Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Ik begin met een bekentenis: ik ben een algoritme-man. Mijn hart leeft in de ‘machinekamer’ van onze software, waar razendsnelle berekeningen heen en weer gaan door de AWS-cloud, waardoor vraag- en aanbodscenario’s worden gegenereerd die worden gebruikt als leidraad voor belangrijke beslissingen over vraagvoorspelling en voorraadbeheer.

Maar ik erken dat het doelwit van al die mooie, woedende berekeningen het brein van de baas is, de persoon die verantwoordelijk is om ervoor te zorgen dat op de meest efficiënte en winstgevende manier aan de vraag van de klant wordt voldaan. Deze blog gaat dus over Smart Operational Analytics (SOA), waarmee rapportages voor het management worden gemaakt. Of, zoals ze in het leger worden genoemd, sit-reps.

Alle berekeningen die door de planners met behulp van onze software worden begeleid, worden uiteindelijk gedestilleerd in de SOA-rapporten voor het management. De rapporten richten zich op vijf gebieden: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Voorraadanalyse

Deze rapporten houden de huidige voorraadniveaus in de gaten en identificeren gebieden die verbetering behoeven. De nadruk ligt op de huidige voorraadaantallen en hun status (voorhanden, onderweg, in quarantaine), voorraadwisselingen en excessen versus tekorten.

Voorraadprestaties

Deze rapporten houden Key Performance Indicators (KPI's) bij, zoals opvullingspercentages, serviceniveaus en voorraadkosten. De analytische berekeningen elders in de software begeleiden u bij het behalen van uw KPI-doelen door Key Performance Predictions (KPP's) te berekenen op basis van aanbevolen instellingen voor bijvoorbeeld bestelpunten en bestelhoeveelheden. Maar soms komen er verrassingen voor, of wordt het operationele beleid niet uitgevoerd zoals aanbevolen, waardoor er altijd enige discrepantie zal zijn tussen KPP's en KPI's.

Voorraadtrends

Weten waar de zaken er vandaag voor staan is belangrijk, maar zien waar de zaken zich ontwikkelen is ook waardevol. Deze rapporten onthullen trends in de vraag naar artikelen, voorraadgebeurtenissen, het gemiddelde aantal beschikbare dagen, de gemiddelde verzendtijd en meer.

Prestaties van leveranciers

Uw bedrijf kan niet optimaal presteren als uw leveranciers u naar beneden halen. Deze rapporten monitoren de prestaties van leveranciers op het gebied van de nauwkeurigheid en snelheid van het invullen van aanvullingsorders. Als u meerdere leveranciers voor hetzelfde artikel heeft, kunt u deze met elkaar vergelijken.

Vraagafwijkingen

Uw gehele voorraadsysteem is vraaggestuurd en alle voorraadbeheerparameters worden berekend na het modelleren van de artikelvraag. Dus als er iets vreemds gebeurt aan de vraagzijde, moet u waakzaam zijn en u voorbereiden op het herberekenen van zaken als min- en max-waarden voor artikelen die zich vreemd beginnen te gedragen.

Overzicht

Het eindpunt van alle enorme berekeningen in onze software is het dashboard dat het management laat zien wat er aan de hand is, wat de toekomst biedt en waar de aandacht op moet worden gevestigd. Smart Inventory Analytics is het onderdeel van ons software-ecosysteem gericht op de C-Suite van uw bedrijf.

 Smart Reporting Studio Voorraadbeheer Leveringssoftware

Figuur 1: Enkele voorbeeldrapportages in grafische vorm

 

Je moet samenwerken met de algoritmen

Ruim veertig jaar geleden bestond Smart Software uit drie vrienden die in de kelder van een kerk een bedrijf begonnen te starten. Tegenwoordig is ons team uitgebreid en opereert vanuit meerdere locaties in Massachusetts, New Hampshire en Texas, met teamleden in Engeland, Spanje, Armenië en India. Net als velen van u in uw functie hebben wij manieren gevonden om gedistribueerde teams voor ons en voor u te laten werken.

This note is about a different kind of teamwork: the collaboration between you and our software that happens at your fingertips. I often write about the software itself and what goes on “under the hood”. This time, my subject is how you should best team up with the software.

Our software suite, Smart Inventory Planning and Optimization (Smart IP&O™) is capable of massively detailed calculations of future demand and the inventory control parameters (e.g., reorder points and order quantities) that would most effectively manage that demand. But your input is required to make the most of all that power. You need to team up with the algorithms.

That interaction can take several forms. You can start by simply assessing how you are doing now. The report writing functions in Smart IP&O (Smart Operational Analytics™) can collate and analyze all your transactional data to measure your Key Performance Indicators (KPIs), both financial (e.g., inventory investment) and operational (e.g., fill rates).

The next step might be to use SIO (Smart Inventory Optimization™), the inventory analytics within SIP&O, to play “what-if” games with the software. For example, you might ask “What if we reduced the order quantity on item 1234 from 50 to 40?” The software grinds the numbers to let you know how that would play out, then you react. This can be useful, but what if you have 50,000 items to consider? You would want to do what-if games for a few critical items, but not all of them.

De echte kracht zit hem in het gebruik van de automatische optimalisatiemogelijkheden in SIO. Hier kunt u op grote schaal samenwerken met de algoritmen. Op basis van uw zakelijke oordeel kunt u “groepen” creëren, dat wil zeggen verzamelingen van items die enkele cruciale kenmerken gemeen hebben. U kunt bijvoorbeeld een groep maken voor 'kritieke reserveonderdelen voor klanten van elektriciteitsbedrijven', bestaande uit 1.200 onderdelen. Vervolgens kunt u, opnieuw op basis van uw zakelijk oordeel, specificeren welke standaard voor de beschikbaarheid van artikelen moet gelden voor alle artikelen in die groep (bijvoorbeeld: “minstens 95% kans dat de voorraad binnen een jaar niet op voorraad is”). Nu kan de software het overnemen en automatisch de beste bestelpunten en bestelhoeveelheden voor elk van deze artikelen berekenen om de gewenste artikelbeschikbaarheid tegen de laagst mogelijke totale kosten te bereiken. En dat, beste lezer, is krachtig teamwerk.

 

 

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Nauwkeurigheid wordt weergegeven als een percentage tussen nul en 100, terwijl foutpercentages bij nul beginnen maar geen bovengrens hebben. Rapporten van MAPE (gemiddelde absolute procentuele fout) of andere foutstatistieken kunnen de titel 'voorspellingsnauwkeurigheid'-rapporten krijgen, waardoor het onderscheid vervaagt. Het kan dus zijn dat u wilt weten hoe u vanuit het foutenperspectief kunt overstappen naar het nauwkeurigheidsperspectief dat uw bedrijf omarmt. In deze blog wordt aan de hand van enkele voorbeelden beschreven hoe.

Nauwkeurigheidsgegevens worden zo berekend dat wanneer de werkelijke waarde gelijk is aan de voorspelling, de nauwkeurigheid 100% is en wanneer de voorspelling het dubbele of de helft is van de werkelijke, de nauwkeurigheid 0% is. Rapporten waarin de voorspelling met de werkelijkheid wordt vergeleken, bevatten vaak het volgende:

  • De daadwerkelijke
  • De prognose
  • Eenheidsfout = Prognose – Werkelijk
  • Absolute fout = Absolute waarde van eenheidsfout
  • Absolute %-fout = Abs-fout / Werkelijk, als een %
  • Nauwkeurigheid % = 100% – Absolute %-fout

Bekijk een paar voorbeelden die het verschil in aanpak illustreren. Stel dat de Werkelijke = 8 en de voorspelling is 10.

Eenheidsfout is 10 – 8 = 2

Absolute %-fout = 2/8, als % = 0,25 * 100 = 25%

Nauwkeurigheid = 100% – 25% = 75%.

Laten we nu zeggen dat de werkelijke waarde 8 is en de voorspelling 24.

Eenheidsfout is 24– 8 = 16

Absolute %-fout = 16/8 als % = 2 * 100 = 200%

Nauwkeurigheid = 100% – 200% = negatief is ingesteld op 0%.

In het eerste voorbeeld leveren nauwkeurigheidsmetingen dezelfde informatie op als foutmetingen, aangezien de voorspelling en de werkelijke situatie al relatief dicht bij elkaar liggen. Maar als de fout meer dan het dubbele is van de werkelijke, komen de nauwkeurigheidsmetingen uit op nul. Het geeft wel correct aan dat de voorspelling helemaal niet accuraat was. Maar het tweede voorbeeld is nauwkeuriger dan een derde, waarbij de werkelijke waarde 8 is en de voorspelling 200. Dat is een onderscheid dat een nauwkeurigheidsbereik van 0 tot 100% niet registreert. In dit laatste voorbeeld:

Eenheidsfout is 200 – 8 = 192

Absolute %-fout = 192/8, als % = 24 * 100 = 2,400%

Nauwkeurigheid = 100% – 2.400% = negatief is ingesteld op 0%.

Foutstatistieken blijven informatie verschaffen over hoe ver de voorspelling afwijkt van de werkelijke en geven aantoonbaar een betere weergave van de nauwkeurigheid van de voorspelling.

Wij moedigen aan om het foutperspectief te hanteren. U hoopt eenvoudigweg op een klein foutpercentage dat aangeeft dat de voorspelling niet ver van de werkelijkheid ligt, in plaats van te hopen op een groot nauwkeurigheidspercentage dat aangeeft dat de voorspelling dicht bij de werkelijkheid ligt. Deze mentaliteitsverandering biedt dezelfde inzichten en elimineert vervormingen.

 

 

 

 

Hoe gaat het met ons? KPI's en KPP's

Het dagelijkse voorraadbeheer kan u bezig houden. Er is het gebruikelijke ritme van bestellen, ontvangen, voorspellen en plannen, en dingen verplaatsen in het magazijn. Dan zijn er de hectische tijden – tekorten, spoedgevallen, last-minute telefoontjes om nieuwe leveranciers te vinden.

Al deze activiteiten werken tegen dat je even de tijd neemt om te kijken hoe het met je gaat. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

Meerdere statistieken

Afhankelijk van uw rol in uw organisatie zullen verschillende statistieken een verschillende saillantie hebben. Als u zich bezighoudt met de financiële kant van het huis, kan het investeren in inventaris van cruciaal belang zijn: hoeveel geld zit er vast in de inventaris? Als u aan de verkoopkant werkt, kan de beschikbaarheid van artikelen een prioriteit zijn: hoe groot is de kans dat ik 'ja' kan zeggen tegen een bestelling? Als u verantwoordelijk bent voor de bevoorrading, hoeveel inkooporders moeten uw mensen dan het volgende kwartaal schrappen?

Beschikbaarheidsstatistieken

Laten we teruggaan naar de beschikbaarheid van artikelen. Hoe plak je daar een getal op? De twee meest gebruikte beschikbaarheidsstatistieken zijn ‘serviceniveau’ en ‘opvullingspercentage’. Wat is het verschil? Het is het verschil tussen zeggen: “We hebben gisteren een aardbeving gehad” en zeggen: “We hebben gisteren een aardbeving gehad, en die had een kracht van 6,4 op de schaal van Richter.” Serviceniveau registreert de frequentie van stockouts, ongeacht de omvang ervan; het opvullingspercentage weerspiegelt de ernst ervan. De twee kunnen in tegengestelde richtingen lijken te wijzen, wat voor enige verwarring zorgt. U kunt een goed serviceniveau hebben, bijvoorbeeld 90%, maar een gênant opvullingspercentage, bijvoorbeeld 50%. Of vice versa. Wat hen anders maakt, is de verdeling van de vraaggroottes. Als de verdeling bijvoorbeeld erg scheef is, dus de meeste eisen zijn klein, maar sommige zijn enorm, dan kun je de hierboven genoemde 90%/50%-verdeling krijgen. Als uw focus ligt op hoe vaak u moet nabestellen, is het serviceniveau relevanter. Als u zich zorgen maakt over hoe groot een nachtelijke expedite kan worden, is het opvullingspercentage relevanter.

Eén grafiek om ze allemaal te regeren

Een grafiek van de voorhanden voorraad kan de basis vormen voor het berekenen van meerdere KPI's. Kijk eens naar Figuur 1, waarin de grafieken een jaar lang elke dag bij de hand zijn. Dit diagram bevat informatie die nodig is om meerdere statistieken te berekenen: voorraadinvestering, serviceniveau, opvullingspercentage, bestelpercentage en andere statistieken.

Key performance indicators en parameters voor voorraadbeheer

Voorraadinvestering: de gemiddelde hoogte van de grafiek boven nul, vermenigvuldigd met de eenheidskosten van het voorraaditem, geeft een kwartaalwaarde in dollar.

Serviceniveau: Het deel van de voorraadcycli dat boven nul eindigt, is het serviceniveau. Voorraadcycli worden gekenmerkt door de opwaartse bewegingen die worden veroorzaakt door de komst van aanvullingsorders.

Opvullingspercentage: De hoeveelheid waarmee de voorraad onder nul daalt en hoe lang de voorraad daar blijft, bepalen samen het opvullingspercentage.

In dit geval was het gemiddelde aantal beschikbare eenheden 10,74, het serviceniveau 54% en het opvullingspercentage 91%.

 

KPI's en KPP's

In de ruim veertig jaar sinds we Smart Software hebben opgericht, heb ik nog nooit een klant een plot als figuur 1 zien maken. Degenen die verder in hun ontwikkeling zijn, produceren en besteden aandacht aan rapporten waarin hun KPI's in tabelvorm worden vermeld, maar dat doen ze niet' Kijk niet naar zo'n grafiek. Niettemin heeft die grafiek waarde voor het ontwikkelen van inzicht in de willekeurige ritmes van de voorraad terwijl deze stijgt en daalt.

Waar het vooral nuttig is, is prospectief. Gezien de marktvolatiliteit verschuiven belangrijke variabelen zoals de doorlooptijden van leveranciers, de gemiddelde vraag en de variabiliteit van de vraag allemaal in de loop van de tijd. Dit impliceert dat belangrijke controleparameters zoals bestelpunten en bestelhoeveelheden zich aan deze verschuivingen moeten aanpassen. Als een leverancier bijvoorbeeld zegt dat hij zijn gemiddelde doorlooptijd met twee dagen moet verlengen, heeft dit een negatieve invloed op uw statistieken en moet u mogelijk uw bestelpunt verhogen om dit te compenseren. Maar met hoeveel verhogen?

Hier komt moderne inventarisatiesoftware om de hoek kijken. Hiermee kunt u een aanpassing voorstellen en vervolgens zien hoe de zaken zullen verlopen. Percelen zoals Figuur 1 laten je het nieuwe regime zien en er een gevoel voor krijgen. En de grafieken kunnen worden geanalyseerd om KPP's te berekenen: Key Performance Predictions.

De hulp van KPP maakt het giswerk bij aanpassingen overbodig. U kunt simuleren wat er met uw KPI's zal gebeuren als u deze wijzigt als reactie op veranderingen in uw werkomgeving – en hoe slecht de situatie zal zijn als u geen wijzigingen aanbrengt.

 

 

 

 

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Wat is en wat niet

Wat is AI en waarin verschilt het van ML? Wat doet iemand tegenwoordig als hij iets wil weten? Ze Googlen het. En als ze dat doen, begint de verwarring.

Eén bron zegt dat de neurale netmethodologie, deep learning genaamd, een subset is van machine learning, een subset van AI. Maar een andere bron zegt dat deep learning al een onderdeel is van AI, omdat het min of meer de manier nabootst waarop de menselijke geest werkt, terwijl machinaal leren dat niet probeert.

Eén bron zegt dat er twee soorten machinaal leren zijn: onder toezicht en zonder toezicht. Een ander zegt dat er vier zijn: onder toezicht, zonder toezicht, semi-onder toezicht en versterking.

Sommigen zeggen dat versterkend leren machinaal leren is; anderen noemen het AI.

Sommigen van ons, traditionalisten, noemen veel ervan ‘statistieken’, hoewel dat niet allemaal zo is.

Bij het benoemen van methoden is veel ruimte voor zowel emotie als verkoopvaardigheid. Als een softwareleverancier denkt dat je de term ‘AI’ wilt horen, kan het zijn dat hij/zij dat voor je zegt, alleen maar om je blij te maken.

Het is beter om je te concentreren op wat er uiteindelijk uitkomt

Je kunt een verwarrende hype vermijden als je je concentreert op het eindresultaat dat je krijgt van een analytische technologie, ongeacht het label ervan. Er zijn verschillende analytische taken die relevant zijn voor voorraadplanners en vraagplanners. Deze omvatten clustering, detectie van afwijkingen, detectie van regimeveranderingen en regressieanalyse. Alle vier de methoden worden gewoonlijk, maar niet altijd, geclassificeerd als methoden voor machinaal leren. Maar hun algoritmen kunnen rechtstreeks uit de klassieke statistiek komen.

Clustering

Clusteren betekent het groeperen van dingen die op elkaar lijken en het distantiëren ervan van dingen die niet op elkaar lijken. Soms is clusteren eenvoudig: om uw klanten geografisch te scheiden, sorteert u ze eenvoudigweg op staat of verkoopregio. Als het probleem niet zo voor de hand liggend is, kun je data- en clusteralgoritmen gebruiken om de klus automatisch te klaren, zelfs als je met enorme datasets te maken hebt.

Figuur 1 illustreert bijvoorbeeld een cluster van “vraagprofielen”, die in dit geval alle artikelen van een klant in negen clusters verdeelt, op basis van de vorm van hun cumulatieve vraagcurven. Cluster 1.1 linksboven bevat items waarvan de vraag is afgenomen, terwijl Cluster 3.1 linksonder items bevat waarvan de vraag is toegenomen. Clusteren kan ook op leveranciers. De keuze van het aantal clusters wordt doorgaans overgelaten aan het oordeel van de gebruiker, maar ML kan die keuze begeleiden. Een gebruiker kan de software bijvoorbeeld de opdracht geven om “mijn onderdelen in vier clusters op te splitsen”, maar het gebruik van ML kan aan het licht brengen dat er in werkelijkheid zes verschillende clusters zijn die de gebruiker moet analyseren. 

 

Verward over AI en Machine Learning-inventarisplanning

Figuur 1: Artikelen clusteren op basis van de vorm van hun cumulatieve vraag

Onregelmatigheidsdetectie

Vraagvoorspelling wordt traditioneel gedaan met behulp van tijdreeksextrapolatie. Eenvoudige exponentiële afvlakking werkt bijvoorbeeld om op elk moment het ‘midden’ van de vraagverdeling te vinden en dat niveau naar voren te projecteren. Als er in het recente verleden echter een plotselinge, eenmalige stijging of daling van de vraag heeft plaatsgevonden, kan die afwijkende waarde een aanzienlijk maar onwelkom effect hebben op de kortetermijnvoorspellingen. Net zo ernstig voor de voorraadplanning, kan de anomalie een buitensporig effect hebben op de schatting van de variabiliteit van de vraag, wat rechtstreeks doorgaat naar de berekening van de veiligheidsvoorraadvereisten.

Planners geven er misschien de voorkeur aan dergelijke afwijkingen op te sporen en te verwijderen (en misschien offline follow-up te doen om de reden voor de vreemdheid te achterhalen). Maar niemand die een grote klus te klaren heeft, zal duizenden vraagdiagrammen visueel willen scannen om uitschieters op te sporen, deze uit de vraaggeschiedenis te verwijderen en vervolgens alles opnieuw te berekenen. De menselijke intelligentie zou dat kunnen doen, maar het menselijk geduld zou spoedig ophouden. Algoritmen voor het detecteren van afwijkingen zouden het werk automatisch kunnen doen met behulp van relatief eenvoudige statistische methoden. Je zou dit ‘kunstmatige intelligentie’ kunnen noemen als je dat wilt.

Detectie van regimewijzigingen

Detectie van regimeveranderingen is als de grote broer van anomaliedetectie. Regimeverandering is een aanhoudende, in plaats van tijdelijke, verschuiving in een of meer aspecten van het karakter van een tijdreeks. Terwijl de detectie van afwijkingen zich gewoonlijk richt op plotselinge verschuivingen in de gemiddelde vraag, kan een regimeverandering verschuivingen in andere kenmerken van de vraag met zich meebrengen, zoals de volatiliteit of de verdelingsvorm ervan.  

Figuur 2 illustreert een extreem voorbeeld van regimeverandering. Rond dag 120 daalde de vraag naar dit artikel op de bodem. Het voorraadbeheerbeleid en de vraagvoorspellingen op basis van de oudere gegevens zouden aan het einde van de vraaggeschiedenis enorm afwijken van de basis.

Verward over AI en Machine Learning Vraagplanning

Figuur 2: Een voorbeeld van extreme regimeverandering in een artikel met een intermitterende vraag

Ook hier kunnen statistische algoritmen worden ontwikkeld om dit probleem op te lossen, en het zou eerlijk zijn om ze ‘machine learning’ of ‘kunstmatige intelligentie’ te noemen als ze daartoe gemotiveerd zijn. Door ML of AI te gebruiken om regimeveranderingen in de vraaggeschiedenis te identificeren, kan software voor vraagplanning automatisch alleen de relevante geschiedenis gebruiken bij het voorspellen, in plaats van handmatig de hoeveelheid geschiedenis te moeten kiezen die in het model moet worden geïntroduceerd. 

Regressie analyse

Regressieanalyse relateert de ene variabele aan de andere via een vergelijking. De verkoop van kozijnen in één maand kan bijvoorbeeld worden voorspeld op basis van bouwvergunningen die een paar maanden eerder zijn afgegeven. Regressieanalyse wordt al meer dan een eeuw beschouwd als onderdeel van de statistiek, maar we kunnen zeggen dat het ‘machine learning’ is, aangezien een algoritme de precieze manier uitwerkt om kennis van de ene variabele om te zetten in een voorspelling van de waarde van een andere.

Overzicht

Het is redelijk om geïnteresseerd te zijn in wat er gebeurt op het gebied van machinaal leren en kunstmatige intelligentie. Hoewel de aandacht die aan ChatGPT en zijn concurrenten wordt besteed interessant is, is deze niet relevant voor de numerieke kant van vraagplanning of voorraadbeheer. De numerieke aspecten van ML en AI zijn potentieel relevant, maar je moet proberen de wolk van hype rond deze methoden te doorzien en je te concentreren op wat ze kunnen doen. Als u de klus kunt klaren met klassieke statistische methoden, kunt u dat misschien ook doen, en vervolgens uw optie uitoefenen om het ML-label op alles wat beweegt te plakken.