceniveaus die te laag zijn tot 75% en verlaagt zeer hoge (dwz dure) serviceniveaus tot 95%. Het scenario "Optimalisatie" schrijft artikelspecifieke serviceniveaus voor die de totale bedrijfskosten minimaliseren.

      Het scenario “Live 01-07-2018” is een voorbeeld van beschrijvende analyse. Het toont de huidige basislijnprestaties. De software stelt de gebruiker vervolgens in staat wijzigingen in het voorraadbeleid uit te proberen door nieuwe "Wat als"-scenario's te creëren die vervolgens kunnen worden omgezet in benoemde scenario's voor verdere overweging. De volgende twee scenario's zijn voorbeelden van Predictive Analytics. Ze beoordelen allebei de gevolgen van hun aanbevolen beleid voor voorraadbeheer, dwz de aanbevolen waarden van Min en Max voor alle artikelen. Het scenario 'Optimalisatie' is een voorbeeld van Prescriptive Analytics omdat het een beste compromisbeleid aanbeveelt.

      Overweeg hoe de drie alternatieve scenario's zich verhouden tot het "Live" basisscenario. Het scenario "99% All" verhoogt de beschikbaarheidsstatistieken van artikelen, waardoor het serviceniveau stijgt van 88% naar 99%. Hierdoor neemt de totale inventarisinvestering echter toe van $3 miljoen tot ongeveer $4 miljoen. Het scenario '75 vloer/99 plafond' daarentegen verhoogt zowel het serviceniveau als vermindert het contante geld dat vastzit in de voorraad met ongeveer $300.000. Ten slotte bereikt het scenario "Optimalisatie" een 80%-serviceniveau, een verlaging ten opzichte van de huidige 88%, maar het verlaagt de voorraadwaarde met meer dan $2 miljoen en verlaagt de bedrijfskosten met meer dan $400.000 per jaar. Van hieruit konden managers verdere opties uitproberen, zoals het teruggeven van een deel van de $2 miljoen besparingen om een hoger gemiddeld serviceniveau te bereiken.

      Overzicht

      Moderne softwarepakketten voor voorraadplanning en voorraadoptimalisatie zouden drie soorten supply chain-analyses moeten bieden: beschrijvend, voorspellend en prescriptief. Dankzij hun combinatie kunnen voorraadbeheerders hun activiteiten volgen (Beschrijvend), voorspellen waar hun activiteiten in de toekomst zullen zijn (Predictive) en hun voorraadbeleid optimaliseren om te anticiperen op toekomstige omstandigheden (Prescriptief).

       

       

      Laat een reactie achter

      gerelateerde berichten

      Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

      Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

      Forecast-Based Inventory Management for Better Planning

      Op prognoses gebaseerd voorraadbeheer voor een betere planning

      Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

      Make AI-Driven Inventory Optimization an Ally for Your Organization

      Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

      In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          3 soorten supply chain-analyses

          De slimme voorspeller

          Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Er is een oud grapje: "Er zijn twee soorten mensen - zij die geloven dat er twee soorten mensen zijn, en zij die dat niet doen." We kunnen die grap aanpassen: "Er zijn twee soorten mensen - zij die weten dat er drie soorten supply chain-analyse zijn, en zij die deze blog nog niet hebben gelezen."

          De drie typen supply chain-analyse zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het helpen bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie benutten.

          Beschrijvende analyses

          Beschrijvende analyses zijn het spul van dashboards. Ze vertellen je "wat er nu gebeurt." In deze categorie zijn samenvattingscijfers opgenomen zoals dollars die momenteel in voorraad zijn geïnvesteerd, het huidige niveau van klantenservice en opvullingspercentage, en gemiddelde doorlooptijden van leveranciers. Deze statistieken zijn handig om uw activiteiten bij te houden, vooral wanneer u wijzigingen daarin van maand tot maand bijhoudt. U zult elke dag op hen vertrouwen. Ze vereisen nauwkeurige bedrijfsdatabases, statistisch verwerkt.

          Voorspellende analyse

          Voorspellende analyses manifesteren zich meestal als prognoses van de vraag, vaak opgesplitst per product en locatie en soms ook per klant. Deze statistieken geven vroegtijdige waarschuwingen, zodat u productie, personeel en inkoop van grondstoffen kunt versnellen om aan de vraag te voldoen. Ze bieden ook voorspellingen van het effect van wijzigingen in het bedrijfsbeleid, bijvoorbeeld: wat gebeurt er als we onze bestelhoeveelheid voor product X verhogen van 20 naar 25 eenheden? U kunt periodiek, misschien wekelijks of maandelijks, vertrouwen op Predictive Analytics wanneer u opkijkt van wat er nu gebeurt om te zien wat er daarna zal gebeuren. Predictive Analytics gebruikt beschrijvende analyse als basis, maar voegt meer mogelijkheden toe. Predictive Analytics voor vraagprognoses vereist geavanceerde statistische verwerking om kenmerken van de productvraag zoals trend, seizoensinvloeden en verandering van regime. Predictive Analytics voor voorraadbeheer gebruikt prognoses van de vraag als invoer in modellen van de werking van voorraadbeleid, die op hun beurt schattingen geven van belangrijke prestatiestatistieken zoals serviceniveaus, opvullingspercentages, en werkingskosten.

          Prescriptieve analyses

          Prescriptieve analyses gaan niet over wat er nu gebeurt of wat er daarna gaat gebeuren, maar over wat u vervolgens zou moeten doen, dwz ze bevelen beslissingen aan die gericht zijn op het maximaliseren van de prestaties van het inventarisatiesysteem. U kunt op Prescriptive Analytics vertrouwen om uw gehele voorraadbeleid zo goed mogelijk vorm te geven. Prescriptive Analytics gebruikt Predictive Analytics als basis en voegt vervolgens optimalisatiemogelijkheden toe. Prescriptive Analytics-software kan bijvoorbeeld automatisch de beste keuzes maken voor toekomstige waarden van min's en max's voor duizenden inventarisitems. Hier kan 'beste' de waarde van Min en Max voor elk artikel betekenen die de bedrijfskosten minimaliseert (de som van kosten voor vasthouden, bestellen en tekorten) terwijl een 90%-minimum voor het opvullingspercentage van artikelen wordt gehandhaafd.

          Voorbeeld

          Onderstaande figuur laat zien hoe supply chain analytics de voorraadbeheerder kan helpen. De kolommen tonen drie voorspelde Key Performance Indicators (KPI's): serviceniveau, voorraadinvestering en bedrijfskosten (holdingkosten + bestelkosten + tekortkosten).

           Afbeelding 1: de drie soorten analyses die worden gebruikt om planningsscenario's te evalueren

          De rijen tonen vier alternatieve voorraadbeleidslijnen, uitgedrukt als scenario's. Het “Live” scenario rapporteert over de waarden van de KPI's op 1 juli 2018. Het “99% All” scenario wijzigt het huidige beleid door het serviceniveau van alle artikelen te verhogen naar 99%. Het scenario "75 verdieping/99 plafond" verhoogt serviceniveaus die te laag zijn tot 75% en verlaagt zeer hoge (dwz dure) serviceniveaus tot 95%. Het scenario "Optimalisatie" schrijft artikelspecifieke serviceniveaus voor die de totale bedrijfskosten minimaliseren.

          Het scenario “Live 01-07-2018” is een voorbeeld van beschrijvende analyse. Het toont de huidige basislijnprestaties. De software stelt de gebruiker vervolgens in staat wijzigingen in het voorraadbeleid uit te proberen door nieuwe "Wat als"-scenario's te creëren die vervolgens kunnen worden omgezet in benoemde scenario's voor verdere overweging. De volgende twee scenario's zijn voorbeelden van Predictive Analytics. Ze beoordelen allebei de gevolgen van hun aanbevolen beleid voor voorraadbeheer, dwz de aanbevolen waarden van Min en Max voor alle artikelen. Het scenario 'Optimalisatie' is een voorbeeld van Prescriptive Analytics omdat het een beste compromisbeleid aanbeveelt.

          Overweeg hoe de drie alternatieve scenario's zich verhouden tot het "Live" basisscenario. Het scenario "99% All" verhoogt de beschikbaarheidsstatistieken van artikelen, waardoor het serviceniveau stijgt van 88% naar 99%. Hierdoor neemt de totale inventarisinvestering echter toe van $3 miljoen tot ongeveer $4 miljoen. Het scenario '75 vloer/99 plafond' daarentegen verhoogt zowel het serviceniveau als vermindert het contante geld dat vastzit in de voorraad met ongeveer $300.000. Ten slotte bereikt het scenario "Optimalisatie" een 80%-serviceniveau, een verlaging ten opzichte van de huidige 88%, maar het verlaagt de voorraadwaarde met meer dan $2 miljoen en verlaagt de bedrijfskosten met meer dan $400.000 per jaar. Van hieruit konden managers verdere opties uitproberen, zoals het teruggeven van een deel van de $2 miljoen besparingen om een hoger gemiddeld serviceniveau te bereiken.

          Overzicht

          Moderne softwarepakketten voor voorraadplanning en voorraadoptimalisatie zouden drie soorten supply chain-analyses moeten bieden: beschrijvend, voorspellend en prescriptief. Dankzij hun combinatie kunnen voorraadbeheerders hun activiteiten volgen (Beschrijvend), voorspellen waar hun activiteiten in de toekomst zullen zijn (Predictive) en hun voorraadbeleid optimaliseren om te anticiperen op toekomstige omstandigheden (Prescriptief).

           

           

          Laat een reactie achter

          gerelateerde berichten

          Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

          Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

          Forecast-Based Inventory Management for Better Planning

          Op prognoses gebaseerd voorraadbeheer voor een betere planning

          Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

          Make AI-Driven Inventory Optimization an Ally for Your Organization

          Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

          In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]