De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Quants and Financial Meltdowns

I spend much of my time developing new quantitative methods for statistical forecasting, demand forecasting and inventory optimization. For me, this is an engaging way to contribute to society. But I know that the most prudent way to do algorithm development is to stand a little to the side and cast a skeptical eye on my own work.

The need for this skepticism was highlighted for me recently as I read Scott Patterson’s book The Quants: How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It (Crown Publishing, 2010). This book reviewed the “quants” whose complex financial models were largely responsible for the financial meltdown in 2007. As I read along and thought “What was wrong with these guys?” I began to wonder if we supply chain quants were guilty of some of the same sins.

Models versus Instincts

Over het algemeen is het supply chain-veld achtergebleven bij het gebruik van statistische modellen. Mijn universiteitscollega's en ik zijn daar mee bezig, maar we hebben nog een lange weg te gaan. Sommige toeleveringsketens zijn technisch behoorlijk geavanceerd, maar veel, misschien meer, worden in wezen net zo goed door onderbuikgevoel als door cijfers beheerd. Is dit vermijden van analyse veiliger dan te vertrouwen op modellen?

What makes gut instinct dangerous is that it is so amorphous. Everyone who works long in a job develops instincts, but longevity is not the same as wisdom. It is possible to learn all the wrong lessons over a long career. It is also possible to miss the chance to learn the right lessons because certain informative scenarios may never arise in one person’s career. It is also possible to have good days and bad days; even gurus can mess up. Gut instinct is also anti-productive, since all decisions have to pass through that one gut, which becomes an enterprise chokepoint. And Golden Guts eventually reach their Golden Years and take their Golden Watch and go off into a Golden Sunset; at that point, whatever expertise had been present has walked out the door.

In contrast, models have certain advantages. Relative to gut instinct, models are:

  • Explicit: The theory of the supply chain operation is exposed for all to see.
  • Adaptive: Because the theory is visible, it can be reviewed, critiqued, tested against data, and evolved.
  • Consistent: Models may be more or less true, but they are not subject to day-to-day variability.
  • Comprehensive: At least potentially, models can accumulate a wide range of empirical experience, including scenarios never encountered during any one person’s career.
  • Instructive: Models are collections of relationships among variables. If the model’s “guts” are made visible, users can learn about those relationships.

Model Error

Nevertheless, despite all their virtues, models can also be wrong. In fact, that is a given. A constructive way to live with this is encoded in the famous aphorism by Dr. George Box, one of the best modelers of the last half century: “All models are wrong. Some are useful.”

The finance quants’ models were wrong by being oversimplified. They started with a quasi-religious belief in the efficiency of markets and developed statistical models that made certain assumptions that were more likely to be true of the physical world than the financial world. Among these were Normal distributions of changes in asset prices and independence of events across various corners of the market. They also assumed human rationality.

It should be a bit alarming that the Normal distribution and independence assumptions also underlie many of the models in supply chain software. In fact, there are alternative models of supply chain dynamics that do not require these simplifying assumptions, so this is an unnecessary risk being run by many, perhaps most, of the users of supply chain software.

But even with more robust and realistic model assumptions, there is no denying that model error is a constant risk. So, can you be victimized by your models? Of course you can.

Self-Protection: Look at the Data

Every supply chain professional who uses models, then, is subject to model risk. But unlike with decisions based on gut feel, decisions based on model calculations can be exposed and compared to real-world outcomes. Repeated checking is the best way to protect against model error, because it not only tests whether the model is realistic but also signals when it is time to update the model.

As noted above, a model is a set of functional relationships between key variables. Those relationships have parameters that tune the model to the current operating context. For instance, supply chain models often rely, in part, on estimates of demand volatility. Historical demand data are used to calculate numerical values for these parameters. If demand volatility changes, the model becomes obsolete and likely to produce inapt recommendations. Therefore, good practice demands frequent updates to model parameters.

Even when parameter values are current, there may still be trouble due to incorrect functional relationships. For example, consider the relationship between the mean and standard deviation of demand for spare parts. Generally speaking, the greater the average demand, the greater the demand volatility as measured by the standard deviation.

Now consider simplified “old school” models that describe spare part demand as a Poisson process. The Poisson process is widely useful and relatively simple, so it often shows up in Statistics 101 classes. Because of their relative simplicity, Poisson models are the white rats of supply chain analytics for spare parts, i.e., people do computer experiments and theory development based on the behavior of Poisson models of demand. For Poisson models, the standard deviation of demand equals the square root of the mean. However, when we look at our customers’ actual demand data, we discover that the actual relationship between the mean and standard deviation of demand is better described by a more general power-law relationship. Thus, the simple model may use accurate estimates of mean and standard deviation but still not accurately reflect their relationship. This in turn leads to incorrect recommendations about reorder points for spare parts. Checking real data is the best antidote to cavalier assumption-making.

 

What to Do Next

I do not sense that today’s supply chain models are on the brink of creating the kind of meltdown we saw in the start of the Great Recession. But those of us who are supply chain quants need to show more professional maturity than our financial colleagues. We need to not fall in love with our models, and we need to alert our customers to correct model hygiene.

So, model users, wash your hands frequently as we begin flu season, and wash your models thoroughly through hard data to be sure that the models you rely on are both up-to-date and grounded in reality. Both those steps will protect you from being victimized by your models and let you exploit their advantages over management by gut feel.

Appendix: Technical Tips

Supply chain analytics provide various types of outputs. In the realm of forecasting and demand planning, the obvious empirical check is to compare forecasts against the actual demand values that eventually reveal themselves. This same “forecast then check” approach can also be used in the generation of forecasts.  In the realm of inventory management, the models can build on forecasts to recommend policy choices, such as reorder points and order quantities or Min and Max values. There is a smart way to confirm the accuracy of recommendations of reorder points and Min’s.  See our blog De juiste prognosenauwkeurigheidsmetriek voor voorraadplanning

 

Laat een reactie achter

gerelateerde berichten

Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

Smart Software, zal een webinar van 30 minuten leiden als onderdeel van het WERC Solutions Partner Program. De presentatie zal zich richten op hoe een toonaangevend elektriciteitsbedrijf Smart Inventory Planning and Optimization (Smart IP&O) implementeerde als onderdeel van het strategische supply chain-optimalisatie-initiatief (SCO) van het bedrijf.

Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

De toeleveringsketen is de schuld geworden van bijna elk industrieel of kleinhandelsprobleem. Tekorten aan doorlooptijdvariabiliteit, slechte prognoses en problemen met slechte gegevens zijn levensfeiten, maar voorraadhoudende organisaties worden vaak verrast wanneer een van deze problemen zich voordoet. Dus nogmaals, wie is verantwoordelijk voor de chaos in de toeleveringsketen? Blijf deze blog lezen en we zullen proberen u te laten zien hoe u producttekorten en overstocking kunt voorkomen.

recente berichten

  • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
    Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
  • Rijpe bebaarde monteur in uniform onderzoekt de machine en repareert deze in de fabriekPlanning voor verbruiksgoederen vs. herstelbare onderdelen
    Bij het bepalen van de juiste opslagparameters voor reserve- en vervangingsonderdelen, is het belangrijk om onderscheid te maken tussen verbruiks- en repareerbare onderdelen. Deze verschillen worden vaak over het hoofd gezien door software voor voorraadplanning en kunnen resulteren in onjuiste schattingen van wat er op voorraad moet worden gehouden. Er zijn verschillende benaderingen vereist bij het plannen van verbruiksartikelen versus herstelbare artikelen. […]
  • Vier veelgemaakte fouten bij het plannen van aanvullingsdoelenVier veelgemaakte fouten bij het plannen van aanvullingsdoelen
    Hoe vaak herkalibreert u uw voorraadbeleid? Waarom? Leer hoe u belangrijke fouten kunt vermijden bij het plannen van aanvullingsdoelen door het proces te automatiseren, onderdelen opnieuw te kalibreren, targeting-prognosemethoden te gebruiken en uitzonderingen te bekijken. […]
  • Smart Software introduceert met genoegen onze serie webinars, exclusief aangeboden voor Epicor-gebruikers.Breid de prognoses en min/max-planning van Epicor Kinetic uit met Smart IP&O
    Epicor Kinetic kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Het probleem is dat het ERP-systeem vereist dat de gebruiker deze bestelpunten handmatig specificeert, of een rudimentaire "vuistregel"-aanpak gebruikt op basis van dagelijkse gemiddelden. In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor Kinetic bespreken, de beperkingen ervan uitleggen en samenvatten hoe de voorraad kan worden verminderd en de voorraad kan worden geminimaliseerd door de robuuste voorspellende functionaliteit te bieden die ontbreekt in Epicor. […]
  • Op scenario's gebaseerde prognoses versus vergelijkingenOp scenario's gebaseerde prognoses versus vergelijkingen
    Van oudsher heeft software gediend als een leveringsvehikel voor vergelijkingen. Dit is prima, voor zover het gaat. Maar wij bij Smart Software denken dat u er beter aan doet door uw vergelijkingen in te ruilen voor scenario's. Ontdek waarom op scenario's gebaseerde planning planners helpt om risico's beter te beheren en betere resultaten te behalen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Algemene bestellingen Slimme softwarevraag en voorraadplanning HDAlgemene bestellingen
      Onze klanten zijn geweldige docenten die ons altijd hebben geholpen de kloof tussen leerboektheorie en praktische toepassing te overbruggen. Een goed voorbeeld gebeurde meer dan twintig jaar geleden, toen we kennismaakten met het fenomeen van intermitterende vraag, dat veel voorkomt bij reserveonderdelen, maar zeldzaam is bij de afgewerkte producten die worden beheerd door onze oorspronkelijke klanten die werkzaam zijn in verkoop en marketing. Deze onthulling leidde al snel tot onze vooraanstaande positie als leveranciers van software voor het beheren van voorraden reserveonderdelen. Ons laatste stukje scholing betreft 'algemene bestellingen'. […]
    • Plaats stukken met de hand om een pijl te bouwenProbabilistische prognoses voor intermitterende vraag
      De nieuwe prognosetechnologie is afgeleid van probabilistische prognoses, een statistische methode die zowel de gemiddelde productvraag per periode als de voorraadbehoeften op het niveau van de klantenservice nauwkeurig voorspelt. […]
    • Engineering op bestelling bij Kratos Space - beschikbaarheid van onderdelen een strategisch voordeel maken
      De Kratos Space-groep binnen National Security-technologie-innovator Kratos Defense & Security Solutions, Inc., produceert COTS-software en componentproducten voor ruimtecommunicatie - waardoor de beschikbaarheid van onderdelen een strategisch voordeel wordt […]
    • houten-figuren-van-mensen-en-een-magneet-team-management-magazijninventarisBeheer van de inventaris van gepromote artikelen
      In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing. […]