De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor is op het gebied van supply chain-analyse. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. Maar we zijn niet de enigen: er zijn een klein aantal andere softwarebedrijven over de hele wereld die bezig zijn met een inhaalslag.

Wat is de volgende stap op het gebied van supply chain-analyse? Waar ligt de volgende grens? Het kan gaan om een soort neuraal netwerkmodel van een distributiesysteem. Maar we zouden betere kansen hebben op een uitbreiding van onze toonaangevende modellen van voorraadsystemen met één echelon naar voorraadsystemen met meerdere echelons.

Figuren 1 en 2 illustreren het onderscheid tussen systemen met één en meerdere echelons. Figuur 1 toont een fabrikant die afhankelijk is van een bron om zijn voorraad reserveonderdelen of componenten aan te vullen. Wanneer er voorraadtekorten dreigen, bestelt de fabrikant aanvullingsvoorraden bij de Bron.

Eén multi-echelon voorraadoptimalisatiesoftware AI

Figuur 1: Een inventarisatiesysteem met één echelon

 

Single-echelon-modellen bevatten niet expliciet details van de Bron. Het blijft mysterieus, een onzichtbare geest wiens enige relevante kenmerk de willekeurige tijd is die nodig is om te reageren op een aanvullingsverzoek. Belangrijk is dat er impliciet van wordt uitgegaan dat de Bron zelf nooit een voorraad opslaat. Die veronderstelling kan voor veel doeleinden ‘goed genoeg’ zijn, maar kan niet letterlijk waar zijn. Dit wordt afgehandeld door stockout-gebeurtenissen van leveranciers in de distributie van de doorlooptijd van de aanvullingen te verwerken. Het terugdringen van die veronderstelling is de reden voor multi-echelon-modellering.

Figuur 2 toont een eenvoudig inventarisatiesysteem met twee niveaus. Het verschuift domeinen van productie naar distributie. Er zijn meerdere magazijnen (WH's) afhankelijk van een distributiecentrum (DC) voor bevoorrading. Nu is de DC een expliciet onderdeel van het model. Het heeft een beperkte capaciteit om bestellingen te verwerken en vereist zijn eigen herschikkingsprotocollen. De DC krijgt zijn aanvulling van hogerop in de keten van een bron. De Bron kan de fabrikant van het inventarisitem zijn of misschien een “regionale DC” of iets dergelijks, maar – raad eens? – het is een andere geest. Net als in het single-echelonmodel heeft deze geest één zichtbaar kenmerk: de waarschijnlijkheidsverdeling van de doorlooptijd van de aanvulling. (De clou van een beroemde grap uit de natuurkunde is: “Maar mevrouw, het zijn schildpadden helemaal naar beneden.” In ons geval: “Het zijn geesten helemaal naar boven.”)

Twee Multiechelon-software voor voorraadoptimalisatie AI

Figuur 2: Een inventarisatiesysteem met twee niveaus

 

Het probleem van procesontwerp en -optimalisatie is veel moeilijker op twee niveaus. De moeilijkheid is niet alleen de toevoeging van nog twee controleparameters voor elke WH (bijvoorbeeld een Min en een Max voor elk) plus dezelfde twee parameters voor de DC. Het lastigste deel is het modelleren van de interactie tussen de WH's. In het model met één niveau opereert elke WH in zijn eigen kleine wereld en hoort hij nooit "Sorry, we hebben geen voorraad meer" van de spookachtige Bron. Maar in een systeem met twee niveaus zijn er meerdere WH's die allemaal strijden om bevoorrading vanuit hun gedeelde DC. Deze concurrentie creëert de belangrijkste analytische moeilijkheid: de WH's kunnen niet afzonderlijk worden gemodelleerd, maar moeten tegelijkertijd worden geanalyseerd. Als één DC bijvoorbeeld tien WH's bedient, zijn er 2+10×2 = 22 voorraadbeheerparameters waarvan de waarden moeten worden berekend. In nerdtaal: het is niet triviaal om een beperkt, discreet optimalisatieprobleem met 22 variabelen en een stochastische objectieve functie op te lossen.

Als we het verkeerde systeemontwerp kiezen, ontdekken we een nieuw fenomeen dat inherent is aan systemen met meerdere niveaus, dat we informeel ‘meltdown’ of ‘catastrofe’ noemen. Bij dit fenomeen kan het DC de bevoorradingsbehoefte van de WH's niet bijhouden, waardoor er uiteindelijk voorraadtekorten op magazijnniveau ontstaan. Vervolgens putten de steeds hectischer wordende aanvullingsverzoeken van de WH de voorraad bij het DC uit, waardoor zijn eigen paniekerige verzoeken om aanvulling vanuit het regionale DC beginnen. Als het regionale DC er te lang over doet om het DC weer aan te vullen, dan ontaardt het hele systeem in een tragedie van uitputting.

Eén oplossing voor het meltdown-probleem is om het DC zo te ontwerpen dat het bijna nooit leeg raakt, maar dat kan erg duur zijn. Daarom is er in de eerste plaats een regionaal DC. Elk betaalbaar systeemontwerp heeft dus een DC die net goed genoeg is om lang mee te gaan tussen meltdowns. Dit perspectief impliceert een nieuw type Key Performance Indicator (KPI), zoals “De kans op een meltdown binnen X jaar is minder dan Y procent.”

De volgende grens zal nieuwe methoden en nieuwe maatstaven vereisen, maar zal een nieuwe manier bieden om distributiesystemen te ontwerpen en te optimaliseren. Onze skunkfabriek genereert al prototypes. Bekijk deze ruimte.

 

 

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.

 

 

 

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Net zoals de beroemde astronoom Copernicus ons begrip van de astronomie transformeerde door de zon in het centrum van ons universum te plaatsen, nodigen wij u vandaag uit om uw benadering van voorraadbeheer opnieuw centraal te stellen. En ook al is dit advies niet zo verhelderend, het zal uw bedrijf helpen voorkomen dat u verstrikt raakt in de aantrekkingskracht van voorraadproblemen – voortdurend heen en weer geslingerd tussen voorraadtekorten, overtollige zwaartekracht en de onverwachte kosmische kosten van het bespoedigen van goederen.

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

In servicegerichte bedrijven zijn de gevolgen van voorraadtekorten vaak zeer groot. Het bereiken van een hoog serviceniveau is afhankelijk van de beschikbaarheid van de juiste onderdelen op het juiste moment. Het hebben van de juiste onderdelen is echter niet de enige factor. Uw Supply Chain-team moet voor elk onderdeel een consensusinventarisatieplan ontwikkelen en dit vervolgens voortdurend bijwerken om realtime veranderingen in vraag, aanbod en financiële prioriteiten weer te geven.

 

Voorraadbeheer met serviceniveaugestuurde planning combineert de mogelijkheid om duizenden items te plannen met strategische modellering op hoog niveau. Dit vereist het aanpakken van de kernproblemen waarmee voorraadmanagers worden geconfronteerd:

  • Gebrek aan controle over het aanbod en de bijbehorende doorlooptijden.
  • Onvoorspelbare intermitterende vraag.
  • Conflicterende prioriteiten tussen onderhouds-/mechanische teams en materiaalbeheer.
  • Reactieve ‘afwachtende’ benadering van planning.
  • Verkeerd toegewezen voorraad, waardoor voorraadtekorten en overschotten ontstaan.
  • Gebrek aan vertrouwen in systemen en processen.

De sleutel tot optimaal beheer van serviceonderdelen is het vinden van de balans tussen het bieden van uitstekende service en het beheersen van de kosten. Om dit te doen, moeten we de kosten van stockout vergelijken met de kosten van het aanhouden van extra voorraad reserveonderdelen. De kosten van een stockout zullen hoger zijn voor kritieke of noodreserveonderdelen, wanneer er een serviceniveauovereenkomst is met externe klanten, voor onderdelen die in meerdere activa worden gebruikt, voor onderdelen met langere doorlooptijden van leveranciers, en voor onderdelen met één enkele leverancier. De voorraadkosten kunnen worden beoordeeld door rekening te houden met de eenheidskosten, de rentetarieven, de magazijnruimte die zal worden verbruikt en de kans op veroudering (onderdelen die worden gebruikt in een wagenpark dat binnenkort met pensioen gaat, hebben bijvoorbeeld een hoger risico op veroudering).

Om te bepalen hoeveel voorraad er voor elk onderdeel op de plank moet worden gelegd, is het van cruciaal belang om consensus te bereiken over de gewenste sleutelgegevens die de afwegingen blootleggen die het bedrijf moet maken om de gewenste KPI's te bereiken. Deze KPI's omvatten serviceniveaus die u vertellen hoe vaak u aan de gebruiksbehoeften voldoet zonder dat u tekortschiet in de voorraad, vulpercentages die u vertellen welk percentage van de vraag is gevuld, en bestelkosten geven een gedetailleerd overzicht van de kosten die u maakt wanneer u aanvullingsorders plaatst en ontvangt. Je hebt ook holdingkosten, die uitgaven omvatten zoals veroudering, belastingen en opslag, en tekortkosten die betrekking hebben op uitgaven die worden gemaakt wanneer er voorraadtekorten optreden.

Een MRO-bedrijf of een team voor aftermarket-onderdelenplanning wenst mogelijk een 99%-serviceniveau voor alle onderdelen – dat wil zeggen dat het minimale voorraadrisico dat zij bereid zijn te accepteren 1% is. Maar wat als de hoeveelheid voorraad die nodig is om dat serviceniveau te ondersteunen, te duur is? Om een weloverwogen beslissing te kunnen nemen over de vraag of die extra voorraadinvestering rendement oplevert, moet u de voorraadkosten kennen en die vergelijken met de voorraadkosten. Om de stockoutkosten te berekenen, vermenigvuldigt u twee belangrijke elementen: de kosten per stockout en het verwachte aantal stockouts. Om de voorraadwaarde te bepalen, vermenigvuldigt u de vereiste eenheden met de eenheidskosten van elk onderdeel. Bepaal vervolgens de jaarlijkse holdingkosten (doorgaans 25-35% van de eenheidskosten). Kies de optie die in totaal lagere kosten oplevert. Met andere woorden: als het voordeel dat gepaard gaat met het toevoegen van meer voorraad (lagere tekortkosten) groter is dan de kosten (hogere voorraadkosten), ga er dan voor. Een grondig begrip van deze statistieken en de bijbehorende afwegingen dient als kompas voor de besluitvorming.

Moderne software helpt bij dit proces doordat u een groot aantal toekomstscenario's kunt simuleren. Door dit te doen, kunt u beoordelen hoe goed uw huidige voorraadbevoorradingsstrategieën waarschijnlijk zullen presteren in het licht van verschillende vraag- en aanbodpatronen. Als er iets tekortschiet of misgaat, is het tijd om uw aanpak opnieuw te kalibreren, waarbij u rekening houdt met actuele gegevens over de gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten om zowel voorraad- als overvoorraadsituaties te voorkomen.

 

Verbeter uw op serviceniveau gebaseerde voorraadplan op consistente wijze.

Concluderend is het van cruciaal belang om uw serviceniveaugestuurde plan voortdurend te beoordelen. Door systematisch prestatiescenario's op te stellen en te verfijnen, kunt u belangrijke meetgegevens en doelen definiëren, de verwachte prestaties benchmarken en de berekening van het voorraadbeleid voor alle artikelen automatiseren. Dit iteratieve proces omvat het monitoren, herzien en herhalen van elke planningscyclus.

De diepgang van uw analyse binnen dit voorraadbeleid is afhankelijk van de gegevens waarover u beschikt en de configuratiemogelijkheden van uw planningssysteem. Om optimale resultaten te bereiken, is het noodzakelijk om voortdurende gegevensanalyses uit te voeren. Dit impliceert dat een handmatige benadering van dataonderzoek doorgaans onvoldoende is voor de behoeften van de meeste organisaties.

Bezoek de volgende blogs voor informatie over hoe Smart Software u kan helpen de doelstellingen van uw servicetoeleveringsketen te bereiken met servicegestuurde planning en meer.

–   “Uitleggen wat serviceniveau betekent in uw voorraadoptimalisatiesoftware”  Aanbevelingen voor kous kunnen verwarrend zijn, vooral als ze botsen met de behoeften in de echte wereld. In dit bericht leggen we uit wat dat 99%-serviceniveau betekent en waarom het cruciaal is om de voorraad effectief te beheren en klanten tevreden te houden in het huidige competitieve landschap.

– “Servicegestuurde planning voor bedrijven met serviceonderdelenService-level-driven serviceonderdelenplanning is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, risico-aangepaste beslissingsondersteuning.

–   “Hoe u een doelserviceniveau kiest.Dit is een strategische beslissing over voorraadrisicobeheer, waarbij rekening wordt gehouden met de huidige serviceniveaus en opvullingspercentages, de doorlooptijden van de bevoorrading en de afwegingen tussen kapitaal-, voorraad- en opportuniteitskosten. Leer benaderingen die kunnen helpen.

–   “De juiste voorspellingsnauwkeurigheid voor voorraadplanning.”  Het feit dat u een serviceniveaudoel stelt, betekent niet dat u dit ook daadwerkelijk zult bereiken. Als u geïnteresseerd bent in het optimaliseren van de voorraadniveaus, concentreer u dan op de nauwkeurigheid van de projectie van het serviceniveau. Leren hoe.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Dagelijkse vraagscenario's

    In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

    Aanvankelijk, in de jaren tachtig, werd de gebruikelijke praktijk van het gebruik van jaarlijkse gegevens voor prognoses en de introductie van maandelijkse gegevens als innovatief beschouwd. Deze periode markeerde het begin van een trend in de richting van het verhogen van de resolutie van data-analyse, waardoor bedrijven snellere verschuivingen in de marktdynamiek kunnen opvangen en hierop kunnen reageren. Naarmate we verder kwamen in de jaren 2000, was de norm van maandelijkse data-analyse ingeburgerd, maar de 'cool kids' – vernieuwers aan de rand van business analytics – begonnen te experimenteren met wekelijkse data. Deze verschuiving werd gedreven door de noodzaak om de bedrijfsactiviteiten te synchroniseren met de steeds volatielere marktomstandigheden en het consumentengedrag dat snellere reacties vergde dan maandelijkse cycli konden bieden. Tegenwoordig, in de jaren 2020, is de grens weliswaar nog steeds gebruikelijk, maar is de grens opnieuw verschoven, dit keer naar dagelijkse data-analyse, waarbij sommige pioniers zich zelfs aan uuranalyses wagen.

    De echte kracht van dagelijkse data-analyse ligt in het vermogen om een gedetailleerd beeld te geven van de bedrijfsvoering, waarbij dagelijkse schommelingen worden vastgelegd die door maandelijkse of wekelijkse gegevens over het hoofd kunnen worden gezien. De complexiteit van dagelijkse gegevens vereist echter geavanceerde analytische benaderingen om betekenisvolle inzichten te verkrijgen. Op dit niveau vereist het begrijpen van de vraag het worstelen met concepten als wisselvalligheid, seizoensinvloeden, trends en volatiliteit. Intermittentie, of het optreden van dagen zonder vraag, wordt duidelijker bij een dagelijkse granulariteit en vereist gespecialiseerde voorspellingstechnieken zoals de methode van Croston voor nauwkeurige voorspellingen. Seizoensgebondenheid op dagelijks niveau kan meerdere patronen aan het licht brengen, zoals hogere verkopen in het weekend of op feestdagen, die maandelijkse gegevens zouden maskeren. Trends kunnen worden waargenomen als stijgingen of dalingen van de vraag op de korte termijn, waardoor flexibele aanpassingsstrategieën nodig zijn. Ten slotte wordt de volatiliteit op dagelijks niveau geaccentueerd, wat significantere schommelingen in de vraag laat zien dan uit maandelijkse of wekelijkse analyses blijkt, wat van invloed kan zijn op de voorraadbeheerstrategieën en de behoefte aan buffervoorraden. Dit niveau van complexiteit onderstreept de behoefte aan geavanceerde analytische hulpmiddelen en expertise op het gebied van dagelijkse data-analyse.

    Kortom, de evolutie van minder frequente naar dagelijkse tijdreeksvoorspellingen markeert een substantiële verschuiving in de manier waarop bedrijven data-analyse benaderen. Deze transitie weerspiegelt niet alleen het steeds snellere tempo van het bedrijfsleven, maar onderstreept ook de behoefte aan tools die een grotere granulariteit van de gegevens aankunnen. De toewijding van Smart Software aan het verfijnen van de analytische mogelijkheden voor het beheren van dagelijkse gegevens benadrukt de bredere beweging van de sector naar meer dynamische, responsieve en datagestuurde besluitvorming. Deze verschuiving gaat niet alleen over het bijhouden van de tijd, maar over het benutten van gedetailleerde inzichten om concurrentievoordelen te creëren in een steeds veranderende zakelijke omgeving.

     

    Leren van voorraadmodellen

    In deze videoblog onderzoeken we de integrale rol die voorraadmodellen spelen bij het vormgeven van de besluitvormingsprocessen van professionals in verschillende sectoren. Deze modellen, of het nu tastbare computersimulaties zijn of immateriële mentale constructies, dienen als cruciale hulpmiddelen bij het beheersen van de complexiteit van moderne zakelijke omgevingen. De discussie begint met een overzicht van hoe deze modellen worden gebruikt om resultaten te voorspellen en activiteiten te stroomlijnen, waarbij de relevantie ervan in een voortdurend evoluerend marktlandschap wordt benadrukt.

    De discussie onderzoekt verder hoe verschillende modellen strategische besluitvormingsprocessen duidelijk beïnvloeden. De mentale modellen die professionals door ervaring ontwikkelen, vormen bijvoorbeeld vaak een leidraad voor de eerste reacties op operationele uitdagingen. Deze modellen zijn subjectief en opgebouwd op basis van persoonlijke inzichten en ervaringen uit het verleden met vergelijkbare situaties, waardoor snelle, intuïtieve besluitvorming mogelijk is. Aan de andere kant bieden computergebaseerde modellen een objectiever raamwerk. Ze gebruiken historische gegevens en algoritmische berekeningen om toekomstige scenario's te voorspellen en bieden zo een kwantitatieve basis voor beslissingen waarbij rekening moet worden gehouden met meerdere variabelen en mogelijke uitkomsten. In dit gedeelte worden specifieke voorbeelden belicht, zoals de impact van het aanpassen van bestelhoeveelheden op voorraadkosten en bestelfrequentie of de effecten van fluctuerende doorlooptijden op serviceniveaus en klanttevredenheid.

    Concluderend: terwijl mentale modellen een raamwerk bieden dat is gebaseerd op ervaring en intuïtie, bieden computermodellen een gedetailleerder en getalsmatig perspectief. Het combineren van beide typen modellen zorgt voor een robuuster besluitvormingsproces, waarbij theoretische kennis in evenwicht wordt gebracht met praktische ervaring. Deze aanpak vergroot het inzicht in de voorraaddynamiek en geeft professionals de tools in handen om zich effectief aan veranderingen aan te passen, waardoor duurzaamheid en concurrentievermogen op hun respectieve vakgebieden worden gewaarborgd.