Vraagprognose in een "Build to Order"-bedrijf

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

We komen vaak in contact met potentiële klanten die beweren dat ze geen prognosesysteem kunnen gebruiken omdat ze een "build-to-order" productiebedrijf zijn. Ik vind dit een raadselachtig perspectief, want wat deze organisaties ook bouwen, er zijn grondstoffen of tussenproducten van een lager niveau nodig. Als die invoer op een lager niveau niet beschikbaar is wanneer een bestelling voor het afgewerkte product wordt ontvangen, kan de bestelling niet worden gebouwd. Bijgevolg kan de bestelling worden geannuleerd en de bijbehorende inkomsten verloren gaan.

Ik ben het ermee eens dat in een dergelijke omgeving het voorspellen van het eindproduct niet altijd mogelijk of bijzonder nuttig is. Soms is het nuttig, maar niet voldoende. Het is in ieder geval van cruciaal belang om ervoor te zorgen dat de onderliggende grondstoffen en halffabrikaten die in het eindproduct gaan, beschikbaar zijn. De vraag ernaar kan zeker worden voorspeld.

Het doel van de organisatie zou zijn om voorraden op serviceniveau aan te houden voor deze tussenproducten die hoog maar niet onbetaalbaar zijn. Planners zullen optimale voorraadniveaus voor deze materialen moeten instellen, waarbij ze de serviceniveau-eisen afwegen tegen het beschikbare budget. Aangezien een bepaald tussenproduct kan dienen als input voor meer dan één gereed product, zou de volatiliteit van de vraag naar het tussenproduct kleiner zijn dan de volatiliteit van de vraag naar een specifiek gereed product. Daarom zouden de veiligheidsvoorraden die nodig zijn om voorraden van halffabrikaten op hoog serviceniveau aan te houden relatief mager zijn.

Drie bedrijven, alle gebruikers van SmartForecasts, dienen als interessante voorbeelden. Het eerste is een chemiebedrijf, Bedoukian Research, dat voor verschillende opdrachtgevers chemicaliën op maat maakt. Elk van deze "gereed product" is een unieke combinatie van tussenliggende chemische verbindingen. Bedoukian begint zijn vraagplanning met een prognose voor gereed product, die het productieschema en de toewijzing van essentiële productiemiddelen bepaalt. Dit vereist een behoorlijk beoordelingsvermogen, aangezien de vraag naar afgewerkte goederen dynamisch verandert.

Zodra deze afgewerkte goede prognoses zijn gemaakt, kan de behoefte aan grondstoffen worden geschat via een stuklijstdesaggregatie. Bedoukian combineert deze resultaten met veiligheidsvoorraadschattingen, gebaseerd op werkelijke bezettingsgraden en te behalen serviceniveaudoelstellingen, om de volledige, serviceniveaugestuurde prognose voor grondstoffen te genereren. Hierdoor kan Bedoukian aan zijn productie-eisen voldoen met aanzienlijk minder voorraad.

Het tweede bedrijf vervaardigt de interne componenten voor mobiele telefoons, waarbij eindproducten gespecialiseerde combinaties van deze componenten zijn. Een bestelling kan bijvoorbeeld een bepaald aantal telefoons vereisen met unieke labels op de hoes. Dit is het eindproduct voor deze bestelling. Alles wat in die volgorde komt, behalve het label, is opgebouwd uit standaardcomponenten. Nogmaals, SmartForecasts zal worden gebruikt om gestroomlijnde voorraden van de componenten op hoog serviceniveau bij te houden. Dit bedrijf dacht dat de enige manier om componentenvoorraden te beheren, was door middel van aggregaties van stuklijsten. Ze kijken nu naar de werkelijke bezettingsgraad van de componenten en stellen veel kleinere voorraden vast terwijl ze een hoge beschikbaarheid van componenten behouden.

Een derde bedrijf, NKK Switches, verkende dit onderwerp in hun recente webinar (zie Gastblogpost van CFO Bud Schultz), beschouwden hun producten als "onvoorspelbaar". U kunt er hieronder meer over lezen, maar over het algemeen was NKK Switches in staat om componenten en zinvolle aggregaties van productfamilies te voorspellen. Door prognoses versus werkelijke waarden gedurende meerdere maanden bij te houden, kon NKK de nauwkeurigheid van zijn prognoses aan zijn Aziatische fabrieksleveranciers aantonen en hen overtuigen om over te stappen van een "build-to-order"-model naar "build-to-forecast". Deze verandering heeft geresulteerd in een drastische verkorting van de doorlooptijden, in veel gevallen zelfs gehalveerd, waardoor de klanttevredenheid en het algehele verkooppercentage zijn toegenomen.

Waar het hier op neerkomt, is dat er een volkomen levensvatbare – ik zou zeggen essentiële – methode voor vraagvoorspelling voor op bestelling gemaakte bedrijven bestaat, waarbij hoge serviceniveaus worden vastgesteld voor essentiële inputbronnen. Als je meer wilt weten, stuur me dan een berichtje, op nelsonh op smartcorp dot com.

Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

Laat een reactie achter

gerelateerde berichten

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

      Het perspectief van een CFO op vraagplanning: "strategischer dan u denkt"

      De slimme voorspeller

      Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Bud Schultz, CPA, Vice President of Finance voor NKK Switches, presenteerde de ervaring van zijn bedrijf met vraagplanning tijdens een recent webinar. Het volgende is een korte samenvatting van de belangrijkste punten van Bud; bekijk het volledige webinar door te klikken hier.

      Vraag: Vertel ons over de zakelijke en vraagplanningsuitdagingen van NKK.

      NKK Switches, gevestigd in Scottsdale, Arizona, is een toonaangevende fabrikant en leverancier van elektromechanische schakelaars. Het bedrijf omvat veel verschillende soorten schakelaars: schakelaars, drukknoppen, draaiknoppen en zelfs sommige programmeerbare soorten schakelaars. We staan bekend om onze hoge kwaliteit en om ons vermogen om te voldoen aan een uitzonderlijk breed scala aan klanteisen op een turnkey (custom configuratie) basis. NKK Switches produceert op maat gemaakte oplossingen van onderdelen die uitsluitend afkomstig zijn van productiefaciliteiten in Japan en China.

      Er zijn letterlijk miljoenen mogelijke switchconfiguraties en we weten nooit welke geconfigureerde oplossingen onze klanten zullen bestellen. Dit maakt onze vraag zeer intermitterend en buitengewoon moeilijk te voorspellen. Sterker nog, tot voor kort beschouwden we onze vraag als onvoorspelbaar. We werkten op basis van build-to-order, wat betekende dat bestellingen van klanten pas konden worden uitgevoerd als hun onderdelen waren geproduceerd en vervolgens door NKK tot eindproducten waren verwerkt. Dit resulteerde in lange doorlooptijden, pijnlijk voor onze klanten en een competitieve uitdaging voor onze verkooporganisatie.

      Vraag: Wat verwachtte u van een verbeterd product? eis voorspelling?

      Toen we begonnen met het onderzoeken van de waarde van vraagvoorspellingssoftware (SmartForecasts van Smart Software), probeerden we de beslissing te bekijken vanuit het oogpunt van Return on Investment (ROI). We hebben wat kapitaalbudgettering gedaan, aannames gedaan over mogelijke verlagingen van voorraadniveaus, lagere voorraadkosten en andere potentiële besparingen. Hoewel de kapitaalbudgetten een positief investeringsrendement opleverden, konden we op basis van die informatie niet verder. We hadden geen vertrouwen in onze aannames en waren bang dat we de veiligheidsvoorraad en voorraadniveaus die de software zou suggereren niet zouden kunnen rechtvaardigen.

      Wat we niet hadden verwacht, was een uitdaging van ons moederbedrijf. In het licht van de mogelijkheden van een nieuw geïmplementeerd ERP-systeem, zouden ze een nieuwe aanpak overwegen. Als we aantoonbaar betrouwbare vraagprognoses zouden kunnen maken, zouden ze overwegen om grondstoffen in te kopen en schakelcomponenten te produceren op basis van build-to-forecast in plaats van build-to-order. Dit opende de deur naar een veel diepere impact. We hebben de werkelijke cijfers gedurende een periode van twaalf maanden afgezet tegen de prognoses en ontdekten dat onze prognoses, met name in totaal, uitzonderlijk nauwkeurig waren: de werkelijke vraag lag binnen 3% van de prognose. Toen we eenmaal de geldigheid van onze prognoses konden bewijzen, konden we doorgaan met het plan van het moederbedrijf om producten te vervaardigen op basis van die prognoses.

      V: Hoe hebben nauwkeurige prognoses van productlijnen met intermitterende vraaggegevens de activiteiten van NKK getransformeerd?

      Van de vele verschillende combinaties die we op bestelling produceren, kunnen afzonderlijke onderdelen van schakelaars een zeer intermitterende vraag vertonen (lange periodes met nul bestellingen en dan schijnbaar willekeurige pieken), maar we kunnen meer consistente patronen in schakelaarreeksen identificeren. Alle onderdeelnummers in een bepaalde serie hebben gemeenschappelijke componenten en grondstoffen, zoals plastic behuizing, beugels en andere hardware, goud, zilver en LED's.

      Door onze productiefaciliteiten te voorzien van betrouwbare prognoses, konden we ingrijpende veranderingen doorvoeren. Onze fabrieken zouden kunnen beginnen met het inkopen van grondstoffen die in totaal uiteindelijk zouden worden gebruikt bij de productie van verschillende onderdeelnummers binnen die serie, zelfs als de specifieke te produceren onderdeelnummers onbekend waren op het moment dat de prognoses werden gemaakt. En in veel gevallen was het, ondanks de onregelmatige vraaggeschiedenisgegevens, voor de leveranciers zelfs mogelijk om specifieke onderdeelnummers te produceren op basis van de prognose.

      Zodra het programma volledig is geïmplementeerd, verwachten we dat onze doorlooptijden zullen worden teruggebracht tot de helft van de tijd of zelfs minder. Kortere doorlooptijden zullen resulteren in lagere bestelpunten, resulterend in hogere serviceniveaus terwijl we onze voorraadvereisten verminderen.

      Bud Schultz leidt alle financiële en boekhoudkundige functies bij NKK. Zijn achtergrond als Certified Public Accountant, advocaat, ingenieur en piloot voor de Amerikaanse luchtmacht biedt een uniek perspectief op financiën voor technische en productieactiviteiten.

      Laat een reactie achter

      gerelateerde berichten

      De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen

      De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen

      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden).

      Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning

      Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning

      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

      Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

      Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

      recente berichten

      • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
        We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
      • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
        Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
      • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
        Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
      • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
        Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
      • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
        Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
          We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
        • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
          Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
        • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
          Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
        • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
          Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]