De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door prognosefouten te meten. We beginnen met een overzicht van de verschillende soorten foutstatistieken: schaalafhankelijke fout, procentuele fout, relatieve fout en schaalvrije foutstatistieken. Hoewel sommige fouten onvermijdelijk zijn, zijn er manieren om deze te verminderen, en prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid. Vervolgens zullen we het speciale probleem van de intermitterende vraag en de deel-door-nul-problemen uitleggen. Tom besluit door uit te leggen hoe je prognoses van meerdere items kunt beoordelen en hoe het vaak zinvol is om gewogen gemiddelden te gebruiken, waarbij items verschillend worden gewogen op basis van volume of omzet.

 

Vier algemene typen foutstatistieken 

1. Schaalafhankelijke fout
2. Percentage fout
3. Relatieve fout
4. Schaalvrije fout

Opmerking: Schaalafhankelijke metrieken worden uitgedrukt in de eenheden van de voorspelde variabele. De andere drie worden uitgedrukt als percentages.

 

1. Schaalafhankelijke foutstatistieken

  • Mean Absolute Error (MAE) ook wel Mean Absolute Deviation (MAD) genoemd
  • Mediane absolute fout (MdAE)
  • Root Mean Square-fout (RMSE)
  • Deze statistieken drukken de fout uit in de oorspronkelijke eenheden van de gegevens.
    • Bijv: eenheden, kisten, vaten, kilogrammen, dollars, liters, enz.
  • Aangezien prognoses te hoog of te laag kunnen zijn, zullen de tekenen van de fouten zowel positief als negatief zijn, waardoor ongewenste annuleringen mogelijk zijn.
    • Bijv.: u wilt niet dat fouten van +50 en -50 worden geannuleerd en "geen fout" weergeven.
  • Om het annuleringsprobleem aan te pakken, nemen deze statistieken negatieve tekens weg door kwadratuur of absolute waarde te gebruiken.

 

2. Percentage foutmetriek

  • Gemiddelde absolute procentuele fout (MAPE)
  • Deze metriek drukt de grootte van de fout uit als een percentage van de werkelijke waarde van de voorspelde variabele.
  • Het voordeel van deze aanpak is dat het meteen duidelijk maakt of de fout een groot probleem is of niet.
  • Bijv.: stel dat de MAE 100 eenheden is. Is een typische fout van 100 eenheden verschrikkelijk? OK? groot?
  • Het antwoord hangt af van de grootte van de variabele die wordt voorspeld. Als de werkelijke waarde 100 is, dan is een MAE = 100 zo groot als het ding dat wordt voorspeld. Maar als de werkelijke waarde 10.000 is, dan toont een MAE = 100 een grote nauwkeurigheid, aangezien de MAPE slechts 1% is van de werkelijke waarde.

 

3. Relatieve foutmetriek

  • Mediane relatieve absolute fout (MdRAE)
  • Ten opzichte van wat? Naar een benchmarkprognose.
  • Welke maatstaf? Meestal de "naïeve" voorspelling.
  • Wat is de naïeve voorspelling? Volgende prognosewaarde = laatste werkelijke waarde.
  • Waarom de naïeve voorspelling gebruiken? Want als je daar niet tegen kunt, zit je in een zware vorm.

 

4. Schaalvrije foutmetriek

  • Mediane relatief geschaalde fout (MdRSE)
  • Deze statistiek drukt de absolute voorspellingsfout uit als een percentage van het natuurlijke niveau van willekeur (volatiliteit) in de gegevens.
  • De volatiliteit wordt gemeten door de gemiddelde grootte van de verandering in de voorspelde variabele van de ene tijdsperiode naar de volgende.
    • (Dit is dezelfde als de fout gemaakt door de naïeve voorspelling.)
  • Hoe verschilt deze statistiek van de bovenstaande MdRAE?
    • Ze gebruiken allebei de naïeve prognose, maar deze statistiek gebruikt fouten bij het voorspellen van de vraaggeschiedenis, terwijl de MdRAE fouten gebruikt bij het voorspellen van toekomstige waarden.
    • Dit is van belang omdat er meestal veel meer historische waarden zijn dan er voorspellingen zijn.
    • Dat is op zijn beurt weer van belang omdat deze statistiek zou "ontploffen" als alle gegevens nul waren, wat minder waarschijnlijk is bij gebruik van de vraaggeschiedenis.

 

Intermittent Demand Planning en Parts Forecasting

 

Het speciale probleem van intermitterende vraag

  • "Intermitterende" vraag heeft veel nul-eisen vermengd met willekeurige niet-nul-eisen.
  • MAPE wordt geruïneerd wanneer fouten worden gedeeld door nul.
  • MdRAE kan ook kapot gaan.
  • MdSAE zal minder snel kapot gaan.

 

Samenvatting en opmerkingen

  • Prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid.
  • Er zijn twee hoofdklassen van statistieken: absoluut en relatief.
  • Absolute metingen (MAE, MdAE, RMSE) zijn natuurlijke keuzes bij het beoordelen van prognoses van één item.
  • Relatieve metingen (MAPE, MdRAE, MdSAE) zijn nuttig bij het vergelijken van de nauwkeurigheid tussen items of tussen alternatieve prognoses van hetzelfde item of bij het beoordelen van de nauwkeurigheid ten opzichte van de natuurlijke variabiliteit van een item.
  • Intermitterende vraag levert problemen met delen door nul op die MdSAE verkiezen boven MAPE.
  • Bij het beoordelen van prognoses van meerdere items is het vaak zinvol om gewogen gemiddelden te gebruiken, waarbij items anders worden gewogen op basis van volume of omzet.
Laat een reactie achter

RECENTE BERICHTEN

Onregelmatige operaties

Onregelmatige operaties

This blog is about “irregular operations.” Smart Software is in the process of adapting our products to help you cope with your own irregular ops. This is a preview.

De kosten van spreadsheetplanning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Vind uw plek op de voorraadafwegingscurve

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

recente berichten

  • Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamhedenOnregelmatige operaties
    This blog is about “irregular operations.” Smart Software is in the process of adapting our products to help you cope with your own irregular ops. This is a preview. […]
  • Epicor AI-voorspellings- en inventaristechnologie gecombineerd met plannerkennis voor inzichtenSlimme software gepresenteerd op Epicor Insights 2024
    Smart Software zal dit jaar aanwezig zijn op het Epicor Insights-evenement in Nashville. Als u van plan bent dit jaar aanwezig te zijn, bezoek dan stand #13 of #501 en leer meer over Epicor Smart Inventory Planning and Optimization. . […]
  • Op zoek naar problemen met uw voorraadgegevensOp zoek naar problemen met uw voorraadgegevens
    In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. […]
  • BAF Case Study SIOP-planning DistributiecentrumBig Ass-fans wenden zich tot slimme software naarmate de vraag toeneemt
    Big Ass Fans is de best verkopende fabrikant van grote ventilatoren ter wereld en levert comfort in ruimtes waar comfort onmogelijk lijkt. BAF had een probleem: hoe kon de productie betrouwbaar worden gepland om aan de vraag te voldoen. BAF ervoer een kloof tussen de prognoses van boekingen en de verzendingen, en dit had gevolgen voor de omzet en de klanttevredenheid. BAF wendde zich tot Smart Software voor hulp. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]