1-800-SMART-99
Selecteer een pagina

# Het nastreven van best practices op het gebied van vraagplanning,

Demand planning takes time and effort. It’s worth the effort to the extent that it actually helps you make what you need when you need it.

But the job can be done well or poorly. We see many manufacturers stopping at the first level when they could easily go to the second level. And with a little more effort, they could go all the way to the third level, utilizing probabilistic modeling to convert demand planning results into an inventory optimization process.

## The First Level

The first level is making a demand forecast using statistical methods. Figure 1 shows a first level effort: an item’s demand history (red line) and its expected 12-month forecast (green line).

The forecast is bare bones. It only projects expected demand ignoring that demand is volatile and will inevitably create forecast error. (This is another example of an important maxim: “The Average is Not the Answer”). The forecast is as likely to be too high as it is to be too low, and there is no indication of forecast uncertainty accompanying the forecast. This means the planner has no estimate of the risk associated with committing to the forecast. Still, this forecast does provide a rational basis for production planning, personal scheduling, and raw materials purchase. So, it’s much better than guessing.

## The Second Level

The second level takes explicit account of forecast uncertainty. Figure 2 shows a second level effort, known as a “percentile forecast”.

Now we see an explicit indication of forecast uncertainty. The cyan line above the green forecast line represents the projected 90th percentile of monthly demand. That is, the demand in each future month has a 90% chance of falling at or below the cyan line. Put another way, there is a 10% chance of demand exceeding the cyan line in each month.

This analysis is much more useful because it supports risk management. If it is important to assure sufficient supply of this item, then it makes sense to produce to the 90th percentile instead of to the expected forecast. After all, it’s a coin flip as to whether the expected forecast will result in enough production to meet monthly demand. This second level forecast is, in effect, a rough substitute for a careful inventory management process.

Figure 2. A percentile forecast, where the cyan line estimates the 90th percentiles of monthly demand.

## Going All the Way to the Third Level

Best practice is the Third Level, which uses demand planning as a foundation for completing a second task: explicit inventory optimization. Figure 3 shows the fundamental plot for the efficient management of our finished good, assuming it has a 1 month production lead time.

Figure 3 shows the utilization of probabilistic forecasting and how much draw-down in finished good inventory might take place over a one month production lead time. The uncertainty in demand is apparent in the spread of the possible demand, from a low of 0 to a high of 35, with 15 units being the most likely value. The vertical red line at 22 indicates the “reorder point“ (or “min” or “trigger value”) corresponding to keeping the chance of stocking out while waiting for replenishment to a low 5%. When inventory drops to 22 or below, it is time to order more. The Third Level uses probabilistic demand forecasting with full exposure of forecast uncertainty to efficiently manage the stock of the finished product.

## To Sum Up

Forecasting the most likely demand for an item is a useful first step. It gets you halfway to where you want to be. But it provides an incomplete guide to planning because it ignores demand volatility and the forecast uncertainty that it creates. Adding a cushion to the demand forecast gets you further along, because it lessen the risk that a jump in demand will leave you short of product. This cushion can be calculated by probabilistic forecasting approaches that forecasts a high percentile of the distribution of future demand. And if you want to take one step further, you can feed forecasts of the demand distribution over a lead time to calculate reorder points (mins) to ensure that you have an acceptably low level of stock-out risk.

Given what modern forecasting technology can do for you, why would you want to stop halfway to your goal?

Laat een reactie achter

gerelateerde berichten

## Smart Software presenteert op Community Summit Noord-Amerika

Channel Sales Director en Enterprise Solution Engineer van Smart Software, presenteert dit jaar drie sessies op het Microsoft Dynamics Community Summit North America-evenement in Orlando, FL.
.

## Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

Smart Software, zal een webinar van 30 minuten leiden als onderdeel van het WERC Solutions Partner Program. De presentatie zal zich richten op hoe een toonaangevend elektriciteitsbedrijf Smart Inventory Planning and Optimization (Smart IP&O) implementeerde als onderdeel van het strategische supply chain-optimalisatie-initiatief (SCO) van het bedrijf.

## Bel een Audible om proactief ruis in de supply chain tegen te gaan

U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

#### recente berichten

• Extend Epicor Prophet 21 with Smart IP&O’s Forecasting & Dynamic Reorder Point Planning
Smart Inventory Planning & Optimization (Smart IP&O) can help with inventory ordering functionality in Epicor P21, reduce inventory, minimize stockouts and restore your organization’s trust by providing robust predictive analytics, consensus-based forecasting, and what-if scenario planning. […]
• Supply Chain Math: Don’t Bring a Knife to a Gunfight
Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
• Service Parts Planning: Planning for consumable parts vs. Repairable Parts
When deciding on the right stocking parameters for spare and replacement parts, it is important to distinguish between consumable and repairable servoce parts. These differences are often overlooked by inventory planning software and can result in incorrect estimates of what to stock. Different approaches are required when planning for consumables vs. repairable service parts. […]
• Vier veelgemaakte fouten bij het plannen van aanvullingsdoelen
Hoe vaak herkalibreert u uw voorraadbeleid? Waarom? Leer hoe u belangrijke fouten kunt vermijden bij het plannen van aanvullingsdoelen door het proces te automatiseren, onderdelen opnieuw te kalibreren, targeting-prognosemethoden te gebruiken en uitzonderingen te bekijken. […]
• Breid de prognoses en min/max-planning van Epicor Kinetic uit met Smart IP&O
Epicor Kinetic kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Het probleem is dat het ERP-systeem vereist dat de gebruiker deze bestelpunten handmatig specificeert, of een rudimentaire "vuistregel"-aanpak gebruikt op basis van dagelijkse gemiddelden. In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor Kinetic bespreken, de beperkingen ervan uitleggen en samenvatten hoe de voorraad kan worden verminderd en de voorraad kan worden geminimaliseerd door de robuuste voorspellende functionaliteit te bieden die ontbreekt in Epicor. […]

#### Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

• Algemene bestellingen
Onze klanten zijn geweldige docenten die ons altijd hebben geholpen de kloof tussen leerboektheorie en praktische toepassing te overbruggen. Een goed voorbeeld gebeurde meer dan twintig jaar geleden, toen we kennismaakten met het fenomeen van intermitterende vraag, dat veel voorkomt bij reserveonderdelen, maar zeldzaam is bij de afgewerkte producten die worden beheerd door onze oorspronkelijke klanten die werkzaam zijn in verkoop en marketing. Deze onthulling leidde al snel tot onze vooraanstaande positie als leveranciers van software voor het beheren van voorraden reserveonderdelen. Ons laatste stukje scholing betreft 'algemene bestellingen'. […]
• Probabilistische prognoses voor intermitterende vraag
De nieuwe prognosetechnologie is afgeleid van probabilistische prognoses, een statistische methode die zowel de gemiddelde productvraag per periode als de voorraadbehoeften op het niveau van de klantenservice nauwkeurig voorspelt. […]
• Engineering op bestelling bij Kratos Space - beschikbaarheid van onderdelen een strategisch voordeel maken
De Kratos Space-groep binnen National Security-technologie-innovator Kratos Defense & Security Solutions, Inc., produceert COTS-software en componentproducten voor ruimtecommunicatie - waardoor de beschikbaarheid van onderdelen een strategisch voordeel wordt […]
• Beheer van de inventaris van gepromote artikelen
In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing. […]

English
English
Spanish
Dutch