Planning van serviceonderdelen: planning voor verbruiksonderdelen versus repareerbare onderdelen

Bij het bepalen van de juiste opslagparameters voor reserveonderdelen en serviceonderdelen, is het belangrijk om onderscheid te maken tussen verbruiksartikelen en repareerbare serviceonderdelen. Deze verschillen worden vaak over het hoofd gezien door service software voor onderdelenplanning en kan onjuist zijn schattingen van wat er moet worden opgeslagen. Er zijn verschillende benaderingen vereist bij het plannen van verbruiksartikelen versus repareerbare reserveonderdelen.

Laten we eerst deze twee soorten reserveonderdelen definiëren.

  • Verbruiksartikelen zijn reserveonderdelen in de apparatuur die worden vervangen in plaats van gerepareerd wanneer ze defect raken. Voorbeelden van verbruiksartikelen zijn batterijen, oliefilters, schroeven en remblokken. Verbruiksbare reserveonderdelen zijn doorgaans goedkopere onderdelen waarvoor vervanging goedkoper is dan reparatie of reparatie is misschien niet mogelijk.
  • Herstelbare onderdelen zijn onderdelen die kunnen worden gerepareerd en weer in gebruik kunnen worden genomen nadat ze defect zijn geraakt door oorzaken zoals slijtage, schade of corrosie. Repareerbare serviceonderdelen zijn meestal duurder dan verbruiksonderdelen, dus reparatie heeft meestal de voorkeur boven vervanging. Voorbeelden van repareerbare onderdelen zijn tractiemotoren in treinwagons, straalmotoren en kopieermachines.

Traditionele software voor het plannen van reserveonderdelen voldoet niet

Traditionele software voor het plannen van onderdelen is niet goed aangepast om met de willekeur aan zowel de vraagzijde als de aanbodzijde van MRO-activiteiten om te gaan.

Willekeurigheid aan de vraagzijde
Planning voor verbruikbare reserveonderdelen vereist berekening van parameters voor voorraadbeheer (zoals bestelpunten en bestelhoeveelheden, min- en max-niveaus en veiligheidsvoorraden). Het plannen van het beheer van repareerbare serviceonderdelen vereist berekening van het juiste aantal reserveonderdelen. In beide gevallen moet de analyse gebaseerd zijn op waarschijnlijkheidsmodellen van het willekeurig gebruik van verbruiksgoederen of het willekeurig uitvallen van herstelbare onderdelen. Voor meer dan 90% van deze onderdelen is dit willekeurig de vraag is "met tussenpozen" (soms "klonterig" of "alles behalve normaal verdeeld" genoemd). Traditionele prognosemethoden voor reserveonderdelen zijn niet ontwikkeld om met een wisselende vraag om te gaan. Vertrouwen op traditionele methoden leidt tot kostbare planningsfouten. Voor verbruiksgoederen betekent dit vermijdbare voorraden, buitensporige transportkosten en meer verouderde voorraden. Voor repareerbare onderdelen betekent dit buitensporige uitvaltijd van apparatuur en de daarmee gepaard gaande kosten van onbetrouwbare prestaties en verstoring van de bedrijfsvoering.

Willekeurigheid aan de aanbodzijde
Bij het plannen van verbruikbare reserveonderdelen moet rekening worden gehouden met willekeur bij het aanvullen doorlooptijden van leveranciers. Bij het plannen van repareerbare onderdelen moet rekening worden gehouden met willekeur in reparatie- en retourprocessen, of deze nu intern worden uitgevoerd of worden uitbesteed. Planners die deze items beheren, negeren vaak bruikbare bedrijfsgegevens. In plaats daarvan kunnen ze hun vingers kruisen en hopen dat alles goed komt, of ze kunnen een beroep doen op hun instinct om "hoorbare geluiden te roepen" en dan hopen dat alles goed komt. Hopen en raden kunnen niet op tegen goede kansmodellering. Het verspilt jaarlijks miljoenen aan onnodige kapitaalinvesteringen en vermijdbare uitvaltijd van apparatuur.

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Vier veelgemaakte fouten bij het plannen van aanvullingsdoelen

    Of u nu 'Min/Max' of 'bestelpunt' en 'bestelhoeveelheid' gebruikt om te bepalen wanneer en hoeveel u moet bijvullen, uw aanpak kan enorme efficiëntie opleveren of juist niet. Belangrijkste fouten om te vermijden:

     

    1. Niet regelmatig opnieuw kalibreren
    2. Min/Max alleen bekijken als er een probleem is
    3. Het gebruik van prognosemethoden voldoet niet aan de taak
    4. Ervan uitgaande dat gegevens te traag of onvoorspelbaar zijn om er toe te doen

     

    We hebben meer dan 150.000 combinaties van SKU x locatie. Onze vraag is intermitterend. Omdat het langzaam gaat, hoeven we onze bestelpunten niet vaak opnieuw te berekenen. We doen dit misschien één keer per jaar, maar we bekijken de bestelpunten wanneer er een probleem is.” - Materiaalbeheerder.

     

    Deze reactieve benadering zal leiden tot miljoenen overtollige voorraden, voorraadtekorten en veel tijdverspilling bij het beoordelen van gegevens wanneer 'er iets misgaat'. Toch heb ik in de loop der jaren van zoveel voorraadprofessionals ditzelfde afzien gehoord. Het is duidelijk dat we meer moeten doen om te delen waarom dit denken zo problematisch is.

    Het is waar dat voor veel onderdelen een herberekening van de bestelpunten met up-to-date historische gegevens en doorlooptijden niet veel zal veranderen, vooral als patronen zoals trend of seizoensinvloeden niet aanwezig zijn. Veel onderdelen hebben echter baat bij een herberekening, vooral als de doorlooptijden of de recente vraag zijn veranderd. Bovendien neemt de kans op een significante wijziging die een herberekening noodzakelijk maakt, toe naarmate u langer wacht. Ten slotte hebben die maanden zonder eisen ook invloed op de kansen en mogen niet ronduit worden genegeerd. Het belangrijkste punt is echter dat het onmogelijk is om te weten wat er wel of niet zal veranderen in uw prognose, dus het is beter om regelmatig opnieuw te kalibreren.

     

      Planning Aanvullingsdoelen Software berekenen

    Deze opvallende casus uit gegevens uit de echte wereld illustreert een scenario waarin regelmatige en geautomatiseerde herkalibratie uitblinkt: de voordelen van snelle reacties op veranderende vraagpatronen zoals deze tellen snel op. In het bovenstaande voorbeeld vertegenwoordigt de X-as dagen en vertegenwoordigt de Y-as de vraag. Als u enkele maanden zou moeten wachten tussen het opnieuw kalibreren van uw bestelpunten, zou u ongetwijfeld veel te vroeg bestellen. Door uw bestelpunt veel vaker opnieuw te kalibreren, vangt u de verandering in de vraag op, waardoor u veel nauwkeuriger kunt bestellen.

     

    In plaats van te wachten tot u een probleem hebt, kunt u alle onderdelen elke planningscyclus minstens één keer per maand opnieuw kalibreren. Hierdoor wordt gebruik gemaakt van de nieuwste gegevens en wordt het voorraadbeleid proactief aangepast, waardoor problemen worden vermeden die handmatige controles en voorraadtekorten of -overschotten zouden veroorzaken.

    De aard van uw (potentieel gevarieerde) gegevens moet ook worden gekoppeld aan de juiste prognosetools. Als records voor sommige onderdelen trend- of seizoenspatronen laten zien, kan het gebruik van targetingprognosemethoden om deze patronen te accommoderen een groot verschil maken. Evenzo, als de gegevens frequente nulwaarden laten zien (intermitterende vraag), kunnen voorspellingsmethoden die niet rond dit speciale geval zijn gebouwd, gemakkelijk onbetrouwbare resultaten opleveren.

    Automatiseer, herkalibreer en bekijk uitzonderingen. Speciaal gebouwde software doet dit automatisch. Zie het op een andere manier: is het beter om eenmaal per jaar een hoop geld in uw 401K te storten of "dollarkostengemiddelde" door het hele jaar door kleinere, even grote bedragen te storten. Het regelmatig opnieuw kalibreren van beleid zal in de loop van de tijd een maximaal rendement opleveren, net zoals dollar cost avering dat zal doen voor uw beleggingsportefeuille.

    Hoe vaak herijkt u uw voorraadbeleid opnieuw? Waarom?

     

     

    Voorraad beheren te midden van regimeverandering

    Als je de uitdrukking "regimeverandering" op het nieuws hoort, denk je meteen aan een beladen geopolitieke gebeurtenis. Statistici gebruiken de uitdrukking anders, op een manier die van groot belang is voor vraagplanning en voorraadoptimalisatie. Deze blog gaat over “regime change” in statistische zin, dat wil zeggen een grote verandering in het karakter van de vraag naar een voorraadartikel.

    De vraaggeschiedenis van een artikel is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een betere oplossing hebben voor het gemiddelde niveau, de volatiliteit, de grootte en frequentie van eventuele pieken, de vorm van elk seizoenspatroon en de grootte en richting van elke trend.

    Maar er is één grote uitzondering op de regel dat "meer gegevens betere gegevens zijn." Als er een grote verschuiving in uw wereld plaatsvindt en de nieuwe vraag lijkt niet op de oude vraag, dan worden oude gegevens gevaarlijk.

    Moderne software kan nauwkeurige prognoses maken van de vraag naar artikelen en verstandige keuzes voorstellen voor voorraadparameters zoals bestelpunten en bestelhoeveelheden. Maar de geldigheid van deze berekeningen hangt af van de relevantie van de gegevens die in hun berekening worden gebruikt. Oude gegevens van een oud regime weerspiegelen niet langer de huidige realiteit, dus door ze in berekeningen op te nemen, ontstaan voorspellingsfouten voor vraagplanners en ofwel overtollige voorraad of onaanvaardbare stockout-percentages voor voorraadplanners.

    Dat gezegd hebbende, als je een recente regimewisseling zou doorstaan en de verouderde gegevens zou weggooien, zou je veel minder gegevens hebben om mee te werken. Dit heeft zijn eigen kosten, omdat alle schattingen die op basis van de gegevens worden berekend een grotere statistische onzekerheid zouden hebben, ook al zouden ze minder vertekend zijn. In dit geval zouden uw berekeningen meer moeten steunen op een combinatie van statistische analyse en uw eigen deskundig oordeel.

    Op dit punt kunt u zich afvragen: "Hoe kan ik weten of en wanneer er een regimewisseling heeft plaatsgevonden?" Als je al een tijdje aan het werk bent en je je op je gemak voelt bij het bekijken van tijdschema's van de vraag naar items, zul je over het algemeen regimeverandering herkennen wanneer je het ziet, tenminste als het niet te subtiel is. Afbeelding 1 toont enkele praktijkvoorbeelden die voor de hand liggen.

    Figuur 1 Vier voorbeelden van regimeverandering in de reële vraag naar artikelen

    Afbeelding 1: Vier voorbeelden van regimeverandering in de vraag naar artikelen in de echte wereld

     

    Helaas kunnen minder voor de hand liggende veranderingen toch significante effecten hebben. Bovendien hebben de meeste van onze klanten het te druk om alle items die ze beheren zelfs maar één keer per kwartaal handmatig te controleren. Als je bijvoorbeeld 100 items overschrijdt, wordt het een zware taak om al die tijdreeksen te bekijken. Gelukkig kan software goed de vraag naar tienduizenden items monitoren en u waarschuwen voor items die mogelijk uw aandacht nodig hebben. Ook dan kunt u ervoor zorgen dat de software niet alleen regimeverandering detecteert, maar ook automatisch alle gegevens uitsluit die zijn verzameld vóór de meest recente regimeverandering, indien van toepassing. Met andere woorden, u kunt zowel automatische waarschuwing voor regimeverandering als automatische bescherming tegen regimeverandering krijgen.

    Zie onze vorige blog over dit onderwerp voor meer informatie over de basisprincipes van regimeverandering: https://smartcorp.com/blog/demandplanningregimechange/  

     

    Een voorbeeld met getallen erin

    Als u meer wilt weten, lees dan verder om een numeriek voorbeeld te zien van hoeveel regimeverandering de berekening van een bestelpunt voor een kritisch reserveonderdeel kan veranderen. Hier is een scenario om het punt te illustreren.

    Scenario

    • Doel: bereken het bestelpunt dat nodig is om het risico van voorraadtekort te beheersen tijdens het wachten op aanvulling. Neem aan dat het beoogde voorraadrisico 5% is.
    • Stel dat het artikel een intermitterende dagelijkse vraag heeft, met vele dagen zonder vraag.
    • Stel dat de dagelijkse vraag een Poisson-verdeling heeft met een gemiddelde van 1,0 eenheden per dag.
    • Stel dat de doorlooptijd van de aanvulling altijd 30 dagen is.
    • De doorlooptijdvraag zal willekeurig zijn, dus het heeft een kansverdeling en het bestelpunt is de 95e percentiel van de verdeling.
    • Neem aan dat het effect van regimewisseling is dat de gemiddelde dagelijkse vraag wordt verhoogd of verlaagd.
    • Neem aan dat er een jaar aan dagelijkse gegevens beschikbaar zijn voor het schatten van de gemiddelde dagelijkse vraag per eenheid.

     

    Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

    Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

     

    Figuur 2 toont een vorm van dit scenario. Het bovenste paneel laat zien dat de gemiddelde dagelijkse vraag na 270 dagen stijgt van 1,0 naar 1,5. Het onderste paneel toont een manier waarop de dagelijkse vraag van een jaar kan verschijnen. (Op dit moment heb je misschien het gevoel dat het berekenen van al deze dingen ingewikkeld is, zelfs voor wat een vereenvoudigd scenario blijkt te zijn. Daarom hebben we software!)

    Analyse

    Succesvolle berekening van het juiste bestelpunt hangt af van wanneer regimeverandering plaatsvindt en hoe groot een verandering plaatsvindt. We simuleerden regimewisselingen van verschillende groottes op verschillende tijdstippen binnen een periode van 365 dagen. Rond een basisvraag van 1,0 eenheden per dag hebben we verschuivingen in de vraag ("shift") van ±25% en ±50% bestudeerd, evenals een referentiegeval zonder verandering. We hebben het tijdstip van de wijziging ("t.break") vastgesteld op 90, 180 en 270 dagen. In elk geval hebben we twee schattingen van het bestelpunt berekend: de "ideale" waarde gegeven perfecte kennis van de gemiddelde vraag in het nieuwe regime ("ROP.true"), en de geschatte waarde van de gemiddelde vraag berekend door de regimeverandering te negeren en het gebruik van alle vraaggegevens van het afgelopen jaar (“ROP.all”).

    Tabel 1 toont de schattingen van het bestelpunt berekend over 100 simulaties. Het middelste blok is het referentiegeval, waarin er geen verandering is in de dagelijkse vraag, die vast blijft op 1 eenheid per dag. Het gekleurde blok onderaan is het meest extreem stijgende scenario, waarbij de vraag stijgt tot 1,5 eenheden/dag ofwel een derde, de helft of tweederde van het jaar.

    Uit deze simulaties kunnen we verschillende conclusies trekken.

    ROP.true: De juiste keuze voor bestelpunt neemt toe of af volgens de verandering in de gemiddelde vraag na de regimeverandering. De relatie is niet eenvoudig lineair: de tabel omvat een 600%-bereik van vraagniveaus (0,25 tot 1,50) maar een 467%-bereik van bestelpunten (van 12 tot 56).

    ROP.all: Het negeren van de regimewisseling kan leiden tot grove overschattingen van het bestelpunt wanneer de vraag daalt en tot grove onderschattingen wanneer de vraag toeneemt. Zoals we zouden verwachten, hoe later de regimewisseling, hoe erger de fout. Als de vraag bijvoorbeeld twee derde van het jaar onopgemerkt stijgt van 1,0 naar 1,5 eenheden per dag, zou het berekende bestelpunt van 43 eenheden 13 eenheden minder zijn dan het zou moeten zijn.

    Een woord van waarschuwing: Tabel 1 laat zien dat het baseren van de berekeningen van bestelpunten met alleen gegevens van na een regimewisseling meestal het juiste antwoord geeft. Wat het niet laat zien, is dat de schattingen onstabiel kunnen zijn als er na de wijziging zeer weinig vraaggeschiedenis is. Daarom moet je in de praktijk wachten met reageren op de regimewisseling totdat er een behoorlijk aantal waarnemingen is verzameld in het nieuwe regime. Dit kan betekenen dat u alle vraaggeschiedenis moet gebruiken, zowel vóór als na de wijziging, totdat bijvoorbeeld 60 of 90 dagen aan geschiedenis zijn verzameld voordat de gegevens vóór de wijziging worden genegeerd.

     

    Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering

    Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering

    Op scenario's gebaseerde prognoses versus vergelijkingen

    Waarom op scenario's gebaseerde planning planners helpt om risico's beter te beheren en betere resultaten te behalen.

    Als u dit leest, bent u waarschijnlijk een supply chain-professional met verantwoordelijkheden voor vraagprognose, voorraadbeheer of beide. Als je in de 21 . woontst eeuw, gebruik je een soort software om je te helpen je werk te doen. Maar wat doet uw software in wezen voor u?

    Van oudsher heeft software gediend als een leveringsvehikel voor vergelijkingen. Zelfs als je al vroeg in je leven hebt besloten dat jij en vergelijkingen niet met elkaar overweg kunnen, kunnen ze nog steeds iets voor je doen, en kun je ermee leven - op voorwaarde dat sommige software al die wiskunde op een veilige afstand houdt.

    Dit is prima, voor zover het gaat. Maar wij bij Smart Software denken dat u er beter aan doet door uw vergelijkingen in te ruilen voor scenario's. Meestal is het punt van een vergelijking om "het antwoord" te geven, meestal in de vorm van een getal, zoals in "de vraag van volgende maand naar SKUxxx zal 105 eenheden zijn." Dergelijke resultaten zijn nuttig, maar onvolledig.

    Prognoses kunnen worden gezien als een computerprobleem, maar het is nuttiger om het te zien als een oefening in risicobeheer. De voorspelling van de vergelijking van 105 eenheden bevat geen enkele indicatie van de onzekerheid in de voorspelling, hoewel die er altijd is. Het helpt u niet na te denken over plausibele onvoorziene omstandigheden: wat als er vraag is naar meer dan 105 eenheden? Wat als het voor minder dan 105 is? Kan het zo hoog worden als 130 of zo laag als 80? Is 80 zelfs in de verste verte waarschijnlijk?

    Dit is waar scenariogebaseerde analyse zijn voordeel laat zien. Een definitie van 'scenario' is 'een gepostuleerde opeenvolging van gebeurtenissen'. Onze definitie is uitgebreider: een scenario is "een gepostuleerde opeenvolging van gebeurtenissen en de bijbehorende waarschijnlijkheid van gebeuren." Scenario's zijn de ultieme what-if-planningstool. Voorspelling door vergelijking zal een vraag voor 105 eenheden voorspellen. Scenariovoorspelling levert een bundel mogelijke vraagcijfers op, sommige waarschijnlijker en andere minder. Als er weinig of geen scenario's zo laag als 80 zijn, kunt u die onvoorziene situatie laten gaan.

    Plus-of-min Hoeveel?

    Degenen die beter thuis zijn in op vergelijkingen gebaseerde voorspellingen, zouden kunnen protesteren dat op vergelijkingen gebaseerde software soms indicaties geeft van de "plus of min" van een voorspelling, compleet met een klokvormige curve die de relatieve waarschijnlijkheid van verschillende onvoorziene omstandigheden aangeeft. Wanneer u echter een perfecte klokvormige verdeling ziet, weet u dat u wordt gevraagd te vertrouwen op een theoretische veronderstelling die slechts soms geldig is.

    Scenarioprognoses zijn niet gebaseerd op die veronderstelling. In feite hoeven ze niet te vertrouwen op een vooraf bedachte wiskundige veronderstelling waarvan het belangrijkste verkoopargument is dat het de analyse vereenvoudigt. U hebt geen vereenvoudigde analyse nodig, u hebt een realistische analyse nodig op basis van feiten.

    Geavanceerde software produceert scenariovoorspellingen, niet alleen voor vraagplanning, maar ook voor voorraadbeheer. De vraag is een belangrijke input voor voorraadsoftware, samen met het gedrag van leveranciers zoals blijkt uit de doorlooptijden voor aanvullingen. Zowel vraag als aanbod moeten worden voorspeld als je de gevolgen wilt zien van bijvoorbeeld het kiezen van een bestelpunt van 15 en een bestelhoeveelheid van 25.

    Voorraadsystemen zijn wat 'padgevoelig' wordt genoemd, wat betekent dat een bepaalde reeks vraagwaarden andere prestaties zal opleveren dan dezelfde vraagwaarden in een andere volgorde. Als bijvoorbeeld al uw periodes met de hoogste vraag de een na de ander worden opgestapeld, zult u veel meer moeite hebben om de voorraad aan te houden dan wanneer dezelfde periodes met grote vraag uit elkaar liggen met tijd om tussendoor bij te vullen. Scenario's weerspiegelen deze verschillen in voldoende detail om gemiddelde prestatiestatistieken op te leveren die een afspiegeling zijn van de verschillende onvoorziene omstandigheden die inherent zijn aan onzekere vraag.

    Figuur 1 illustreert het verschil tussen een op vergelijkingen gebaseerde voorspelling en voorspellingsscenario's. De groene cellen houden 10 maanden vraag naar een reserveonderdeel. De blauwe cellen bevatten een op vergelijkingen gebaseerde voorspelling die vraagt om een gemiddelde vraag van 1,5 eenheden in de maanden 11, 12 en 13. De pistachekleurige cellen bevatten acht scenariovoorspellingen, hoewel onze software in de praktijk tienduizenden scenario's zou genereren. Nu komen de scenario's ook gemiddeld uit op 1,5 eenheden per maand, maar ze gaan verder en tonen de grote verscheidenheid aan manieren waarop de komende drie maanden zich zouden kunnen voordoen. Als u bijvoorbeeld verticaal leest, kan de maandelijkse vraag variëren van 0 tot 3. Als u horizontaal leest, kunnen de totalen voor drie maanden variëren van 0 tot 6, vergeleken met de op vergelijkingen gebaseerde schatting van 4,5. Als u doorgaat met dit speelgoedvoorbeeld, als u 5 eenheden bij de hand heeft en de doorlooptijd voor aanvulling langer is dan 3 maanden, zegt het op vergelijkingen gebaseerde model dat u de komende 3 maanden in orde zult zijn, maar de op scenario's gebaseerde resultaten zeggen dat u 1 kans op 8 (12.5%) kans op bevoorrading. Evenzo heeft u een serviceniveau van 87.5%. Als het onderdeel kritiek is en u streeft naar een 95%-serviceniveau, loopt u het risico uw doel voor artikelbeschikbaarheid te missen.

    Op scenario's gebaseerde prognoses versus vergelijkingen hd2

    Afbeelding 1: Vergelijking-gebaseerde en op scenario's gebaseerde voorspellingen

     

    Overzicht

    Onthoud dat op vergelijkingen gebaseerde prognoses u informatie geven, maar oppervlakkige informatie. Op scenario's gebaseerde prognoses kunnen u niet alleen vertellen welk resultaat het meest waarschijnlijk is, maar ook hoe betrouwbaar een verscheidenheid aan voorspellingen is - en dit stelt u in staat uw oordeel te geven over het balanceren van risico's en voorraadkosten - allemaal geautomatiseerd om te schalen naar een groot aantal catalogus van artikelen.

     

    Breid Microsoft 365 BC en NAV uit met Smart IP&O

    Microsoft Dynamics 365 BC en NAV kunnen aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Het probleem is dat het ERP-systeem vereist dat de gebruiker deze bestelpunten en/of prognoses handmatig opgeeft. Als gevolg hiervan maken de meeste organisaties prognoses en genereren ze voorraadbeleid met de hand in Excel-spreadsheets of gebruiken ze andere ad-hocbenaderingen. Bij slechte invoer zullen automatische bestelsuggesties onnauwkeurig zijn, en op zijn beurt zal de organisatie eindigen met overtollige voorraad, onnodige tekorten en een algemeen wantrouwen jegens hun softwaresystemen. In dit artikel bespreken we de voorraadbestelfunctionaliteit in BC & NAV, leggen we de beperkingen ervan uit en vatten we samen hoe slimme voorraadplanning en -optimalisatie kan helpen de voorraad te verminderen, voorraadtekorten te minimaliseren en het vertrouwen van uw organisatie in uw ERP te herstellen door de robuuste voorspellende functionaliteit te bieden die ontbreekt in Dynamics 365.

     

    Aanvulbeleid voor Microsoft Dynamics 365 BC en NAV

    In de voorraadbeheermodule van NAV en BC kunnen gebruikers voor elk voorraadartikel handmatig planningsparameters invoeren. Deze parameters omvatten bestelpunten, doorlooptijden veiligheidsvoorraad, hoeveelheden veiligheidsvoorraad, bestelcycli en bestelmodificatoren zoals door de leverancier opgelegde minimale en maximale bestelhoeveelheden en veelvouden van bestellingen. Eenmaal ingevoerd, zal het ERP-systeem de inkomende voorraad, de actuele voorraad, de uitgaande vraag en de door de gebruiker gedefinieerde prognoses en voorraadbeleid afstemmen om het leveringsplan of orderschema (dwz wat te bestellen en wanneer) te berekenen.

     

    Er zijn 4 opties voor het aanvullingsbeleid in NAV & BC: vaste bestelhoeveelheid, maximale hoeveelheid, lot-voor-lot en bestelling.

    • Vaste bestelhoeveelheid en Max zijn op bestelpunten gebaseerde aanvullingsmethoden. Beide suggereren bestellingen wanneer de beschikbare voorraad het bestelpunt bereikt. Bij een vaste ROQ is de ordergrootte gespecificeerd en zal deze niet variëren totdat deze wordt gewijzigd. Bij Max variëren de bestelgroottes op basis van de voorraadpositie op het moment van bestelling, waarbij bestellingen tot aan de Max worden geplaatst.
    • Lot-voor-lot is een op prognoses gebaseerde aanvullingsmethode die de totale voorspelde vraag bundelt over een door de gebruiker gedefinieerd tijdsbestek (de "lotaccumulatieperiode") en een bestelsuggestie genereert voor de totale voorspelde hoeveelheid. Dus als uw totale voorspelde vraag 100 eenheden per maand is en de accumulatieperiode van de partij 3 maanden is, dan is uw bestelsuggestie gelijk aan 300 eenheden.
    • Bestellen is een op bestelling gebaseerde aanvullingsmethode. Het maakt geen gebruik van bestelpunten of prognoses. Zie het als een "sell one, buy one"-logica die alleen bestellingen plaatst nadat de vraag is ingevoerd.

     

    Beperkingen

    Alle aanvullingsinstellingen voor BC en NAV moeten handmatig worden ingevoerd of geïmporteerd uit externe bronnen. Er is gewoon geen manier voor gebruikers om native invoer te genereren (vooral niet optimale). Het gebrek aan geloofwaardige functionaliteit voor prognoses en voorraadoptimalisatie binnen het ERP-systeem is de reden waarom zoveel NAV- en BC-gebruikers gedwongen zijn te vertrouwen op spreadsheets. Planners moeten vraagprognoses en bestelparameters handmatig instellen. Ze vertrouwen vaak op door de gebruiker gedefinieerde vuistregelmethoden of verouderde en te vereenvoudigde statistische modellen. Eenmaal berekend, moeten ze de informatie weer in hun systeem invoeren, vaak via omslachtige bestandsimporten of zelfs handmatige invoer. Bedrijven berekenen hun beleid niet vaak omdat het tijdrovend en foutgevoelig is. We zijn zelfs situaties tegengekomen waarin de bestelpunten al jaren niet zijn bijgewerkt. Veel organisaties hebben ook de neiging om een reactieve "instellen en vergeten"-benadering te gebruiken, waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van de bestelling, nadat het bestelpunt al is geschonden.

     

    Als het orderpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, prognoses te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Meestal betekent de enorme omvang van de bestellingen dat kopers het gewoon vrijgeven, waardoor er een aanzienlijke overtollige voorraad ontstaat. En als het bestelpunt te laag is, dan is het al te laat. Een versnelling is vereist om een stockout te voorkomen en als u niet kunt versnellen, verliest u omzet.

     

    Word slimmer

    Zou het niet beter zijn om gewoon een best-of-breed add-on te gebruiken voor vraagplanning en voorraadoptimalisatie met een API-gebaseerde bidirectionele integratie? Op deze manier kunt u elke planningscyclus automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische modellen. U zou vraagprognoses kunnen berekenen die rekening houden met seizoens-, trend- en cyclische patronen. Veiligheidsvoorraden zouden rekening houden met variabiliteit in vraag en aanbod, bedrijfsomstandigheden en prioriteiten. U zou zich kunnen richten op specifieke serviceniveaus, zodat u net voldoende voorraad heeft. U kunt zelfs gebruikmaken van optimalisatiemethoden die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven die rekening houden met de werkelijke kosten van voorraadbeheer. Met een paar muisklikken kunt u het bevoorradingsbeleid van NAV en BC op aanvraag bijwerken. Dit betekent een betere orderuitvoering in NAV en BC, waardoor uw bestaande investering in uw ERP-systeem wordt gemaximaliseerd.

     

    Slimme IP&O-klanten helpen klanten routinematig om een jaarlijks rendement van 7 cijfers te realiseren door minder snelheid, meer verkopen en minder overtollige voorraad, terwijl ze tegelijkertijd een concurrentievoordeel behalen door zich te onderscheiden op het gebied van verbeterde klantenservice.

     

    Registreer u hier om een opname te zien van het Dynamics Communities Webinar over Smart IP&O:

    https://smartcorp.com/inventory-planning-with-microsoft-dynamics-nav/