Probabilistische prognoses voor intermitterende vraag

De slimme voorspeller

  Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Intermitterende, klonterige of ongelijkmatige vraag - met name voor artikelen met een lage vraag, zoals service en reserveonderdelen - is bijzonder moeilijk te voorspellen met enige nauwkeurigheid. De eigen probabilistische prognoses van Smart Software zijn aanzienlijk verbeterd nauwkeurigheid op serviceniveau. Als een van deze scenario's op uw bedrijf van toepassing is, zal probabilistische prognoses u helpen uw bedrijfsresultaten te verbeteren.

  • Heeft u een intermitterende of onregelmatige vraag met grote, onregelmatige pieken die vele malen groter zijn dan de gemiddelde vraag?
  • Is het moeilijk om zakelijke informatie te verkrijgen over wanneer de vraag waarschijnlijk weer zal stijgen?
  • Loopt u zakelijke kansen mis omdat u de vraag en de voorraadvereisten voor bepaalde onvoorspelbare producten niet nauwkeurig kunt voorspellen?
  • Moet u veel artikelen op voorraad houden, zelfs als er niet vaak naar wordt gevraagd, om u te onderscheiden van de concurrentie door een hoog serviceniveau te bieden?
  • Moet u onnodig grote investeringen in voorraad doen om onverwachte bestellingen en materiaalbehoeften te dekken?
  • Moet u ondanks lange doorlooptijden van leveranciers direct aan klanten leveren?

Als je ja hebt geantwoord op sommige of alle bovenstaande vragen, ben je niet de enige. Intermitterende vraag - ook wel bekend als onregelmatige, sporadische, klonterige of langzaam bewegende vraag - treft industrieën van alle soorten en maten: sectoren van kapitaalgoederen en apparatuur, auto's, luchtvaart, openbaar vervoer, industriële gereedschappen, speciale chemicaliën, nutsbedrijven en hightech, om er een paar op te noemen. En het maakt het voorspellen en plannen van de vraag buitengewoon moeilijk. Het kan veel meer zijn dan hoofdpijn; het kan een probleem van meerdere miljoenen dollars zijn, vooral voor MRO-bedrijven en anderen die reserve- en serviceonderdelen beheren en distribueren.

Het identificeren van intermitterende vraaggegevens is niet moeilijk. Het bevat doorgaans een groot percentage nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Maar weinig prognoseoplossingen hebben bevredigende resultaten opgeleverd, zelfs in dit tijdperk van Big Data-analyse, voorspellende analyse, machinaal leren en kunstmatige intelligentie.

 

DOWNLOAD HET ARTIKEL

Traditionele benaderingen en hun afhankelijkheid van een veronderstelde vraagverdeling

Traditionele statistische prognosemethoden, zoals exponentiële afvlakking en voortschrijdende gemiddelden, werken goed wanneer de gegevens over de vraag naar producten normaal of vloeiend zijn, maar geven geen nauwkeurige resultaten met intermitterende gegevens. Veel geautomatiseerde prognosetools werken niet omdat ze werken door patronen in vraaggeschiedenisgegevens te identificeren, zoals trend en seizoensinvloeden. Maar met intermitterende vraaggegevens zijn patronen bijzonder moeilijk te herkennen. Deze methoden hebben ook de neiging om de speciale rol van nulwaarden bij het analyseren en voorspellen van de vraag te negeren. Toch kunnen sommige conventionele statistische prognosemethoden geloofwaardige prognoses van de gemiddeld vraag per periode. Wanneer de vraag echter met tussenpozen is, is een prognose van de gemiddelde vraag lang niet voldoende voor voorraadplanning. Nauwkeurige schattingen van de volledige distributie (dwz complete set) van alle mogelijke doorlooptijdvraagwaarden zijn nodig. Zonder dit produceren deze methoden misleidende invoer voor modellen voor voorraadbeheer - met kostbare gevolgen.

Samenwerking met versnellingen en statistische prognosemodellering

 

Om bestelpunten, order-up-to-niveaus en veiligheidsvoorraden voor voorraadplanning te produceren, zijn veel prognosebenaderingen gebaseerd op aannames over de vraag en de doorlooptijdverdeling. Sommigen gaan ervan uit dat de waarschijnlijkheidsverdeling van de totale vraag naar een bepaald productitem over een doorlooptijd (doorlooptijdvraag) zal lijken op een normale, klassieke klokvormige curve. Andere benaderingen kunnen berusten op een Poisson-verdeling of een andere distributie uit een leerboek. Bij intermitterende vraag is een one-size-fits-all-benadering problematisch omdat de daadwerkelijke verdeling vaak niet overeenkomt met de veronderstelde verdeling. Wanneer dit gebeurt, zullen schattingen van de buffervoorraad verkeerd zijn. Dit is met name het geval bij het beheer van reserveonderdelen (tabel 1).

Voor elk artikel dat met tussenpozen wordt gevraagd, kan het belang van een nauwkeurige voorspelling van de volledige verdeling van alle mogelijke doorlooptijdvraagwaarden - niet slechts één getal dat de gemiddelde of meest waarschijnlijke vraag per periode weergeeft - niet genoeg worden benadrukt. Deze prognoses zijn belangrijke input voor de modellen voor voorraadbeheer die correcte procedures aanbevelen voor de timing en omvang van aanvullingsorders (bestelpunten en bestelhoeveelheden). Ze zijn met name essentieel in omgevingen met reserveonderdelen, waar ze nodig zijn om de inventarisvereisten van het klantenserviceniveau nauwkeurig in te schatten (bijvoorbeeld een waarschijnlijkheid van 95 of 99 procent dat een artikel niet op voorraad is) om gedurende een doorlooptijd aan de totale vraag te voldoen. Voorraadplanningsafdelingen moeten erop kunnen vertrouwen dat wanneer ze een gewenst serviceniveau nastreven, ze dat doel zullen bereiken. Als het prognosemodel consequent een ander serviceniveau oplevert dan beoogd, wordt de voorraad verkeerd beheerd en neemt het vertrouwen in het systeem af.

Geconfronteerd met deze uitdaging vertrouwen veel organisaties op solliciteren vuistregel gebaseerd op benaderingen om de voorraadniveaus te bepalen of zullen oordeelkundige aanpassingen toepassen op hun statistische prognoses, waarvan ze hopen dat ze toekomstige activiteiten nauwkeuriger zullen voorspellen op basis van zakelijke ervaringen uit het verleden. Maar er zijn ook verschillende problemen met deze benaderingen.

Vuistregelbenaderingen negeren variabiliteit in vraag en doorlooptijd. Ze worden ook niet bijgewerkt voor veranderingen in vraagpatronen en bieden geen kritische informatie informatie over ruilen over de relatie tussen serviceniveaus en voorraadkosten.

Oordelende prognoses zijn niet haalbaar wanneer het gaat om grote aantallen (duizenden en tienduizenden) items. Bovendien geven de meeste oordelende prognoses een schatting op basis van één getal in plaats van een voorspelling van de volledige verdeling van doorlooptijdvraagwaarden. Ten slotte is het gemakkelijk om onbedoeld maar onjuist een neerwaartse (of opwaartse) trend in de vraag te voorspellen, op basis van verwachtingen, wat resulteert in ondervoorraad (of overbevoorrading).

 

Hoe werkt probabilistische vraagvoorspelling in de praktijk?

Hoewel de volledige architectuur van deze technologie aanvullende eigendomskenmerken bevat, demonstreert een eenvoudig voorbeeld van de aanpak het nut van de techniek. Zie tabel 1.

met tussenpozen gevraagde spreadsheet met productitems

Tabel 1. Maandelijkse vraagwaarden voor een serviceonderdeel.

De 24 maandelijkse vraagwaarden voor een serviceonderdeelitem zijn typerend voor periodieke vraag. Stel dat u prognoses nodig heeft van de totale vraag naar dit artikel in de komende drie maanden, omdat uw onderdelenleverancier drie maanden nodig heeft om een bestelling uit te voeren om de voorraad aan te vullen. De probabilistische benadering is om monsters te nemen van de 24 maandelijkse waarden, met vervanging, drie keer, waardoor een scenario ontstaat van de totale vraag gedurende de doorlooptijd van drie maanden.

Hoe werkt de nieuwe methode voor het voorspellen van intermitterende vraag?

Figuur 1. De resultaten van 25.000 scenario's.

 

U kunt willekeurig maanden 6, 12 en 4 selecteren, wat u vraagwaarden geeft van respectievelijk 0, 6 en 3 voor een totale doorlooptijdvraag (in eenheden) van 0 + 6 + 3 = 9. Vervolgens herhaalt u dit proces , misschien willekeurig maanden 19, 8 en 14 selecteren, wat een doorlooptijdvraag geeft van 0 + 32 + 0 = 32 eenheden. Door dit proces voort te zetten, kunt u een statistisch nauwkeurig beeld krijgen van de volledige verdeling van mogelijke doorlooptijdvraagwaarden voor dit artikel. Afbeelding 1 toont de resultaten van 25.000 van dergelijke scenario's, wat aangeeft (in dit voorbeeld) dat de meest waarschijnlijke waarde voor de doorlooptijdvraag nul is, maar dat de doorlooptijdvraag wel 70 of meer eenheden kan zijn. Het weerspiegelt ook de reële mogelijkheid dat vraagwaarden die niet gelijk zijn aan nul voor het deelitem die in de toekomst voorkomen, kunnen verschillen van die in het verleden.

Met de high-speed rekenbronnen die vandaag beschikbaar zijn in de cloud, kunnen probabilistische prognosemethoden snelle en realistische prognoses geven van de totale doorlooptijdvraag voor duizenden of tienduizenden periodiek gevraagde productitems. Deze prognoses kunnen vervolgens rechtstreeks in modellen voor voorraadbeheer worden ingevoerd om ervoor te zorgen dat er voldoende voorraad beschikbaar is om aan de vraag van de klant te voldoen. Dit zorgt er ook voor dat er niet meer voorraad wordt aangehouden dan nodig is, waardoor de kosten worden geminimaliseerd.

 

Een in de praktijk bewezen methode die werkt

Klanten die de technologie hebben geïmplementeerd, hebben ontdekt dat het de nauwkeurigheid van de klantenservice verhoogt en de voorraadkosten aanzienlijk verlaagt.

Magazijn of opslag krijgt voorraadoptimalisatie

De opslagoperatie van een landelijke hardwaredetailhandelaar voorspelde voorraadbehoeften voor 12.000 periodiek gevraagde SKU's met een serviceniveau van 95 en 99 procent. De prognoseresultaten waren bijna 100 procent nauwkeurig. Bij het serviceniveau van 95 procent was 95,23 procent van de artikelen niet op voorraad (95 procent zou perfect zijn geweest). Bij het serviceniveau van 99 procent was 98,66 procent van de artikelen niet op voorraad (99 procent zou perfect zijn geweest).

De vliegtuigonderhoudsoperatie van een wereldwijd bedrijf behaalde vergelijkbare prognoseresultaten op serviceniveau met 6.000 SKU's. Potentiële jaarlijkse besparingen op voorraadkosten werden geschat op $3 miljoen. De aftermarket-business unit van een leverancier uit de auto-industrie, waarvan tweederde van de 7.000 SKU's een sterk wisselende vraag vertoont, voorspelde ook $3 miljoen aan jaarlijkse kostenbesparingen.

Dat de uitdaging van het voorspellen van de intermitterende vraag naar producten inderdaad is gehaald, is goed nieuws voor fabrikanten, distributeurs en onderdelen/MRO-bedrijven. Met cloud computing is de in de praktijk bewezen probabilistische methode van Smart Software nu toegankelijk voor niet-statistici en kan deze op schaal worden toegepast op tienduizenden onderdelen. Vraaggegevens die ooit onvoorspelbaar waren, vormen niet langer een obstakel voor het bereiken van de hoogste klantenserviceniveaus met de laagst mogelijke investering in voorraad.

 

Plaats stukken met de hand om een pijl te bouwen

DOWNLOAD HET ARTIKEL

Laat een reactie achter

gerelateerde berichten

Make AI-Driven Inventory Optimization an Ally for Your Organization

Make AI-Driven Inventory Optimization an Ally for Your Organization

In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

The Importance of Clear Service Level Definitions in Inventory Management

The Importance of Clear Service Level Definitions in Inventory Management

Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making.

De kosten van spreadsheetplanning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

recente berichten

  • Make AI-Driven Inventory Optimization an Ally for Your OrganizationMake AI-Driven Inventory Optimization an Ally for Your Organization
    In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks. […]
  • The Importance of Clear Service Level Definitions in Inventory ManagementThe Importance of Clear Service Level Definitions in Inventory Management
    Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making. […]
  • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
    Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
  • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
    In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]

      Vier manieren om voorraad te optimaliseren

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Nu meer dan ooit

      Voorraadoptimalisatie is de afgelopen maanden voor veel van onze klanten een nog hogere prioriteit geworden. Sommigen vinden hun producten in een veel grotere vraag; meer hebben het tegenovergestelde probleem. In beide gevallen dwingen gebeurtenissen zoals de Covid19-pandemie een heronderzoek van de standaard bedrijfsomstandigheden, zoals de keuze van bestelpunten en bestelhoeveelheden.

      Zelfs in rustigere tijden kunnen parameters voor voorraadbeheer, zoals Mins en Maxes, verre van hun beste waarden worden ingesteld. We kunnen vragen: "Waarom is het bestelpunt voor SKU_1234 ingesteld op 20 eenheden en het bestelaantal op 35?" Die keuzes waren waarschijnlijk het verstarde resultaat van jaren van geaccumuleerde gissingen. Een beetje onderzoek kan uitwijzen dat de keuzes van 20 en 35 niet langer goed zijn afgestemd op het huidige vraagniveau, de volatiliteit van de vraag, de doorlooptijd van de leverancier en de artikelkosten.

      Het knagende gevoel van "We zouden al deze keuzes moeten heroverwegen" wordt vaak gevolgd door "Oh nee, we moeten dit uitzoeken voor alle 10.000 items in voorraad?" De redder is hier geavanceerde software die het proces kunnen opschalen en het niet alleen wenselijk maar ook haalbaar maken. De software maakt gebruik van geavanceerde algoritmen om veranderingen in inventarisparameters, zoals bestelpunten, te vertalen in belangrijke prestatie-indicatoren zoals serviceniveaus en bedrijfskosten (gedefinieerd als de som van voorraadkosten, bestelkosten en tekortkosten).

      Deze blog beschrijft hoe je de voordelen van voorraadoptimalisatie door 4 benaderingen te schetsen met verschillende mate van automatisering.

      Vier benaderingen voor voorraadoptimalisatie

       

      Hunt-and Peck

      De eerste manier is item-specifieke "jagen en pikken" optimalisatie. Dat wil zeggen, u isoleert één voorraaditem per keer en doet 'wat als'-gissingen over hoe u dat item moet beheren. U kunt software bijvoorbeeld vragen om te evalueren wat er gebeurt als u het bestelpunt voor SKU123 wijzigt van 20 in 21 terwijl u de bestelhoeveelheid vast laat op 35. Vervolgens kunt u proberen 20 met rust te laten en 35 te verlagen naar 34. Uren later, omdat uw intuïties zijn goed, je hebt misschien een beter paar keuzes gemaakt, maar je weet niet of er een nog betere combinatie is die je niet hebt geprobeerd, en je moet misschien doorgaan naar de volgende SKU en de volgende en de volgende... Je hebt iets meer geautomatiseerd en uitgebreider nodig.

      Er zijn drie manieren om de klus productiever te klaren. De eerste twee combineren je intuïtie met de efficiëntie van het behandelen van groepen gerelateerde items. De derde is een volledig automatische zoekopdracht.

      Gedreven optimalisatie op serviceniveau

      1. Identificeer items waarvan u wilt dat ze allemaal hetzelfde serviceniveau hebben. U beheert bijvoorbeeld honderden 'C'-items en vraagt u zich af of hun doel voor het serviceniveau 70% moet zijn, of hoger of lager.
      2. Voer een potentieel doel voor het serviceniveau in en laat de software de gevolgen voorspellen in termen van investeringen in voorraaddollars en bedrijfskosten.
      3. Als het u niet bevalt wat u ziet, probeer dan een ander serviceniveaudoel totdat u zich op uw gemak voelt. Hier doet de software voorspellingen op groepsniveau van de gevolgen van je keuzes, maar je bent je keuzes nog aan het verkennen.

      Optimalisatie door herverdeling vanuit een benchmark

      1. Identificeer items die op de een of andere manier met elkaar verband houden, zoals 'alle reserveonderdelen voor onderstellen van lightrailvoertuigen'.
      2. Gebruik de software om het huidige spectrum van serviceniveaus en kosten voor de groep items te beoordelen. Gewoonlijk zult u ontdekken dat sommige artikelen schromelijk overbevoorraad zijn (zoals aangegeven door onredelijk hoge serviceniveaus) en andere schromelijk onderbevoorraad (serviceniveaus beschamend laag).
      3. Gebruik de software om de wijzigingen te berekenen die nodig zijn om de hoogste serviceniveaus te verlagen en de laagste te verhogen. Door deze aanpassing worden vaak twee doelen tegelijk bereikt: verhoging van het gemiddelde serviceniveau en tegelijkertijd verlaging van de gemiddelde bedrijfskosten.

      Volledig geautomatiseerde, artikelspecifieke optimalisatie

      1. Identificeer items die allemaal een serviceniveau boven een bepaald minimum vereisen. Misschien wilt u bijvoorbeeld dat al uw "A" -items minimaal een 95%-serviceniveau hebben.
      2. Gebruik de software om voor elk artikel de keuze van inventarisparameters te identificeren die de kosten voor het behalen of overschrijden van het serviceniveauminimum minimaliseren. De software zoekt op efficiënte wijze in de "ontwerpruimte" gedefinieerd door paren inventarisparameters (bijv. Min en Max) naar ontwerpen (bijv. Min=10, Max=23) die voldoen aan de serviceniveaubeperking. Daarvan zal het ontwerp met de laagste kosten worden geïdentificeerd.

      Deze aanpak gaat het verst om de last van de planner naar het programma te verschuiven. Velen zouden er baat bij hebben om dit de standaardmanier te maken waarop ze enorme aantallen inventarisitems beheren. Voor sommige items kan het handig zijn om wat meer tijd in te steken om ervoor te zorgen dat er ook rekening wordt gehouden met aanvullende overwegingen. Een beperkte capaciteit op een inkoopafdeling kan bijvoorbeeld de oplossing van het ideaal dwingen door een afname van de frequentie van bestellingen te eisen, ondanks de prijs die wordt betaald aan hogere totale bedrijfskosten.

      Vooruit gaan

      Het optimaliseren van inventarisparameters is nog nooit zo belangrijk geweest, maar het leek altijd een onmogelijke droom: het was te veel werk en er waren geen goede modellen om parameterkeuzes te relateren aan belangrijke prestatie-indicatoren zoals serviceniveau en bedrijfskosten. Moderne software voor supply chain-analyse heeft het spel veranderd. Nu is de vraag niet "Waarom zouden we dat doen?" maar “Waarom doen we dat niet?” Met software kun je 'Dit is wat we willen' koppelen aan 'Maak het zo'.

       

       

       

       

      Volume- en kleurvakken in een magazijn

       

      Laat een reactie achter
      gerelateerde berichten
      Make AI-Driven Inventory Optimization an Ally for Your Organization

      Make AI-Driven Inventory Optimization an Ally for Your Organization

      In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

      The Importance of Clear Service Level Definitions in Inventory Management

      The Importance of Clear Service Level Definitions in Inventory Management

      Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making.

      De kosten van spreadsheetplanning

      De kosten van spreadsheetplanning

      Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

      recente berichten

      • Make AI-Driven Inventory Optimization an Ally for Your OrganizationMake AI-Driven Inventory Optimization an Ally for Your Organization
        In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks. […]
      • The Importance of Clear Service Level Definitions in Inventory ManagementThe Importance of Clear Service Level Definitions in Inventory Management
        Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making. […]
      • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
        Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
      • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
        Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
      • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
        In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
        • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
          MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
        • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
          In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]

          Voorraadoptimalisatie heeft de afgelopen maanden voor veel van onze klanten een nog hogere prioriteit gekregen. Sommigen merken dat er veel meer vraag naar hun producten is. Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.

          Een doelserviceniveau kiezen om de voorraad te optimaliseren

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Overzicht

          Een doel stellen serviceniveau of opvullingspercentage is een strategische beslissing over voorraadrisicobeheer. Het kiezen van serviceniveaus kan moeilijk zijn. Relevante factoren zijn onder meer het huidige serviceniveau, doorlooptijden voor bevoorrading, kostenbeperkingen, de pijn die u en uw klanten door tekorten wordt toegebracht, en uw concurrentiepositie. Het stellen van doelen wordt vaak het best benaderd als een samenwerking tussen operations, sales en finance. Voorraadoptimalisatiesoftware is een essentieel hulpmiddel in het proces.

          Keuzes op serviceniveau

          Serviceniveau is de kans dat er geen tekorten ontstaan tussen het moment dat u meer voorraad bestelt en het moment dat deze in het schap ligt. Het redelijke bereik van serviceniveaus loopt van ongeveer 70% tot 99%. Niveaus onder 70% kunnen erop wijzen dat u niet om uw klanten geeft of ze niet aankan. Niveaus van 100% zijn bijna nooit geschikt en duiden meestal op een enorm opgeblazen inventaris.

          Factoren die van invloed zijn op de keuze van het serviceniveau

          Verschillende factoren zijn van invloed op de keuze van het serviceniveau voor een voorraadartikel. Hier zijn enkele van de belangrijkste.

          Huidige serviceniveaus:
          Een redelijke plaats om te beginnen is om erachter te komen wat uw huidige serviceniveaus zijn voor elk item en in het algemeen. Als je al in goede conditie bent, wordt het gemakkelijker om een reeds goede oplossing aan te passen. Als u er nu slecht aan toe bent, kan het moeilijker zijn om serviceniveaus in te stellen. Verrassend genoeg hebben maar weinig bedrijven gegevens over deze belangrijke maatstaf voor hun hele voorraaditems. Wat vaak gebeurt, is dat herordeningspunten willens en wetens groeien uit keuzes die in de prehistorie van het bedrijf zijn gemaakt en zelden, soms nooit, systematisch worden herzien en bijgewerkt. Aangezien bestelpunten een belangrijke bepalende factor zijn voor serviceniveaus, volgt hieruit dat serviceniveaus "gewoon gebeuren". Voorraadoptimalisatiesoftware kan uw huidige bestelpunten en doorlooptijden omzetten in solide schattingen van uw huidige serviceniveaus. Deze analyse onthult vaak een subset van items met een te hoog of te laag serviceniveau, in welk geval u advies heeft over welke items respectievelijk naar beneden of naar boven moeten worden bijgesteld.

          Bevoorradingstermijnen:
          Sommige bedrijven passen de serviceniveaus daarop aan aanvulling levertijden. Als het lang duurt om een artikel te maken of te kopen, dan duurt het ook lang om van een tekort te herstellen. Dienovereenkomstig verhogen ze de serviceniveaus voor artikelen met een lange doorlooptijd en verlagen ze deze voor artikelen waarvoor de achterstand kort zal zijn.

          Kostenbeperkingen:
          Voorraadoptimalisatiesoftware kan de goedkoopste manieren vinden om hoge serviceniveaudoelen te halen, maar agressieve doelen impliceren onvermijdelijk hogere kosten. Het kan zijn dat de kosten uw keuze van serviceniveaudoelen beperken. Kosten zijn er in verschillende smaken. "Voorraadinvestering" is de dollarwaarde van de voorraad. "Bedrijfskosten" omvatten zowel voorraadkosten als bestelkosten. Beperkingen op voorraadinvesteringen worden vaak opgelegd aan voorraadmanagers en impliceren altijd plafonds op serviceniveaudoelstellingen; software kan deze relaties expliciet maken, maar neemt de noodzaak van keuze niet weg. Je hoort minder vaak over plafonds voor bedrijfskosten, maar ze zijn altijd op zijn minst een secundaire factor die pleit voor lagere serviceniveaus.

          Tekort kosten:
          Tekortkosten zijn afhankelijk van het feit of uw tekortbeleid vraagt om nabestellingen of verloren verkopen. In beide gevallen werken tekortkosten de voorraadinvesteringen en bedrijfskosten tegen door te pleiten voor hogere serviceniveaus. Deze kosten worden niet altijd uitgedrukt in dollars, zoals in het geval van medische/chirurgische benodigdheden, waar tekortkosten worden uitgedrukt in morbiditeit en mortaliteit.

          Concurrentie:
          Hoe dichter uw bedrijf bij het domineren van de markt is, hoe meer u de serviceniveaus kunt verlagen om geld te besparen. Te ver terugvallen brengt echter risico's met zich mee: het moedigt potentiële klanten aan om ergens anders te zoeken en het moedigt concurrenten aan. Omgekeerd kan een hoge productbeschikbaarheid de positie van een kleine speler ver versterken.

          Gezamenlijke targeting

          Voorraadmanagers kunnen degenen zijn die belast zijn met het stellen van serviceniveaudoelen, maar het kan het beste zijn om samen te werken met andere functies bij het maken van deze oproepen. De financiële afdeling kan al vroeg in het proces eventuele "rode lijnen" delen, en zij zouden de taak moeten krijgen om de bewaar- en bestelkosten te schatten. Verkoop kan helpen bij het inschatten van tekortkosten door de waarschijnlijke reacties van klanten op achterstanden of verloren verkopen uit te leggen.

          De rol van software voor voorraadoptimalisatie en planning

          Zonder voorraadoptimalisatiesoftware is het stellen van serviceniveaudoelen puur giswerk: het is onmogelijk om te weten hoe een bepaald doel zal uitpakken in termen van voorraadinvesteringen, bedrijfskosten, tekortkosten. De software kan de gedetailleerde, kwantitatieve afwegingscurven berekenen die nodig zijn om weloverwogen keuzes te maken of zelfs het beoogde serviceniveau aan te bevelen dat resulteert in de laagste totale kosten, rekening houdend met bewaarkosten, bestelkosten en voorraadkosten. Niet alle softwareoplossingen zijn echter hetzelfde. U kunt een door de gebruiker gedefinieerd 99%-serviceniveau in uw voorraadplanningssysteem invoeren of het systeem kan een doelservice aanbevelen, maar dit betekent niet dat u dat vermelde serviceniveau daadwerkelijk bereikt. Sterker nog, u komt er misschien niet eens in de buurt en bereikt een veel lager serviceniveau. We hebben situaties waargenomen waarin een beoogd serviceniveau van 99% daadwerkelijk een serviceniveau van slechts 82% bereikte! Alle beslissingen die worden genomen als gevolg van het doelwit zullen resulteren in een onbedoelde verkeerde toewijzing van voorraad, zeer kostbare gevolgen en veel uitleg.Bekijk dus zeker ons blogartikel over hoe u de nauwkeurigheid van uw serviceniveauprognose kunt meten zodat u deze kostbare fout niet maakt.

          Volume- en kleurvakken in een magazijn

           

          Laat een reactie achter

          gerelateerde berichten

          Make AI-Driven Inventory Optimization an Ally for Your Organization

          Make AI-Driven Inventory Optimization an Ally for Your Organization

          In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

          The Importance of Clear Service Level Definitions in Inventory Management

          The Importance of Clear Service Level Definitions in Inventory Management

          Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making.

          De kosten van spreadsheetplanning

          De kosten van spreadsheetplanning

          Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

          recente berichten

          • Make AI-Driven Inventory Optimization an Ally for Your OrganizationMake AI-Driven Inventory Optimization an Ally for Your Organization
            In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks. […]
          • The Importance of Clear Service Level Definitions in Inventory ManagementThe Importance of Clear Service Level Definitions in Inventory Management
            Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making. […]
          • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
            Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
          • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
            Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
          • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
            In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
            • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
              MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
            • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
              In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]

              Hoe u een doelserviceniveau kiest

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Overzicht

              Een doel stellen serviceniveau of opvullingspercentage is een strategische beslissing over voorraadrisicobeheer. Het kiezen van serviceniveaus kan moeilijk zijn. Relevante factoren zijn onder meer het huidige serviceniveau, doorlooptijden voor bevoorrading, kostenbeperkingen, de pijn die u en uw klanten door tekorten wordt toegebracht, en uw concurrentiepositie. Het stellen van doelen wordt vaak het best benaderd als een samenwerking tussen operations, sales en finance. Voorraadoptimalisatiesoftware is een essentieel hulpmiddel in het proces.

              Keuzes op serviceniveau

              Serviceniveau is de kans dat er geen tekorten ontstaan tussen het moment dat u meer voorraad bestelt en het moment dat deze in het schap ligt. Het redelijke bereik van serviceniveaus loopt van ongeveer 70% tot 99%. Niveaus onder 70% kunnen erop wijzen dat u niet om uw klanten geeft of ze niet aankan. Niveaus van 100% zijn bijna nooit geschikt en duiden meestal op een enorm opgeblazen inventaris.

              Factoren die van invloed zijn op de keuze van het serviceniveau

              Verschillende factoren zijn van invloed op de keuze van het serviceniveau voor een voorraadartikel. Hier zijn enkele van de belangrijkste.

              Huidige serviceniveaus:
              Een redelijke plaats om te beginnen is om erachter te komen wat uw huidige serviceniveaus zijn voor elk item en in het algemeen. Als je al in goede conditie bent, wordt het gemakkelijker om een reeds goede oplossing aan te passen. Als u er nu slecht aan toe bent, kan het moeilijker zijn om serviceniveaus in te stellen. Verrassend genoeg hebben maar weinig bedrijven gegevens over deze belangrijke maatstaf voor hun hele voorraaditems. Wat vaak gebeurt, is dat herordeningspunten willens en wetens groeien uit keuzes die in de prehistorie van het bedrijf zijn gemaakt en zelden, soms nooit, systematisch worden herzien en bijgewerkt. Aangezien bestelpunten een belangrijke bepalende factor zijn voor serviceniveaus, volgt hieruit dat serviceniveaus "gewoon gebeuren". Voorraadoptimalisatiesoftware kan uw huidige bestelpunten en doorlooptijden omzetten in solide schattingen van uw huidige serviceniveaus. Deze analyse onthult vaak een subset van items met een te hoog of te laag serviceniveau, in welk geval u advies heeft over welke items respectievelijk naar beneden of naar boven moeten worden bijgesteld.

              Bevoorradingstermijnen:
              Sommige bedrijven passen de serviceniveaus daarop aan aanvulling levertijden. Als het lang duurt om een artikel te maken of te kopen, dan duurt het ook lang om van een tekort te herstellen. Dienovereenkomstig verhogen ze de serviceniveaus voor artikelen met een lange doorlooptijd en verlagen ze deze voor artikelen waarvoor de achterstand kort zal zijn.

              Kostenbeperkingen:
              Voorraadoptimalisatiesoftware kan de goedkoopste manieren vinden om hoge serviceniveaudoelen te halen, maar agressieve doelen impliceren onvermijdelijk hogere kosten. Het kan zijn dat de kosten uw keuze van serviceniveaudoelen beperken. Kosten zijn er in verschillende smaken. "Voorraadinvestering" is de dollarwaarde van de voorraad. "Bedrijfskosten" omvatten zowel voorraadkosten als bestelkosten. Beperkingen op voorraadinvesteringen worden vaak opgelegd aan voorraadmanagers en impliceren altijd plafonds op serviceniveaudoelstellingen; software kan deze relaties expliciet maken, maar neemt de noodzaak van keuze niet weg. Je hoort minder vaak over plafonds voor bedrijfskosten, maar ze zijn altijd op zijn minst een secundaire factor die pleit voor lagere serviceniveaus.

              Tekort kosten:
              Tekortkosten zijn afhankelijk van het feit of uw tekortbeleid vraagt om nabestellingen of verloren verkopen. In beide gevallen werken tekortkosten de voorraadinvesteringen en bedrijfskosten tegen door te pleiten voor hogere serviceniveaus. Deze kosten worden niet altijd uitgedrukt in dollars, zoals in het geval van medische/chirurgische benodigdheden, waar tekortkosten worden uitgedrukt in morbiditeit en mortaliteit.

              Concurrentie:
              Hoe dichter uw bedrijf bij het domineren van de markt is, hoe meer u de serviceniveaus kunt verlagen om geld te besparen. Te ver terugvallen brengt echter risico's met zich mee: het moedigt potentiële klanten aan om ergens anders te zoeken en het moedigt concurrenten aan. Omgekeerd kan een hoge productbeschikbaarheid de positie van een kleine speler ver versterken.

              Gezamenlijke targeting

              Voorraadmanagers kunnen degenen zijn die belast zijn met het stellen van serviceniveaudoelen, maar het kan het beste zijn om samen te werken met andere functies bij het maken van deze oproepen. De financiële afdeling kan al vroeg in het proces eventuele "rode lijnen" delen, en zij zouden de taak moeten krijgen om de bewaar- en bestelkosten te schatten. Verkoop kan helpen bij het inschatten van tekortkosten door de waarschijnlijke reacties van klanten op achterstanden of verloren verkopen uit te leggen.

              De rol van software voor voorraadoptimalisatie en planning

              Zonder voorraadoptimalisatiesoftware is het stellen van serviceniveaudoelen puur giswerk: het is onmogelijk om te weten hoe een bepaald doel zal uitpakken in termen van voorraadinvesteringen, bedrijfskosten, tekortkosten. De software kan de gedetailleerde, kwantitatieve afwegingscurven berekenen die nodig zijn om weloverwogen keuzes te maken of zelfs het beoogde serviceniveau aan te bevelen dat resulteert in de laagste totale kosten, rekening houdend met bewaarkosten, bestelkosten en voorraadkosten. Niet alle softwareoplossingen zijn echter hetzelfde. U kunt een door de gebruiker gedefinieerd 99%-serviceniveau in uw voorraadplanningssysteem invoeren of het systeem kan een doelservice aanbevelen, maar dit betekent niet dat u dat vermelde serviceniveau daadwerkelijk bereikt. Sterker nog, u komt er misschien niet eens in de buurt en bereikt een veel lager serviceniveau. We hebben situaties waargenomen waarin een beoogd serviceniveau van 99% daadwerkelijk een serviceniveau van slechts 82% bereikte! Alle beslissingen die worden genomen als gevolg van het doelwit zullen resulteren in een onbedoelde verkeerde toewijzing van voorraad, zeer kostbare gevolgen en veel uitleg. Lees dus zeker ons volgende blogartikel over hoe u de nauwkeurigheid van uw serviceniveauprognose kunt meten, zodat u deze kostbare fout niet maakt.

              Laat een reactie achter

              gerelateerde berichten

              Make AI-Driven Inventory Optimization an Ally for Your Organization

              Make AI-Driven Inventory Optimization an Ally for Your Organization

              In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks.

              The Importance of Clear Service Level Definitions in Inventory Management

              The Importance of Clear Service Level Definitions in Inventory Management

              Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making.

              De kosten van spreadsheetplanning

              De kosten van spreadsheetplanning

              Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

              recente berichten

              • Make AI-Driven Inventory Optimization an Ally for Your OrganizationMake AI-Driven Inventory Optimization an Ally for Your Organization
                In this blog, we will explore how organizations can achieve exceptional efficiency and accuracy with AI-driven inventory optimization. Traditional inventory management methods often fall short due to their reactive nature and reliance on manual processes. Maintaining optimal inventory levels is fundamental for meeting customer demand while minimizing costs. The introduction of AI-driven inventory optimization can significantly reduce the burden of manual processes, providing relief to supply chain managers from tedious tasks. […]
              • The Importance of Clear Service Level Definitions in Inventory ManagementThe Importance of Clear Service Level Definitions in Inventory Management
                Inventory optimization software that supports what-if analysis will expose the tradeoff of stockouts vs. excess costs of varying service level targets. But first it is important to identify how “service levels” is interpreted, measured, and reported. This will avoid miscommunication and the false sense of security that can develop when less stringent definitions are used. Clearly defining how service level is calculated puts all stakeholders on the same page. This facilitates better decision-making. […]
              • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
                Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
              • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
                Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
              • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
                In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationFuture-Proofing Utilities: Advanced Analytics for Supply Chain Optimization
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
                • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
                  MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
                • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
                  In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]