Waarschuwingssignalen dat er sprake is van een tekort aan supply chain-analyse

“Zakendoen is oorlog” is misschien een overdreven metafoor, maar het is niet zonder geldigheid. Net als de ‘Bomber Gap’ en de ‘Missile Gap’ liggen de zorgen om achterop te raken bij de concurrentie, en de daaruit voortvloeiende dreiging van vernietiging, altijd op de loer in de hoofden van bedrijfsleiders. Als ze dat niet doen, moeten ze dat doen, want niet alle gaten zijn denkbeeldig (de Bomber Gap en de Missile Gap bleken niet te bestaan tussen de VS en de USSR, maar de kloof tussen de Japanse en Amerikaanse productiviteit in de jaren tachtig was maar al te reëel). Het verschil tussen paranoia en gerechtvaardigde bezorgdheid is het omzetten van angst in feiten. Dit bericht gaat over het organiseren van uw aandacht voor mogelijke hiaten in de supply chain-analyses van uw bedrijf.

Hiaten in het toezicht

Het Amerikaanse leger heeft een gezegde: “Tijd besteed aan verkenning is nooit verspilde tijd.” Zo nu en dan, onze Slimme voorspeller blog heeft een bericht waarmee je je hoofd op een draai kunt zetten om te zien wat er om je heen gebeurt. Een voorbeeld is ons bericht op digitale tweelingen, een hot topic in de technische wereld. Samenvattend: het gebruik van vraag- en aanbodsimulaties om zwakke punten in uw voorraadplan op te sporen is een vorm van supply chain-verkenning. Door deze gaten in het toezicht te dichten, kunnen bedrijven corrigerende maatregelen nemen voordat zich een daadwerkelijk probleem voordoet.

Situationele bewustzijnsverschillen

Een militaire commandant moet bijhouden wat er beschikbaar is voor gebruik en hoe goed het wordt gebruikt. De rapporten beschikbaar in Smart Operational Analytics houdt u op de hoogte van uw voorraadaantallen, de nauwkeurigheid van uw prognoses, het reactievermogen van uw leveranciers en trends op deze en andere operationele gebieden. U weet precies waar u staat op het gebied van diverse supply chain-KPI's, zoals serviceniveau, opvullingspercentages en voorraadomloop. U weet of de werkelijke prestaties overeenkomen met de geplande prestaties en of het voorraadplan (dat wil zeggen wat u moet bestellen, wanneer, bij wie en waarom) wordt nageleefd of genegeerd.

Behendigheidsverschillen

De zakelijke omgeving kan snel veranderen. Het enige dat nodig is, is een tanker die zijdelings vastzit in het Suezkanaal, een paar ballistische anti-scheepsraketten in de Rode Zee, of een weersgebeurtenis in de hele regio. Deze catastrofes kunnen net zo goed op de hoofden van uw concurrenten terechtkomen als op die van u, maar wie van u is wendbaar genoeg om als eerste te reageren? Uitzonderingsrapportage in Vraagplanner en slimme operationele analyses kan grote veranderingen in de aard van de vraag detecteren, zodat u snel verouderde vraaggegevens eruit kunt filteren voordat deze al uw berekeningen voor vraagprognoses of voorraadoptimalisatie vergiftigen. Smart Demand Planner kan vooraf waarschuwen voor een aanstaande stijging of daling van de vraag. Smart Inventory Optimization kan u helpen uw tactieken voor het aanvullen van uw voorraad aan te passen aan deze verschuivingen in de vraag.

 

Innovatiehiaten

Of je nu naar je concurrentie verwijst als ‘The Other Guys’ of ‘Everybody Else’ of iets dat niet kan worden afgedrukt, degenen waar je je zorgen over moet maken, zijn degenen die altijd op zoek zijn naar een voorsprong. Wanneer u Smart als uw partner kiest, geven wij u die voorsprong met innovatieve maar in de praktijk bewezen voorspellende oplossingen. Smart Software innoveert al sinds de geboorte, meer dan 40 jaar geleden, voorspellende modellen.

  • Onze eerste producten introduceerden meerdere technische innovaties: beoordeling van de voorspelde kwaliteit door naar de toekomst te kijken en niet naar het verleden; automatische selectie van de beste uit een reeks concurrerende methodologieën, waarbij gebruik wordt gemaakt van de graphics op de eerste pc's om eenvoudige beheeroverschrijvingen van statistische voorspellingen mogelijk te maken.
  • Later hebben we een radicaal andere benadering bedacht en gepatenteerd voor het voorspellen van de intermitterende vraag die kenmerkend is voor zowel reserveonderdelen als dure duurzame goederen. Onze technologie is gepatenteerd en heeft meerdere prijzen ontvangen voor de dramatische verbetering van het voorraadbeheer. De oplossing is nu een in de praktijk bewezen aanpak die wordt gebruikt door veel toonaangevende bedrijven op het gebied van serviceonderdelen, MRO, aftermarket-onderdelen en buitendienst.
  • Meer recentelijk neemt het cloudplatform van Smart voor vraagvoorspelling, voorspellende modellering, voorraadoptimalisatie en analyse alle relevante gegevens die anders opgesloten zitten in uw ERP- of EAM-systemen, externe bestanden en andere ongelijksoortige gegevensbronnen, en organiseert deze in de Slimme datapijplijn, structureert het in onze gemeenschappelijk datamodel, en verwerkt deze in onze AWS-wolk. Smart maakt gebruik van de kracht van ons gepatenteerd probabilistische vraagsimulaties in Smart Inventory Optimization om de regels die u gebruikt om elk van uw voorraaditems te beheren, te stresstesten en te optimaliseren.

Het is mijn taak, samen met mijn medeoprichter Dr. Nelson Hartunian, ons data science-team en academische consultants, om de grenzen van supply chain-analyses te blijven verleggen en de voordelen voor u terug te brengen door voortdurend nieuwe versies van onze producten uit te rollen, zodat u zorg ervoor dat u niet blijft steken in een innovatiekloof – of in een van de andere.

 

5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Het belang van een geoptimaliseerde planning van serviceonderdelen:

Geoptimaliseerd beheer van serviceonderdelen speelt een cruciale rol bij het beperken van voorraadrisico's en het waarborgen van de beschikbaarheid van kritieke reserveonderdelen. Hoewel subjectieve planning op kleine schaal kan werken, wordt het onvoldoende bij het beheer van grote voorraden van af en toe gevraagde reserveonderdelen. Traditionele prognosebenaderingen houden simpelweg geen rekening met de extreme variabiliteit in de vraag en frequente periodes van nulvraag die zo gewoon zijn bij reserveonderdelen. Dit resulteert in grote misallocaties van voorraden, hogere kosten en slechte serviceniveaus.

De sleutel tot geoptimaliseerd beheer van serviceonderdelen ligt in het begrijpen van de wisselwerking tussen service en kosten. Software voor voorraadoptimalisatie en vraagplanning, mogelijk gemaakt door probabilistische prognoses en machine learning-algoritmen, kan bedrijven helpen de kosten versus baten van elke voorraadbeslissing beter te begrijpen en voorraad als een concurrentievoordeel te gebruiken. Door binnen enkele seconden nauwkeurige vraagprognoses en een optimaal voorraadbeleid zoals Min/Max, veiligheidsvoorraadniveaus en bestelpunten te genereren, kunnen bedrijven weten hoeveel te veel is en wanneer ze meer moeten toevoegen. Door voorraad als een concurrentievoordeel te hanteren, kunnen bedrijven hun serviceniveau verhogen en de kosten verlagen.

Verbeter het financiële resultaat van de planning van reserveonderdelen

  1. Nauwkeurige prognoses zijn cruciaal om de voorraadplanning te optimaliseren en effectief aan de vraag van de klant te voldoen. State-of-the-art software voor vraagplanning voorspelt nauwkeurig de voorraadvereisten, zelfs voor intermitterende vraagpatronen. Door prognoses te automatiseren, kunnen bedrijven tijd, geld en middelen besparen en tegelijkertijd de nauwkeurigheid verbeteren.
  2. Voldoen aan de vraag van de klant is een cruciaal aspect van het beheer van serviceonderdelen. Bedrijven kunnen de klanttevredenheid en -loyaliteit vergroten en hun kansen vergroten om toekomstige contracten binnen te halen voor de activa-intensieve apparatuur die ze verkopen door ervoor te zorgen dat reserveonderdelen beschikbaar zijn wanneer dat nodig is. Door effectieve vraagplanning en voorraadoptimalisatie kunnen organisaties doorlooptijden verkorten, voorraadtekorten minimaliseren en serviceniveaus handhaven, waardoor de financiële impact van alle beslissingen wordt verbeterd.
  3. Financiële voordelen kunnen worden behaald door een geoptimaliseerde planning van serviceonderdelen, inclusief de vermindering van voorraad- en productkosten. Overtollige opslag en verouderde inventaris kunnen een aanzienlijke kostenpost zijn voor organisaties. Door best-of-breed voorraadoptimalisatiesoftware te implementeren, kunnen bedrijven kosteneffectieve oplossingen vinden, het serviceniveau verhogen en de kosten verlagen. Dit leidt tot verbeterde voorraadomzet, lagere transportkosten en hogere winstgevendheid.
  4. Inkoopplanning is een ander essentieel aspect van het beheer van serviceonderdelen. Organisaties kunnen voorraadniveaus optimaliseren, doorlooptijden verkorten en voorraadtekorten voorkomen door inkoop en de bijbehorende orderhoeveelheden af te stemmen op nauwkeurige vraagprognoses. Er kunnen bijvoorbeeld nauwkeurige prognoses worden gedeeld met leveranciers, zodat algemene inkoopverplichtingen kunnen worden aangegaan. Dit geeft de leverancier omzetzekerheid en kan in ruil daarvoor meer voorraad aanhouden, waardoor de doorlooptijden worden verkort.
  5. Intermitterende vraagplanning is een bijzondere uitdaging bij het beheer van reserveonderdelen. Conventionele vuistregels schieten tekort in het effectief omgaan met vraagvariabiliteit. Dit komt omdat traditionele benaderingen ervan uitgaan dat de vraag normaal verdeeld is, terwijl dat in werkelijkheid allesbehalve normaal is. Reserveonderdelen vragen om willekeurige uitbarstingen van grote vraag die worden afgewisseld met perioden van nul vraag. De oplossing van Smart Software bevat geavanceerde statistische modellen en machine learning-algoritmen om historische vraagpatronen te analyseren, waardoor een nauwkeurige planning voor intermitterende vraag mogelijk wordt. Bedrijven kunnen de voorraadkosten aanzienlijk verlagen en de efficiëntie verbeteren door deze uitdaging aan te gaan.

Bewijs van klanten van Smart Software:

Door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software kunnen bedrijven kostenbesparingen realiseren, de klantenservice naar een hoger niveau tillen en de operationele efficiëntie verbeteren. Door nauwkeurige vraagprognoses, geoptimaliseerd voorraadbeheer en gestroomlijnde inkoopprocessen kunnen organisaties financiële besparingen realiseren, effectief voldoen aan de eisen van klanten en de algehele bedrijfsprestaties verbeteren.

  • Metro-North Railroad (MNR) ervoer een 8%-vermindering van de onderdelenvoorraad, bereikte een recordhoog klantenserviceniveau van 98,7% en verminderde de voorraadgroei voor nieuwe apparatuur van een verwachte 10% tot slechts 6%. Slimme software speelde een cruciale rol bij het identificeren van meerjarige behoeften aan serviceonderdelen, het verkorten van administratieve doorlooptijden, het opstellen van plannen voor voorraadvermindering voor wagenparken die buiten gebruik worden gesteld en het identificeren van inactieve inventaris voor verwijdering. MNR bespaarde kosten, maximaliseerde verwijderingsvoordelen, verbeterde serviceniveaus en verwierf nauwkeurige inzichten voor weloverwogen besluitvorming, wat uiteindelijk hun bedrijfsresultaten en klanttevredenheid verbeterde.
  • Seneca Companies, marktleider op het gebied van petroleumservices voor de auto-industrie, heeft Smart Software gebruikt om de vraag van klanten te modelleren, de voorraadprestaties te controleren en aanvulling te stimuleren. Buitendiensttechnici omarmden het gebruik ervan en de totale inventarisinvestering daalde met meer dan 25%, van $11 miljoen naar $8 miljoen, terwijl de first-time fix rates van 90%+ behouden bleven.
  • Een toonaangevend elektriciteitsbedrijf implementeerde Smart IP&O in slechts 3 maanden en gebruikte de software vervolgens om de bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen te optimaliseren. Tijdens de eerste fase van de implementatie hielp het platform het nutsbedrijf om de voorraad met $9.000.000 te verminderen met behoud van serviceniveaus. De implementatie was onderdeel van het strategische optimalisatie-initiatief van het bedrijf.

Optimalisatie van de planning van serviceonderdelen voor concurrentievoordeel

Geoptimaliseerd beheer van serviceonderdelen is cruciaal voor bedrijven die de efficiëntie willen verbeteren, kosten willen verlagen en de beschikbaarheid van noodzakelijke reserveonderdelen willen waarborgen. Organisaties kunnen op dit gebied aanzienlijke waarde ontsluiten door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software. Bedrijven kunnen betere financiële prestaties behalen en een concurrentievoordeel behalen in hun respectievelijke markten door verbeterde data-analyse, automatisering en voorraadplanning.

Smart Software is ontworpen voor de moderne markt, die volatiel is en altijd verandert. Het kan SKU-proliferatie, langere toeleveringsketens, minder voorspelbare doorlooptijden en meer intermitterende en minder voorspelbare vraagpatronen aan. Het kan ook worden geïntegreerd met vrijwel elke ERP-oplossing op de markt, door in de praktijk bewezen naadloze verbindingen of door een eenvoudig import-/exportproces te gebruiken dat wordt ondersteund door het datamodel en de dataverwerkingsengine van Smart Software. Door slimme software te gebruiken, kunnen bedrijven voorraad als een concurrentievoordeel gebruiken, de klanttevredenheid verbeteren, het serviceniveau verhogen, de kosten verlagen en aanzienlijk geld besparen.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    De voorspelling is belangrijk, maar misschien niet zoals u denkt

    Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen.

    Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch?

    Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja.

    De belangrijkste realiteit is dat voor veel artikelen, vooral reserve- en serviceonderdelen, een onvoorspelbare, periodieke vraag bestaat. (De doorlooptijden van leveranciers kunnen ook grillig zijn, vooral wanneer onderdelen afkomstig zijn van een OEM met een achterstand.) We hebben vastgesteld dat hoewel fabrikanten en distributeurs doorgaans een intermitterende vraag ervaren naar slechts 20% of meer van hun artikelen, het percentage voor op MRO gebaseerde bedrijven groeit naar 80%+. Dit betekent dat historische gegevens vaak periodes van nulvraag laten zien, afgewisseld met willekeurige perioden van niet-nulvraag. Soms zijn deze niet-nuleisen zo laag als 1 of 2 eenheden, terwijl ze op andere momenten onverwacht oplopen tot hoeveelheden die vele malen groter zijn dan het gemiddelde.

    Dit is niet het soort gegevens waar uw collega-'vraagplanners' in de detailhandel, consumentenproducten en voedingsmiddelen en dranken doorgaans mee te maken krijgen. Die mensen hebben meestal te maken met grotere hoeveelheden en hebben verhoudingsgewijs minder willekeur. En ze kunnen surfen op voorspellingsverbeterende functies zoals trends en stabiele seizoenspatronen. In plaats daarvan is het gebruik van reserveonderdelen veel willekeuriger, wat het planningsproces in de war brengt, zelfs in de minderheid van de gevallen waarin seizoensvariaties waarneembaar zijn.

    Op het gebied van de intermitterende vraag zal de best beschikbare voorspelling aanzienlijk afwijken van de werkelijke vraag. In tegenstelling tot consumentenproducten met een gemiddeld tot hoog volume en een gemiddelde frequentie, kan de voorspelling van een serviceonderdeel de plank misslaan met honderden procentpunten. Een voorspelling van gemiddeld één of twee eenheden zal altijd mislukken als de werkelijke vraag nul is. Zelfs met geavanceerde business intelligence- of machine learning-algoritmen zal de fout bij het voorspellen van de niet-nuleisen nog steeds aanzienlijk zijn.

    Misschien vanwege de moeilijkheid van statistische prognoses op het gebied van de inventarisatie, is voorraadplanning in de praktijk vaak afhankelijk van intuïtie en plannerkennis. Helaas schaalt deze aanpak niet over tienduizenden onderdelen. Intuïtie kan gewoon niet omgaan met het volledige scala aan vraag- en doorlooptijdmogelijkheden, laat staan nauwkeurig de waarschijnlijkheid van elk mogelijk scenario inschatten. Zelfs als uw bedrijf een of twee uitzonderlijke intuïtieve voorspellers heeft, betekent personeelspensionering en reorganisatie van de productlijnen dat er in de toekomst niet meer op intuïtieve prognoses kan worden vertrouwd.

    De oplossing ligt in het verleggen van de focus van traditionele prognoses naar het voorspellen van de kansen voor elk potentieel vraag- en doorlooptijdscenario. Deze verschuiving transformeert het gesprek van een onrealistisch ‘één nummerplan’ naar een reeks getallen met bijbehorende waarschijnlijkheden. Door de kansen voor elke vraag en doorlooptijd te voorspellen, kunt u de voorraadniveaus beter afstemmen op de risicotolerantie voor elke groep onderdelen.

    Software die vraag- en doorlooptijdscenario's genereert en dit proces tienduizenden keren herhaalt, kan nauwkeurig simuleren hoe het huidige voorraadbeleid zal presteren in vergelijking met dit beleid. Als de prestaties in de simulatie tekortschieten en er wordt voorspeld dat u vaker voorraad zult hebben dan u prettig vindt, of als u met een overschot aan voorraad blijft zitten, maakt het uitvoeren van 'wat als'-scenario's aanpassingen aan het beleid mogelijk. U kunt vervolgens voorspellen hoe dit herziene beleid het zal doen tegen willekeurige eisen en doorlooptijden. U kunt dit proces iteratief uitvoeren en verfijnen bij elk nieuw 'wat-als'-scenario, of u kunt steunen op door het systeem voorgeschreven beleid dat optimaal een balans vindt tussen risico's en kosten.

    Dus als u service- en reserveonderdeleninventarisaties plant, hoeft u zich geen zorgen meer te maken over het voorspellen van de vraag op de manier waarop traditionele retail- en CPG-vraagplanners dat doen. Concentreer u in plaats daarvan op hoe uw voorraadbeleid bestand is tegen de willekeur van de toekomst, en pas het aan op basis van uw risicotolerantie. Hiervoor heeft u de juiste set beslissingsondersteunende software nodig, en dit is hoe Smart Software u kan helpen.

     

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad

      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien.

      Denk eens aan een openbaar vervoersbedrijf. In de meeste grote steden zullen de jaarlijkse operationele budgetten de $3 miljard overschrijden. De kapitaaluitgaven voor treinen, metro's en infrastructuur kunnen jaarlijks honderden miljoenen bedragen. Bijgevolg zal een voorraad reserveonderdelen ter waarde van $150 miljoen wellicht niet de aandacht trekken van de CFO of algemeen directeur, aangezien deze een klein percentage van de balans vertegenwoordigt. Bovendien moeten in op MRO gebaseerde industrieën veel onderdelen de machineparken tien jaar of langer ondersteunen, waardoor extra voorraden een noodzakelijke troef zijn. In sommige sectoren, zoals nutsbedrijven, kan het aanhouden van extra voorraden zelfs gestimuleerd worden om ervoor te zorgen dat de apparatuur in goede staat blijft.

      We hebben zorgen over overtollige voorraden zien ontstaan wanneer de magazijnruimte beperkt is. Ik herinner me dat ik aan het begin van mijn carrière getuige was van het spoorwegemplacement van een openbaar vervoersbedrijf, gevuld met verroeste assen met een waarde van meer dan $100.000 per stuk. Mij werd verteld dat de assen moesten worden blootgesteld aan de elementen vanwege onvoldoende magazijnruimte. De opportuniteitskosten die verband houden met de ruimte die wordt ingenomen door extra voorraad worden een overweging wanneer de magazijncapaciteit is uitgeput. De belangrijkste overweging die alle andere beslissingen overtroeft, is hoe de voorraad een hoog serviceniveau voor interne en externe klanten garandeert. Voorraadplanners maken zich veel meer zorgen over terugslag als gevolg van voorraadtekorten dan over overaankopen. Wanneer een ontbrekend onderdeel leidt tot een SLA-schending of het stilleggen van de productielijn, wat resulteert in miljoenen aan boetes en onherstelbare productie-output, is dat begrijpelijk.

      Vermogensintensieve bedrijven missen één groot punt. Dat is de extra voorraad isoleert niet tegen stockouts; het draagt eraan bij. Hoe meer eigen risico u heeft, hoe lager uw algehele serviceniveau, omdat het geld dat nodig is om onderdelen te kopen eindig is, en geld uitgegeven aan overtollige voorraad betekent dat er geen contant geld beschikbaar is voor de onderdelen die het nodig hebben. Zelfs door de overheid gefinancierde MRO-bedrijven, zoals nutsbedrijven en transportbedrijven, erkennen nu meer dan ooit de noodzaak om de uitgaven te optimaliseren. Zoals een materiaalmanager deelde: “We kunnen problemen met zakken met contant geld uit Washington niet langer oplossen.” Ze moeten dus meer doen met minder, en zorgen voor een optimale toewijzing over de tienduizenden onderdelen die ze beheren.

      Dit is waar state-of-the-art voorraadoptimalisatiesoftware van pas komt, die de benodigde voorraad voor gerichte serviceniveaus voorspelt, identificeert wanneer voorraadniveaus negatieve rendementen opleveren en herschikkingen aanbeveelt voor verbeterde algehele serviceniveaus. Smart Software helpt al tientallen jaren activa-intensieve MRO-gebaseerde bedrijven bij het optimaliseren van de bestelniveaus voor elk onderdeel. Bel ons voor meer informatie. 

       

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

       

        Constructief spelen met Digital Twins

        Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten.

        Wat is een digitale tweeling?

        Hoewel er verschillende definities van digital twin zijn, is er een die goed werkt:

        Een digitale tweeling is een dynamiek virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich identiek gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen dus dat kan mogelijke prestatieresultaten voorspellen en problemen die het echte product zou kunnen ondergaan. [Bron: Unity.com]. Voor meer achtergrondinformatie kunt u terecht op Mckinsey.com.

        Wat is het verschil tussen een digital twin (hierna DT) en een model? In de eerste plaats wordt een ODC verbonden met realtime gegevens om het model te behouden als een actuele weergave van het systeem waarmee u werkt.

        Onze huidige producten zouden we “slow-motion DT's” kunnen noemen, omdat ze meestal worden gebruikt met niet-realtime gegevens (maar geen verouderde gegevens, omdat deze van de ene op de andere dag worden bijgewerkt) en worden toegepast op problemen zoals het plannen van de grondstoffenaankopen voor het volgende kwartaal of het instellen van voorraadparameters voor een maand of langer.

        Gebruiken mensen digital twins in mijn branche?

        Mijn indruk is dat de penetratie van DT's wellicht het hoogst is in de lucht- en ruimtevaart- en nucleaire industrie. De meeste van onze klanten bevinden zich elders: in de productie, distributie en openbare voorzieningen zoals transport en energie. Binnenkort zullen we nieuwe producten aanbieden die dichter bij de strikte definitie van een DT komen die nauw verbonden is met het systeem dat hij vertegenwoordigt.

        DT-voorbeeld

        De meeste gebruikers van Smart Inventory Optimization (SIO) voer de applicatie periodiek uit, meestal maandelijks. SIO analyseert de huidige vraag naar voorraadartikelen en recente doorlooptijden van leveranciers en zet deze om in respectievelijk vraag- en aanbodscenario's. Vervolgens stellen gebruikers interactief (voor individuele artikelen) of automatisch (op schaal) parameters voor voorraadbeheer in die de gewenste gemiddelde prestaties op lange termijn opleveren, waarbij de concurrerende doelen van het minimaliseren van de voorraad in evenwicht worden gebracht en tegelijkertijd een voldoende niveau van artikelbeschikbaarheid wordt gegarandeerd.

        Smart Supply Planner (SSP) reageert op een directere manier op onvoorziene gebeurtenissen. Elke dag kan er een abnormale bestelling plaatsvinden die de vraag doet toenemen, bijvoorbeeld wanneer een nieuwe klant een verrassende eerste voorraadbestelling plaatst. Of een belangrijke leverancier kan een probleem ervaren in zijn fabriek en gedwongen worden de verzending van uw geplande aanvullingsorders uit te stellen. Op de lange termijn worden deze onvoorziene omstandigheden gemiddeld en rechtvaardigen ze de aanbevelingen die uit SIO komen. SSP biedt u echter een manier om op de korte termijn te reageren en kansen te grijpen of kogels te ontwijken.

        In de kern werkt SSP als SIO, in die zin dat het scenariogestuurd is. De verschillen zijn dat het korte planningshorizon gebruikt en real-time initiële omstandigheden gebruikt als basis voor zijn simulaties van de prestaties van voorraadsystemen. Vervolgens zal het realtime aanbevelingen doen voor interventies die de verstoring veroorzaakt door de onvoorziene gebeurtenissen compenseren. Dit omvat onder meer het annuleren of versnellen van aanvullingsorders.

        Overzicht

        Met Digital Twins kunt u plannen ‘in silico’ uitproberen voordat u ze in de fabriek of het magazijn implementeert. De kern bestaat uit wiskundige modellen van uw bedrijfsvoering, maar verbonden met realtime gegevens. Ze bieden een ‘digitale sandbox’ waarin u ideeën kunt uitproberen en direct voorspellingen kunt krijgen over hoe goed ze zullen werken. Veel meer dan een spreadsheet zullen DT's binnenkort het belangrijkste hulpmiddel zijn in uw gereedschapskist voor voorraadplanning.