Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen.

 

  1. Organiseer uw bedrijf rond een prognose van één getal. This sounds sensible: it’s good to have a shared vision. But each part of the company will have its own idea about which number is the number. Finance may want quarterly revenue, Marketing may want web site visits, Sales may want churn, Maintenance may want mean time to failure. For that matter, each unit probably has a handful of key metrics. You don’t need a slogan – you need to get your job done.

 

  1. Integreer bedrijfskennis in een gezamenlijk prognoseproces. Dit is een goede algemene regel, maar als uw samenwerkingsproces gebrekkig is, kan het knoeien met een statistische prognose via managementoverschrijvingen de nauwkeurigheid verminderen. Je hebt geen slogan nodig; je moet de nauwkeurigheid van alle methoden meten en vergelijken en de winnaars volgen.

 

  1. Voorspelling met behulp van causale modellering. Extrapolatieve prognosemethoden houden geen rekening met de onderliggende krachten die uw verkopen aandrijven, ze werken alleen met de resultaten. Causale modellering brengt u dieper in de fundamentele drijfveren en kan zowel de nauwkeurigheid als het inzicht verbeteren. Causale modellen (geïmplementeerd door middel van regressieanalyse) kunnen echter minder nauwkeurig zijn, vooral als ze voorspellingen van de drijvende krachten vereisen (“voorspellingen van de voorspellers”) in plaats van simpelweg de geregistreerde waarden van vertraagde voorspellende variabelen in te pluggen. Je hebt geen slogan nodig: je hebt een onderlinge vergelijking nodig.

 

  1. Voorspel de vraag in plaats van verzendingen. Vraag is wat je echt wilt, maar het ‘opstellen van een vraagsignaal’ kan lastig zijn: wat doe je met interne overboekingen? Eenmalige? Verloren omzet? Bovendien kunnen vraaggegevens worden gemanipuleerd. Als klanten bijvoorbeeld opzettelijk geen bestellingen plaatsen of proberen hun bestellingen te misleiden door te lang van tevoren te bestellen, zal de bestelgeschiedenis niet beter zijn dan de verzendgeschiedenis. Althans met verzendgeschiedenis, het klopt: u weet wat u heeft verzonden. Prognoses van verzendingen zijn geen voorspellingen van de ‘vraag’, maar vormen een solide uitgangspunt.

 

  1. Gebruik Machine Learning-methoden. Ten eerste is ‘Machine learning’ een elastisch concept dat een steeds groter aantal alternatieven omvat. Onder de motorkap van veel door ML geadverteerde modellen bevindt zich slechts een automatisch kiezen een extrapolatieve voorspellingsmethode (dat wil zeggen: de beste pasvorm) die, hoewel uitstekend in het voorspellen van de normale vraag, al bestaat sinds de jaren tachtig (Smart Software was het eerste bedrijf dat een automatische selectiemethode voor de pc uitbracht). ML-modellen zijn data-hogs die grotere datasets nodig hebben dan u mogelijk ter beschikking heeft. Het op de juiste manier kiezen en trainen van een ML-model vereist een niveau van statistische expertise dat ongebruikelijk is in veel productie- en distributiebedrijven. Misschien wil je iemand vinden die je hand vasthoudt voordat je dit spel gaat spelen.

 

  1. Door uitschieters te verwijderen, ontstaan betere voorspellingen. Hoewel het waar is dat zeer ongebruikelijke pieken of dalen in de vraag onderliggende vraagpatronen, zoals trends of seizoensinvloeden, zullen maskeren, is het niet altijd waar dat u de pieken moet wegnemen. Vaak weerspiegelen deze pieken in de vraag de onzekerheid die willekeurig uw bedrijfsvoering kan verstoren en waarmee dus rekening moet worden gehouden. Het verwijderen van dit soort gegevens uit uw vraagvoorspellingsmodel kan de gegevens op papier voorspelbaarder maken, maar u zult verrast zijn als dit opnieuw gebeurt. Wees dus voorzichtig met het verwijderen van uitschieters massaal.

 

 

 

 

Smart Software kondigt patent van de volgende generatie aan

Belmont, MA, June 2023 – Smart Software, Inc., provider of industry-leading demand forecasting, planning, and inventory optimization solutions, today announced the award of US Patent 11,656,887, “SYSTEM AND METHOD TO SIMULATE DEMAND AND OPTIMIZE CONTROL PARAMETERS FOR A TECHNOLOGY PLATFORM.”

Het patent regelt "technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken." Een belangrijke toepassing is het optimaliseren van onderdelenvoorraden.

Aspects of the invention include: an advanced bootstrap process that converts a single observed time series of item demand into an unlimited number of realistic demand scenarios; a performance prediction process that executes Monte Carlo simulations of a proposed inventory control policy to assess its performance; and a performance improvement process that uses the performance prediction process to automatically explore the space of alternative system designs to identify optimal control parameter values, selecting ones that minimize operating cost while guaranteeing a target level of item availability.

The new analytic technology described in the patent will form the basis for the upcoming release of the next generation (“Gen2”) of Slimme Vraagplanner™ en Slimme IP&O™. Current customers and resellers can preview Gen2 by contacting their Smart Software sales representative.

Research underlying the patent was self-funded by Smart, supplemented by competitive Small Business Innovation Research grants from the US National Science Foundation.

 

Over Smart Software, Inc.
Founded in 1981, Smart Software, Inc. is a leader in providing businesses with enterprise-wide demand forecasting, planning, and inventory optimization solutions.  Smart Software’s demand forecasting and inventory optimization solutions have helped thousands of users worldwide, including customers such as Disney, Otis Elevator, Hitachi, Arizona Public Service, Ameren, and The American Red Cross.  Smart’s Inventory Planning & Optimization Platform, Smart IP&O gives demand planners the tools to handle sales seasonality, promotions, new and aging products, multi-dimensional hierarchies, and intermittently demanded service parts and capital goods items.  It also provides inventory managers with accurate estimates of the optimal inventory and safety stock required to meet future orders and achieve desired service levels.  Smart Software is headquartered in Belmont, Massachusetts, and our website is www.smartcorp.com.

 

 

Correlatie versus oorzakelijk verband: is dit relevant voor uw baan?

Buiten het werk heb je misschien de beroemde uitspraak 'Correlatie is geen oorzakelijk verband' gehoord. Het klinkt misschien als een stuk theoretische onzin die, hoewel betrokken bij een recente Nobelprijs voor economie, niet relevant is voor uw werk als vraagplanner. Is dat zo, dan heb je misschien maar gedeeltelijk gelijk.

Extrapolatieve versus causale modellen

De meeste vraagvoorspellingen maken gebruik van extrapolatieve modellen. Deze modellen, ook wel tijdreeksmodellen genoemd, voorspellen de vraag op basis van alleen de waarden uit het verleden van de vraag naar een artikel. Plots van waarden uit het verleden onthullen trend en seizoensgebondenheid en volatiliteit, dus er is veel waar ze goed voor zijn. Maar er is nog een ander type model – causale modellen – dat de nauwkeurigheid van prognoses mogelijk kan verbeteren, verder dan wat u kunt krijgen van extrapolatieve modellen.

Causale modellen voegen meer invoergegevens toe aan de prognosetaak: informatie over veronderstelde prognose "stuurprogramma's" buiten de vraaggeschiedenis van een artikel. Voorbeelden van potentieel bruikbare oorzakelijke factoren zijn onder meer macro-economische variabelen zoals het inflatiepercentage, het groeipercentage van het bbp en grondstofprijzen. Voorbeelden die niet gebonden zijn aan de nationale economie zijn onder meer branchespecifieke groeipercentages en uw eigen advertentie-uitgaven en die van uw concurrenten. Deze variabelen worden meestal gebruikt als invoer voor regressiemodellen, dit zijn vergelijkingen met vraag als uitvoer en causale variabelen als invoer.

Voorspellingen met behulp van causale modellen

Veel bedrijven hebben een S&OP-proces waarbij maandelijks statistische (extrapolatieve) prognoses worden beoordeeld, waarbij het management de prognoses aanpast op basis van hun oordeel. Vaak is dit een indirecte en subjectieve manier om causale modellen in het proces te verwerken zonder de regressiemodellering uit te voeren.

Om daadwerkelijk een causaal regressiemodel te maken, moet u eerst een lijst van potentieel bruikbare causale voorspellende variabelen nomineren. Deze kunnen voortkomen uit uw inhoudelijke expertise. Stel, u vervaardigt vensterglas. Veel van uw glas kan terechtkomen in nieuwe woningen en nieuwe kantoorgebouwen. Het aantal nieuw gebouwde woningen en kantoren zijn dus plausibele voorspellende variabelen in een regressievergelijking.

Er is hier een complicatie: als je de vergelijking gebruikt om iets te voorspellen, moet je eerst de voorspellers voorspellen. Zo kan de verkoop van glas komend kwartaal sterk gerelateerd zijn aan aantallen nieuwe woningen en nieuwe kantoorpanden komend kwartaal. Maar hoeveel nieuwe woningen komen er komend kwartaal? Dat is zijn eigen prognoseprobleem. Je hebt dus een potentieel krachtig prognosemodel, maar je hebt extra werk te doen om het bruikbaar te maken.

Er is één manier om dingen te vereenvoudigen: als de voorspellende variabelen "vertraagde" versies van zichzelf zijn. Zo kan het aantal nieuw afgegeven bouwvergunningen een half jaar geleden een goede voorspeller zijn van de glasverkoop volgende maand. U hoeft de bouwvergunninggegevens niet te voorspellen, u hoeft ze alleen maar op te zoeken.

Is het een causaal verband of slechts een onechte correlatie?

Causale modellen zijn de real deal: er is een feitelijk mechanisme dat de voorspellende variabele relateert aan de voorspelde variabele. Het voorbeeld van het voorspellen van de verkoop van glas uit bouwvergunningen is een voorbeeld.

Een correlatierelatie is twijfelachtiger. Er is een statistische associatie die al dan niet een solide basis vormt voor prognoses. Stel, u verkoopt een product dat Nederlanders het meest aanspreekt, maar u heeft dit niet door. Nederlanders zijn gemiddeld de langste mensen van Europa. Als uw verkopen stijgen en de gemiddelde lengte van Europeanen toeneemt, kunt u die relatie goed gebruiken. Maar als het aandeel Nederlanders in de eurozone afneemt terwijl de gemiddelde lengte toeneemt omdat de mix van mannen versus vrouwen naar mannen verschuift, wat kan er dan misgaan? U verwacht dat de verkoop zal toenemen omdat de gemiddelde lengte toeneemt. Maar uw verkopen zijn eigenlijk vooral aan Nederlanders, en hun relatieve aandeel in de bevolking wordt kleiner, dus uw verkopen zullen in plaats daarvan echt afnemen. In dit geval is de associatie tussen verkoop en klantlengte een onechte correlatie.

Hoe kun je het verschil zien tussen echte en valse relaties? De gouden standaard is om een rigoureus wetenschappelijk experiment te doen. Maar u bent waarschijnlijk niet in de positie om dat te doen. In plaats daarvan moet u vertrouwen op uw persoonlijke 'mentale model' van hoe uw markt werkt. Als uw vermoedens juist zijn, zullen uw potentiële causale modellen correleren met de vraag en zal causale modellering voor u lonend zijn, hetzij als aanvulling op extrapolatieve modellen, hetzij ter vervanging ervan.

 

 

 

 

De rol van vertrouwen in het vraagvoorspellingsproces Deel 2: Wat vertrouwt u

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software.

Vertrouw op gegevens

Vertrouwen in data ondersteunt het vertrouwen in de voorspeller die de data gebruikt. De meeste van onze klanten hebben hun gegevens in een ERP-systeem staan. Deze gegevens moeten worden begrepen als een belangrijk bedrijfsmiddel. Om de gegevens betrouwbaar te laten zijn, moeten ze de "drie C's" hebben, dwz ze moeten correct, volledig en actueel zijn.

Correctheid is uiteraard fundamenteel. We hadden eens een klant die een nieuw, sterk prognoseproces aan het implementeren was, maar vond dat de resultaten volledig haaks stonden op hun gevoel voor wat er in het bedrijf gebeurde. Het bleek dat verschillende van hun datastromen een factor twee onjuist waren, wat een enorme fout is. Dit vertraagde natuurlijk het implementatieproces totdat ze alle grove fouten in hun vraaggegevens konden identificeren en corrigeren.

Er is een minder voor de hand liggend punt over correctheid. Dat wil zeggen, gegevens zijn willekeurig, dus wat u nu ziet, is waarschijnlijk niet wat u hierna ziet. Het plannen van de productie op basis van de veronderstelling dat de vraag van volgende week precies hetzelfde zal zijn als de vraag van deze week is duidelijk dwaas, maar klassieke op formules gebaseerde voorspellingsmodellen zoals de hierboven genoemde exponentiële afvlakking zullen hetzelfde aantal projecteren over de hele prognosehorizon. Dit is waar op scenario's gebaseerde planning is essentieel om het hoofd te bieden aan de onvermijdelijke fluctuaties in belangrijke variabelen zoals de eisen van klanten en de doorlooptijden van leveranciers.

Volledigheid is de tweede vereiste om gegevens te kunnen vertrouwen. Onze software haalt uiteindelijk veel van zijn waarde uit het blootleggen van de verbanden tussen operationele beslissingen (bijvoorbeeld het selecteren van bestelpunten voor het aanvullen van voorraad) en bedrijfsgerelateerde statistieken zoals voorraadkosten. Toch loopt de implementatie van prognosesoftware vaak vertraging op omdat ergens vraaginformatie beschikbaar is, maar voorraad-, bestel- en/of tekortkosten niet. Of, om nog een recent voorbeeld te noemen: een klant kon slechts de helft van zijn voorraad reserveonderdelen voor repareerbare onderdelen op de juiste maat houden, omdat niemand had bijgehouden wanneer de andere helft kapot ging, wat betekent dat er geen informatie was over de gemiddelde tijd vóór storing (MTBF). , wat betekent dat het niet mogelijk was om het pechgedrag van de helft van de vloot van repareerbare reserveonderdelen te modelleren.

Ten slotte is de valuta van gegevens van belang. Naarmate de snelheid van zakendoen toeneemt en bedrijfsplanningscycli afnemen van een driemaandelijks of maandelijks tempo naar een wekelijks of dagelijks tempo, wordt het wenselijk om de flexibiliteit te benutten die wordt geboden door 's nachts uploads van dagelijkse transactiegegevens naar de cloud. Dit maakt hoogfrequente aanpassingen van prognoses en/of voorraadbeheerparameters mogelijk voor artikelen met een hoge volatiliteit en plotselinge verschuivingen in de vraag. Hoe verser de gegevens, hoe betrouwbaarder de analyse.

Vertrouw op software voor vraagvoorspelling

Zelfs met gegevens van hoge kwaliteit moeten voorspellers nog steeds vertrouwen op de analytische software die de gegevens verwerkt. Dit vertrouwen moet zich uitstrekken tot zowel de software zelf als de computationele omgeving waarin deze functioneert.

Als voorspellers lokale software gebruiken, moeten ze vertrouwen op hun eigen IT-afdelingen om de gegevens te beschermen en beschikbaar te houden voor gebruik. Als ze in plaats daarvan de kracht van cloudgebaseerde analyses willen benutten, moeten klanten hun vertrouwelijke informatie toevertrouwen aan hun softwareleveranciers. Software op professioneel niveau, zoals de onze, rechtvaardigt het vertrouwen van klanten door middel van SOC 2-certificering. SOC 2-certificering is ontwikkeld door het American Institute of CPA's en definieert criteria voor het beheer van klantgegevens op basis van vijf "trustservice-principes": beveiliging, beschikbaarheid, verwerkingsintegriteit, vertrouwelijkheid en privacy.

Hoe zit het met de software zelf? Wat is er nodig om het betrouwbaar te maken? De belangrijkste criteria hierbij zijn de juistheid van algoritmen en functionele betrouwbaarheid. Als de leverancier een professioneel programma-ontwikkelingsproces heeft, is de kans klein dat de software door een programmeerfout uiteindelijk de verkeerde cijfers berekent. En als de leverancier een rigoureus kwaliteitsborgingsproces heeft, is de kans klein dat de software crasht net wanneer de voorspeller een deadline heeft of een pop-upanalyse voor een speciale situatie moet verwerken.

Overzicht

Om bruikbaar te zijn, moeten voorspellers en hun voorspellingen worden vertrouwd door besluitvormers. Dat vertrouwen is afhankelijk van kenmerken van voorspellers en hun processen en communicatie. Het hangt ook af van de kwaliteit van de gegevens en software die worden gebruikt bij het maken van de prognoses.

 

Lees hier het 1e deel van deze Blog “Who do you Trust”: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

 

 

 

Service Level Driven Planning voor Service Parts-bedrijven in de Dynamics 365-ruimte

Service-Level-Driven Service Parts Planning voor Microsoft Dynamics BC of F&SC is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

 

De wiskunde om dit planningsniveau te bepalen, bestaat eenvoudigweg niet in de D365-functionaliteit. Het vereist wiskunde en AI die duizenden keren door berekeningen gaat voor elk onderdeel en onderdeelcentrum (locaties). Wiskunde en AI zoals deze zijn uniek voor Smart. Lees verder om meer te begrijpen. 

 

Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. 

Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, versnellingen, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

 

Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties.

Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Vrijwel elke Demand Planning-oplossing stopt hier. Smart gaat verder stress testen uw huidige voorraadbeleid tegen alle plausibele toekomstige vraagscenario's. Het zijn deze duizenden berekeningen die onze KPP's bouwen. De nauwkeurigheid hiervan verbetert het vermogen van de D365 om de kosten van het aanhouden van te veel in evenwicht te brengen met de kosten van het niet genoeg hebben. U weet van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

 

Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. 

Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Een oproep hier is dat onze D365-klanten bijna altijd versteld staan van het verschil in voorraadniveau tussen de beschikbaarheid van 100% en 99.5%. Met de logica voor bijna 10.000 scenario's dat er bijna nooit een half procent uitvalt. U realiseert een volledig voorraadbeleid met veel lagere kosten. Je vindt de onderdelen die ondervoorraad zijn en corrigeert deze. Het evenwichtspunt is vaak een 7-12% verlaging van de voorraadkosten. 

Dit benutten van wat-als-scenario's in onze software voor onderdelenplanning kunnen management en inkopers eenvoudig alternatief voorraadbeleid vergelijken en bepalen welke het best aansluiten bij de zakelijke doelstellingen. Voor sommige onderdelen is een kleine voorraad in orde. Voor anderen hebben we die beschikbaarheid van 99.5%-onderdelen nodig. Zodra deze limieten zijn overeengekomen, gebruiken we de kracht van D365 om de voorraad te optimaliseren met behulp van D365 core ERP zoals het hoort. De planning wordt automatisch geüpload om Dynamics in te schakelen met gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters. Dit ondersteunt een enkel Enterprise-centerpunt en mensen gebruiken niet meerdere systemen voor hun dagelijkse onderdelenbeheer en inkoop.

 

Stap 4. Maak het zo en houd het zo. 

Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten. Dit is cruciaal en belangrijk. Het is ook belangrijk om Dynamics F&SC of BC te gebruiken om uw ERP-transacties uit te voeren. Deze twee Dynamics ERP's hebben het hoogste niveau van nieuwe ERP-groei ter wereld. Het is logisch om ze te gebruiken zoals ze bedoeld zijn. Het vullen van de witte ruimte voor de wiskundige en AI-berekeningen voor Onderhoud en Onderdelenbeheer is ook logisch. Dit vereist een meer complexe en gerichte oplossing om te helpen. Smart Software Inventory Optimization voor EAM en Dynamics ERP's biedt het antwoord.    

Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad. Het helpt kosten, maakt kapitaal vrij voor ander gebruik en ondersteunt best practices voor uw team. 

 

Breid Microsoft 365 F&SC en AX uit met Smart IP&O

Registreer u hier om een opname te zien van het Microsoft Dynamics Communities-webinar over Smart IP&O:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/