El vicepresidente de investigación de Smart Software presentará en la conferencia Business Analytics, INFORMS 2022

El Dr. Tom Willemain dirigirá la sesión INFORMSDominando el campo de batalla del inventario: luchando contra la aleatoriedad con la aleatoriedad.”

Belmont, Massachusetts, marzo de 2022 – Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que Tom Willemain, vicepresidente de investigación, presentará en la conferencia INFORMS Business Analytics, del 3 al 5 de abril de 2022, en Houston, TX.

El Dr. Willemain presentará una sesión sobre cómo los análisis de próxima generación arman a los líderes de la cadena de suministro en fabricación, distribución y MRO con herramientas para luchar contra la aleatoriedad en la demanda y el suministro. Durante su sesión detallará las siguientes tecnologías:

(1) Filtrado de cambio de régimen para mantener la relevancia de los datos frente a cambios repentinos en el entorno operativo.

(2) Métodos de arranque para generar grandes cantidades de demanda realista y escenarios de tiempo de entrega para alimentar modelos.

(3) Simulaciones de eventos discretos para procesar los escenarios de entrada y exponer los vínculos entre las acciones de gestión y los indicadores clave de rendimiento.

(4) Optimización estocástica basada en experimentos de simulación para ajustar cada elemento para obtener los mejores resultados.

Sin los análisis, los propietarios del inventario tienen dos opciones: apegarse a políticas operativas rígidas, generalmente basadas en reglas generales obsoletas e inválidas, o recurrir a conjeturas subjetivas e intuitivas que pueden no ayudar y no escalan.

Como la principal Conferencia de Business Analytics, INFORMS brinda la oportunidad de interactuar con los mejores investigadores y profesionales de pronósticos del mundo. La asistencia es lo suficientemente grande como para atraer a los mejores en el campo, pero lo suficientemente pequeña como para reunirse y discutir uno a uno. Además, la conferencia presenta contenido de los principales profesionales de análisis que comparten y muestran las principales aplicaciones de análisis que salvan vidas, ahorran dinero y resuelven problemas.

 

Acerca del Dr. Thomas Willemain

El Dr. Thomas Reed Willemain se desempeñó como consultor experto en estadística de la Agencia de Seguridad Nacional (NSA) en Ft. Meade, MD, y como miembro del personal de investigación adjunto en un grupo de expertos afiliado, el Instituto para el Centro de Análisis de Defensa para las Ciencias de la Computación (IDA/CCS). Es profesor emérito de ingeniería industrial y de sistemas en el Instituto Politécnico Rensselaer, y anteriormente ocupó cargos docentes en la Escuela de Gobierno Kennedy de Harvard y el Instituto de Tecnología de Massachusetts. También es cofundador y vicepresidente sénior/investigación de Smart Software, Inc. Es miembro de la Asociación de ex oficiales de inteligencia, la Sociedad de investigación de operaciones militares, la Asociación estadounidense de estadística y varias otras organizaciones profesionales. Willemain recibió el título de BSE (summa cum laude, Phi Beta Kappa) de la Universidad de Princeton y el MS y Ph.D. grados del Instituto de Tecnología de Massachusetts. Sus otros libros incluyen: Métodos estadísticos para planificadores, Análisis de sistemas médicos de emergencia (con RC Larson) y 80 artículos en revistas revisadas por pares sobre estadísticas, investigación operativa, atención médica y otros temas. Para obtener más información, envíe un correo electrónico a: TomW@SmartCorp.com o visite www.TomWillemain.com.

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS y The American Red Cross. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de forma intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en la World Wide Web en www.smartcorp.com.

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.

Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

 

El vicepresidente de investigación de Smart Software presentará en la conferencia Business Analytics, INFORMS 2021

El Dr. Tom Willemain dirigirá la sesión INFORMS sobre Generación de Escenarios Probabilísticos de Series Temporales

Belmont, Mass., marzo de 2021: Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que Tom Willemain, vicepresidente de investigación, presentará en la Conferencia de análisis de negocios Virtual INFORMS 2021 del 12 al 14 de abril.

El Dr. Willemain presentará una sesión sobre Escenarios Probabilísticos de Series Temporales y cómo se utilizan, evalúan y generan automáticamente dichos escenarios mediante el arranque estadístico. Con frecuencia, los modelos OR que respaldan las decisiones comerciales se alimentan de cantidades masivas de escenarios probabilísticos que representan las condiciones operativas futuras. Por ejemplo, con negocios que operan a niveles cada vez más bajos de agregación y frecuencias cada vez más altas, la planificación de la demanda y la optimización del inventario ahora usan modelos impulsados por escenarios que representan la aleatoriedad de la demanda del producto a escala diaria. El Dr. Willemain explicará cómo incluso las tareas de decisión triviales, como la formación del operador, se benefician de un gran número de escenarios de formación realistas.

Como la principal Conferencia de Business Analytics, INFORMS brinda la oportunidad de interactuar con los principales investigadores y profesionales de pronósticos del mundo. La asistencia es lo suficientemente grande como para atraer a los mejores en el campo, pero lo suficientemente pequeña como para reunirse y discutir uno a uno. La conferencia presenta contenido de los principales profesionales de análisis, que comparten y muestran las principales aplicaciones de análisis que salvan vidas, ahorran dinero y resuelven problemas.

Además, para el contenido de análisis de vanguardia, la conferencia de análisis virtual reconoce y prioriza la necesidad de interacciones, redes y colaboración "cara a cara" de calidad en un entorno virtual.

 

Acerca del Dr. Thomas Willemain

El Dr. Thomas Reed Willemain se desempeñó como consultor experto en estadística de la Agencia de Seguridad Nacional (NSA) en Ft. Meade, MD, y como miembro del personal de investigación adjunto en un grupo de expertos afiliado, el Instituto para el Centro de Análisis de Defensa para las Ciencias de la Computación (IDA/CCS). Es profesor emérito de ingeniería industrial y de sistemas en el Instituto Politécnico Rensselaer, y anteriormente ocupó cargos docentes en la Escuela de Gobierno Kennedy de Harvard y el Instituto de Tecnología de Massachusetts. También es cofundador y vicepresidente sénior/investigación de Smart Software, Inc. Es miembro de la Asociación de ex oficiales de inteligencia, la Sociedad de investigación de operaciones militares, la Asociación estadounidense de estadística y varias otras organizaciones profesionales. Willemain recibió el título de BSE (summa cum laude, Phi Beta Kappa) de la Universidad de Princeton y el MS y Ph.D. grados del Instituto de Tecnología de Massachusetts. Sus otros libros incluyen: Métodos estadísticos para planificadores, Análisis de sistemas médicos de emergencia (con RC Larson) y 80 artículos en revistas revisadas por pares sobre estadísticas, investigación operativa, atención médica y otros temas. Para obtener más información, envíe un correo electrónico a: TomW@SmartCorp.com o visite www.TomWillemain.com.

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Otis Elevator, Hitachi, Siemens, Metro Transit, APS y The American Red Cross. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de forma intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en la World Wide Web en www.smartcorp.com.

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.

Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

 

Recurso recomendado: 'Pronóstico práctico de series de tiempo: una guía práctica', por Galit Schmueli

El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Un libro de texto legible y bien organizado podría ser invaluable para "ayudar a los pronosticadores corporativos en formación a comprender los conceptos básicos del pronóstico de series de tiempo", como señala Tom Willemain en la conclusión de esta revisión, publicada originalmente en Prospectiva: la revista internacional de pronóstico aplicado. Escrita principalmente para una audiencia académica, la revisión también sirve a los profesionales sin experiencia en planificación de la demanda al indicarles un recurso detallado.

Este librito pulcro tiene como objetivo "introducir al lector a la predicción cuantitativa de series de tiempo de una manera práctica". Para cierto tipo de lector, sin duda tendrá éxito, y lo hará con estilo.

El autor, el Dr. Galit Shmueli, es profesor presidido por SRITNE de análisis de datos y profesor asociado de estadísticas y sistemas de información en la Escuela de Negocios de la India, Hyderabad. Es autora o coautora de varios otros libros sobre estadística aplicada y análisis empresarial.

El libro está destinado a ser un texto para un curso de "mini-semestre" para estudiantes de posgrado o de nivel superior. Creo que sería una exageración creer que aquí hay suficiente material técnico para servir como base para un curso de posgrado, pero puedo verlo funcionando bien para los estudiantes universitarios en ingeniería industrial o administración que hayan tenido un curso previo de estadística (y por lo tanto lo harán). de hecho ser capaz de "recordar que un intervalo de predicción 95% para errores normalmente distribuidos es...").

Hay ejercicios de fin de capítulo de tamaño apropiado e incluso configuraciones para tres proyectos semestrales del mundo real, de modo que los instructores puedan usar el libro como lo imaginó el autor. El libro ilustra sus puntos usando XLMiner, un complemento de Excel, y los estudiantes pueden usar la versión de demostración gratuita para casi todos los ejercicios. Los conjuntos de datos de texto están disponibles en el sitio web del libro, que también proporciona una aplicación gratuita de "panel de control" de análisis de series de tiempo. El autor señala que se puede usar otro software en lugar de XLMiner y menciona Minitab, JMP y la biblioteca de pronósticos de Rob Hyndman en R.

Mientras leía este libro, me encantó su claridad. Habiendo pasado tiempo recientemente corrigiendo la prosa técnica de dos buenos estudiantes de posgrado, encontré que la escritura en este libro es un contraste refrescante, que hace que los conceptos técnicos sean comprensibles.

Otra virtud de este libro es su selección de temas. Los técnicos son razonablemente estándar (métodos de suavizado, regresión usando tendencias polinómicas y variables ficticias), pero también varían un poco hacia los más exóticos (regresión logística, redes neuronales, un poco de ARIMA). Más impresionante es la inclusión de lo que podría llamarse "meta-temas" relevantes para el pronóstico: evaluación del desempeño, una descripción general de enfoques técnicos alternativos y uno sobre el proceso de pronóstico, desde la definición de objetivos hasta formas de adaptar los informes de manera diferente para los gerentes y técnicos. audiencias Este es el tipo de sabiduría de pronóstico que encontramos en Libro de Chris Chatfield (2004), aunque presentado con menos acidez y con menos exposición matemática. Normalmente recomiendo el libro introductorio de Chatfield para lectores más técnicos interesados en entrar en series de tiempo; Recomendaría el libro de Shmueli para una audiencia más general.

Ninguna revisión está completa sin objeciones. Aquí hay algunos, demasiado pocos para deshacer mi opinión muy positiva de este librito impresionante:

• El texto es un buen caso para los gráficos “bien formateados y fáciles de leer” (p. 179). Pero encontré que muchas de las capturas de pantalla estaban mal impresas y eran difíciles de ver. Por lo demás, el libro es tan visualmente agradable que estos defectos parecen muy fuera de lugar. Utiliza lujosas cantidades de espacio en blanco y arte marginal caprichoso con gran efecto, produciendo una sensación muy "ligera" que seguramente debe ayudar a la comprensión.

• El autor afirma (p. 115) que los métodos de suavizado (p. ej., promedios móviles, suavizado exponencial) no pueden automatizarse por completo porque “el usuario debe especificar constantes de suavizado”. Por supuesto, esto no es así, ya que existen varios paquetes de software que hacen esto, y el texto posterior se contradice en este punto en la página 127.

• La discusión sobre la autocorrelación, por lo demás buena, induce a error cuando afirma (pág. 88) que la autocorrelación negativa de lag-1 significa que "los valores altos son seguidos inmediatamente por valores bajos y viceversa". Bueno, por lo general, pero no siempre.

Cuando terminé de leer este libro, me di cuenta inmediatamente de que hay otro público objetivo fuera del aula. Mi empresa a menudo realiza sesiones de capacitación sobre el uso de nuestro software, y estas incluyen algunos antecedentes generales sobre métodos y procesos de pronóstico. Si pudiéramos eliminar el material de XLMiner, e incluso si no pudiéramos, este texto sería un maravilloso "olvido" para ayudar a los pronosticadores corporativos en formación a comprender los conceptos básicos de la previsión de series de tiempo. El libro está tan bien escrito, bien organizado y bien diseñado que incluso podría leerse. Ciertamente podemos usarlo para ayudar a nuestros nuevos programadores a comprender las aplicaciones que están desarrollando. Y este libro podría incluso servir como lectura culpable para un estudiante de posgrado que realmente quiere “entender” lo que está pasando en Box, Jenkins y Reinsel (2008).

Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

Deja un comentario

Artículos Relacionados

¿Confundido acerca de la IA y el aprendizaje automático?

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

Cómo pronosticar los requisitos de inventario

Cómo pronosticar los requisitos de inventario

La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura. Los métodos tradicionales suelen basarse en curvas de demanda en forma de campana, pero esto no siempre es exacto. En este artículo profundizamos en las complejidades de esta práctica, especialmente cuando se trata de una demanda intermitente.

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades.

Mensajes recientes

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory management¿Confundido acerca de la IA y el aprendizaje automático?
    ¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil. […]
  • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
    En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
  • Balance,Concept,Con,Chrome,Balls,software de optimización de inventarioCómo pronosticar los requisitos de inventario
    La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura. Los métodos tradicionales suelen basarse en curvas de demanda en forma de campana, pero esto no siempre es exacto. En este artículo profundizamos en las complejidades de esta práctica, especialmente cuando se trata de una demanda intermitente. […]
  • Hermanos gemelos de planificación de la demanda con herramientas de previsiónSeis mejores prácticas de planificación de la demanda en las que debería pensar dos veces
    Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
    • 5 pasos para mejorar el impacto financiero de la planificación de repuestos5 pasos para mejorar el impacto financiero de la planificación de repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
    • Estrategias de resultados para el software de planificación de piezas de repuestoEstrategias de resultados para la planificación de piezas de repuesto
      La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa. […]
    • ingeniero técnico profesional que planifica piezas de repuesto en la fábrica de fabricación industrial,Prepare su planificación de repuestos para golpes inesperados
      En el clima empresarial impredecible de hoy, tenemos que preocuparnos por las interrupciones en la cadena de suministro, los largos plazos de entrega, el aumento de las tasas de interés y la volatilidad de la demanda. Con todos estos desafíos, nunca ha sido más vital para las organizaciones pronosticar con precisión el uso de piezas, los niveles de existencias y optimizar las políticas de reabastecimiento, como los puntos de pedido, las existencias de seguridad y las cantidades de los pedidos. En este blog, exploraremos cómo las empresas pueden aprovechar soluciones innovadoras como la optimización de inventario y el software de pronóstico de piezas que utilizan algoritmos de aprendizaje automático, pronóstico probabilístico y análisis para mantenerse a la vanguardia y proteger sus cadenas de suministro de impactos inesperados. […]