Aprender de los modelos de inventario

En este video blog, exploramos el papel integral que desempeñan los modelos de inventario en la configuración de los procesos de toma de decisiones de los profesionales de diversas industrias. Estos modelos, ya sean simulaciones informáticas tangibles o construcciones mentales intangibles, sirven como herramientas fundamentales para gestionar las complejidades de los entornos empresariales modernos. La discusión comienza con una descripción general de cómo se utilizan estos modelos para predecir resultados y optimizar las operaciones, enfatizando su relevancia en un panorama de mercado en constante evolución.

​La discusión explora más a fondo cómo varios modelos influyen claramente en los procesos de toma de decisiones estratégicas. Por ejemplo, los modelos mentales que los profesionales desarrollan a través de la experiencia a menudo guían las respuestas iniciales a los desafíos operativos. Estos modelos son subjetivos y se construyen a partir de conocimientos personales y encuentros pasados ​​con situaciones similares, lo que permite una toma de decisiones rápida e intuitiva. Por otro lado, los modelos basados ​​en computadora proporcionan un marco más objetivo. Utilizan datos históricos y cálculos algorítmicos para pronosticar escenarios futuros, ofreciendo una base cuantitativa para decisiones que deben considerar múltiples variables y resultados potenciales. Esta sección destaca ejemplos específicos, como el impacto del ajuste de las cantidades de los pedidos en los costos de inventario y la frecuencia de los pedidos o los efectos de los tiempos de entrega fluctuantes en los niveles de servicio y la satisfacción del cliente.

En conclusión, mientras que los modelos mentales proporcionan un marco basado en la experiencia y la intuición, los modelos informáticos ofrecen una perspectiva más detallada y basada en números. La combinación de ambos tipos de modelos permite un proceso de toma de decisiones más sólido, equilibrando el conocimiento teórico con la experiencia práctica. Este enfoque mejora la comprensión de la dinámica del inventario y equipa a los profesionales con las herramientas para adaptarse a los cambios de manera efectiva, garantizando la sostenibilidad y la competitividad en sus respectivos campos.

 

 

Los métodos de previsión

​El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados ​​en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Funciones como pronosticar múltiples artículos como grupo, considerar la demanda impulsada por la promoción y manejar patrones de demanda intermitentes son capacidades esenciales para las empresas que manejan carteras de productos diversas y condiciones de mercado dinámicas. La implementación adecuada de estas aplicaciones brinda a las empresas herramientas de pronóstico versátiles, lo que contribuye significativamente a la toma de decisiones informadas y la eficiencia operativa.

Modelos extrapolativos

Nuestras soluciones de pronóstico de la demanda admiten una variedad de enfoques de pronóstico, incluidos modelos de pronóstico extrapolativos o basados en suavizamiento, como el suavizado exponencial y los promedios móviles. La filosofía detrás de estos modelos es simple: intentan detectar, cuantificar y proyectar hacia el futuro cualquier patrón repetitivo en los datos históricos.

  Hay dos tipos de patrones que se pueden encontrar en los datos históricos:

  • Tendencia
  • Estacionalidad

Estos patrones se ilustran en la siguiente figura junto con datos aleatorios.

Los métodos de previsión

 

Ilustración de datos de series de tiempo aleatorias, estacionales y de tendencia

Si el patrón es una tendencia, entonces los modelos extrapolativos, como el suavizado exponencial doble y el promedio móvil lineal, estiman la tasa de aumento o disminución en el nivel de la variable y proyectan esa tasa en el futuro.

Si el patrón es estacionalidad, entonces modelos como Winters y el suavizamiento exponencial triple estiman multiplicadores estacionales o factores de suma estacionales y luego los aplican a las proyecciones de la porción no estacional de los datos.

Muy a menudo, especialmente en el caso de los datos de ventas minoristas, intervienen patrones tanto de tendencia como estacionales. Si estos patrones son estables, se pueden aprovechar para dar pronósticos muy precisos.

A veces, sin embargo, no hay patrones obvios, de modo que los gráficos de los datos parecen ruido aleatorio. A veces los patrones son claramente visibles, pero cambian con el tiempo y no se puede confiar en que se repitan. En estos casos, los modelos extrapolativos no intentan cuantificar ni proyectar patrones. En cambio, intentan promediar el ruido y hacer buenas estimaciones del punto medio de la distribución de los valores de los datos. Estos valores típicos se convierten entonces en pronósticos. A veces, cuando los usuarios ven una trama histórica con muchos altibajos, se preocupan cuando el pronóstico no replica esos altibajos. Normalmente, esto no debería ser motivo de preocupación. Esto ocurre cuando los patrones históricos no son lo suficientemente fuertes como para justificar el uso de un método de pronóstico que replique el patrón. Quiere asegurarse de que sus pronósticos no sufran el "efecto de movimiento" que se describe en este entrada en el blog.

El pasado como predictor del futuro.

El supuesto clave implícito en los modelos extrapolativos es que el pasado es una buena guía para el futuro. Esta suposición, sin embargo, puede fracasar. Algunos de los datos históricos pueden estar obsoletos. Por ejemplo, los datos podrían describir un entorno empresarial que ya no existe. O bien, el mundo que representa el modelo puede estar listo para cambiar pronto, dejando todos los datos obsoletos. Debido a factores tan complicados, los riesgos del pronóstico extrapolativo son menores cuando se pronostica sólo a corto plazo en el futuro.

Los modelos extrapolativos tienen la ventaja práctica de ser baratos y fáciles de construir, mantener y utilizar. Sólo requieren registros precisos de los valores pasados de las variables que necesita pronosticar. A medida que pasa el tiempo, simplemente agrega los últimos puntos de datos a la serie temporal y vuelve a pronosticar. Por el contrario, los modelos causales que se describen a continuación requieren más pensamiento y más datos. La simplicidad de los modelos extrapolativos se aprecia más cuando se tiene un problema de pronóstico masivo, como hacer pronósticos de la demanda de un día para otro para los 30.000 artículos en el inventario de un almacén.

Ajustes de juicio

Los modelos extrapolativos se pueden ejecutar en modo completamente automático con Demand Planner sin necesidad de intervención. Los modelos causales requieren un juicio sustancial para una selección inteligente de variables independientes. Sin embargo, ambos tipos de modelos estadísticos pueden mejorarse mediante ajustes de juicio. Ambos pueden beneficiarse de sus conocimientos.

Tanto el modelo causal como el extrapolativo se basan en datos históricos. Sin embargo, es posible que tenga información adicional que no se refleja en los números que se encuentran en el registro histórico. Por ejemplo, es posible que sepa que las condiciones competitivas pronto cambiarán, tal vez debido a descuentos de precios, tendencias de la industria, la aparición de nuevos competidores o el anuncio de una nueva generación de sus propios productos. Si estos eventos ocurren durante el período para el cual usted está pronosticando, pueden arruinar la precisión de los pronósticos puramente estadísticos. La función de ajuste gráfico de Smart Demand Planner le permite incluir estos factores adicionales en sus pronósticos a través del proceso de ajuste gráfico en pantalla.

Tenga en cuenta que aplicar ajustes del usuario al pronóstico es un arma de doble filo. Si se utiliza adecuadamente, puede mejorar la precisión de los pronósticos al explotar un conjunto más rico de información. Si se utiliza de forma promiscua, puede añadir ruido adicional al proceso y reducir la precisión. Le recomendamos que utilice ajustes de juicio con moderación, pero que nunca acepte ciegamente las predicciones de un método de pronóstico puramente estadístico. También es muy importante medir el valor añadido previsto. Es decir, el valor agregado al proceso de pronóstico por cada paso incremental. Por ejemplo, si aplica anulaciones basadas en conocimientos comerciales, es importante medir si esos ajustes agregan valor al mejorar la precisión del pronóstico. Smart Demand Planner admite la medición del valor agregado del pronóstico mediante el seguimiento de cada pronóstico considerado y la automatización de los informes de precisión del pronóstico. Puede seleccionar pronósticos estadísticos, medir sus errores y compararlos con los anulados. Al hacerlo, informa el proceso de previsión para que se puedan tomar mejores decisiones en el futuro. 

Pronósticos de múltiples niveles

Otra situación común implica la previsión de múltiples niveles, donde se pronostican varios elementos como un grupo o incluso puede haber varios grupos, y cada grupo contiene varios elementos. Generalmente llamaremos a este tipo de pronóstico Pronóstico multinivel. El mejor ejemplo es el pronóstico de líneas de productos, donde cada artículo es miembro de una familia de artículos y el total de todos los artículos de la familia es una cantidad significativa.

Por ejemplo, como en la siguiente figura, es posible que tenga una línea de tractores y desee pronósticos de ventas para cada tipo de tractor y para toda la línea de tractores.

Los métodos de previsión 2

Ilustración de pronósticos de productos de múltiples niveles

 Smart Demand Planner proporciona pronósticos acumulativos y descendentes. Esta función es crucial para obtener pronósticos completos de todos los artículos de productos y el total de su grupo. El método Roll Down/Roll Up dentro de esta función ofrece dos opciones para obtener estos pronósticos:

Acumular (de abajo hacia arriba): esta opción inicialmente pronostica cada artículo individualmente y luego agrega los pronósticos a nivel de artículo para generar un pronóstico a nivel de familia.

Desplazar hacia abajo (de arriba hacia abajo): alternativamente, la opción de desplazamiento hacia abajo comienza formando el total histórico a nivel de familia, lo pronostica y luego asigna proporcionalmente el total al nivel de artículo.

Al utilizar Roll Down/Roll Up, tiene acceso a la gama completa de métodos de pronóstico proporcionados por Smart Demand Planner tanto a nivel de artículo como de familia. Esto garantiza flexibilidad y precisión en la previsión, atendiendo a las necesidades específicas de su negocio en diferentes niveles jerárquicos.

La investigación sobre pronósticos no ha establecido condiciones claras que favorezcan el enfoque de pronóstico de arriba hacia abajo o de abajo hacia arriba. Sin embargo, el enfoque ascendente parece preferible cuando los historiales de los artículos son estables y el énfasis está en las tendencias y patrones estacionales de los artículos individuales. La estrategia descendente suele ser una mejor opción si algunos elementos tienen un historial muy ruidoso o si el énfasis está en la previsión a nivel de grupo. Dado que Smart Demand Planner hace que sea rápido y fácil probar un enfoque tanto ascendente como descendente, debe probar ambos métodos y comparar los resultados. Puede utilizar la función "Retener lo actual" de Smart Demand Planner en "Pronóstico versus real" para probar ambos enfoques con sus propios datos y ver cuál produce un pronóstico más preciso para su negocio. 

 

Buscando problemas en los datos de su inventario

En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses. Con más de 13.700 piezas registradas, los datos presentan una excelente oportunidad para profundizar en las complejidades de las operaciones de inventario e identificar áreas de mejora.

Comprender y abordar las anomalías en los datos del inventario es importante por varias razones. No solo garantiza el funcionamiento eficiente de los sistemas de inventario, sino que también minimiza los costos y mejora la calidad del servicio. Este videoblog explora cuatro reglas fundamentales de la gestión de inventario y demuestra, a través de datos del mundo real, cómo las desviaciones de estas reglas pueden indicar problemas subyacentes. Al examinar aspectos como el costo de los artículos, los plazos de entrega, las unidades disponibles y en pedido, y los parámetros que guían las políticas de reabastecimiento, el video proporciona una descripción general completa de los posibles desafíos e ineficiencias que acechan en los datos de inventario. 

Destacamos la importancia del análisis regular de los datos de inventario y cómo dicho análisis puede servir como una herramienta poderosa para los administradores de inventario, permitiéndoles detectar y rectificar problemas antes de que se agraven. Depender de enfoques anticuados puede generar imprecisiones, lo que resulta en un exceso de inventario o expectativas incumplidas de los clientes, lo que a su vez podría causar considerables repercusiones financieras e ineficiencias en las operaciones.

A través de un examen detallado del conjunto de datos de la agencia de transporte público, el videoblog transmite un mensaje claro: la revisión proactiva de los datos del inventario es esencial para mantener operaciones de inventario óptimas, garantizar que las piezas estén disponibles cuando se necesiten y evitar gastos innecesarios.

Aprovechar las herramientas avanzadas de análisis predictivo, como la optimización y planificación inteligente del inventario, le ayudará a controlar los datos de su inventario. Smart IP&O le mostrará información decisiva sobre la demanda y el inventario sobre los patrones de demanda de repuestos en evolución en cada momento, brindando a su organización la información necesaria para la toma de decisiones estratégicas.

 

 

¿Puede la aleatoriedad ser un aliado en la batalla de los pronósticos?

La perspectiva de Feynman ilumina nuestro viaje: “En sus esfuerzos por aprender todo lo posible sobre la naturaleza, la física moderna ha descubierto que ciertas cosas nunca pueden “saberse” con certeza. Gran parte de nuestro conocimiento debe permanecer siempre incierto. Lo máximo que podemos saber es en términos de probabilidades”. - Richard Feynman, Las conferencias Feynman sobre física.

Cuando intentamos comprender el complejo mundo de la logística, la aleatoriedad juega un papel fundamental. Esto introduce una paradoja interesante: en una realidad donde se valoran la precisión y la certeza, ¿podría la naturaleza impredecible de la oferta y la demanda servir realmente como un aliado estratégico?

La búsqueda de pronósticos precisos no es sólo un ejercicio académico; es un componente crítico del éxito operativo en numerosas industrias. Para los planificadores de la demanda que deben anticipar la demanda de un producto, las ramificaciones de hacerlo bien (o mal) son fundamentales. Por lo tanto, reconocer y aprovechar el poder de la aleatoriedad no es simplemente un ejercicio teórico; es una necesidad de resiliencia y adaptabilidad en un entorno en constante cambio.

Aceptando la incertidumbre: métodos dinámicos, estocásticos y de Monte Carlo

Modelado dinámico: la búsqueda de una precisión absoluta en los pronósticos ignora la imprevisibilidad intrínseca del mundo. Los métodos de pronóstico tradicionales, con sus marcos rígidos, no logran adaptarse al dinamismo de los fenómenos del mundo real. Al aceptar la incertidumbre, podemos girar hacia modelos más ágiles y dinámicos que incorporen la aleatoriedad como componente fundamental. A diferencia de sus rígidos predecesores, estos modelos están diseñados para evolucionar en respuesta a nuevos datos, garantizando resiliencia y adaptabilidad. Este cambio de paradigma de un enfoque determinista a uno probabilístico permite a las organizaciones navegar la incertidumbre con mayor confianza, tomando decisiones informadas incluso en entornos volátiles.

Los modelos estocásticos guían a los pronosticadores a través de la niebla de la imprevisibilidad con los principios de probabilidad. Lejos de intentar eliminar la aleatoriedad, los modelos estocásticos la adoptan. Estos modelos evitan la noción de un futuro singular y predeterminado, presentando en cambio una serie de resultados posibles, cada uno con su probabilidad estimada. Este enfoque ofrece una representación más matizada y realista del futuro, reconociendo la variabilidad inherente de los sistemas y procesos. Al trazar un espectro de futuros potenciales, el modelado estocástico proporciona a quienes toman decisiones una comprensión integral de la incertidumbre, lo que permite una planificación estratégica informada y flexible.

Las simulaciones de Monte Carlo, que llevan el nombre del centro histórico del azar y la fortuna, aprovechan el poder de la aleatoriedad para explorar el vasto panorama de posibles resultados. Esta técnica implica la generación de miles, si no millones, de escenarios a través de un muestreo aleatorio, cada escenario pinta una imagen diferente del futuro basada en las incertidumbres inherentes del mundo real. Los tomadores de decisiones, armados con conocimientos de las simulaciones de Monte Carlo, pueden medir el rango de posibles impactos de sus decisiones, lo que la convierte en una herramienta invaluable para la evaluación de riesgos y la planificación estratégica en entornos inciertos.

Éxitos del mundo real: aprovechar la aleatoriedad

La estrategia de integrar la aleatoriedad en los pronósticos ha demostrado ser invaluable en diversos sectores. Por ejemplo, las principales empresas de inversión y bancos dependen constantemente de modelos estocásticos para hacer frente al comportamiento volátil del mercado de valores. Un ejemplo notable es cómo los fondos de cobertura emplean estos modelos para predecir los movimientos de precios y gestionar el riesgo, lo que lleva a opciones de inversión más estratégicas.

De manera similar, en la gestión de la cadena de suministro, muchas empresas confían en las simulaciones de Monte Carlo para abordar la imprevisibilidad de la demanda, especialmente durante las temporadas altas como las vacaciones. Al simular varios escenarios, pueden prepararse para una variedad de resultados, asegurándose de tener niveles de existencias adecuados sin comprometer demasiado los recursos. Este enfoque minimiza el riesgo de desabastecimiento y exceso de inventario.

Estos éxitos del mundo real resaltan el valor de integrar la aleatoriedad en los esfuerzos de pronóstico. Lejos de ser el adversario que a menudo se percibe, la aleatoriedad emerge como un aliado indispensable en el intrincado ballet de la previsión. Al adoptar métodos que respetan la incertidumbre inherente del futuro (reforzados por herramientas avanzadas como Smart IP&O), las organizaciones pueden navegar lo impredecible con confianza y agilidad. Por lo tanto, en el gran esquema de la previsión, puede ser prudente abrazar la noción de que, si bien no podemos controlar la tirada de los dados, ciertamente podemos elaborar estrategias en torno a ella.

 

 

 

Señales de advertencia de que tiene una brecha en el análisis de la cadena de suministro

“Los negocios son guerra” puede ser una metáfora exagerada, pero no carece de validez. Al igual que la “brecha de los bombarderos” y la “brecha de los misiles”, la preocupación por quedarse atrás de la competencia y la consiguiente amenaza de aniquilación siempre acechan en las mentes de los ejecutivos de negocios. Si no lo hacen, deberían hacerlo, porque no todas las brechas se solucionan. imaginario (se demostró que la brecha de los bombarderos y la brecha de los misiles no existían entre los EE.UU. y la URSS, pero la brecha de los años 1980 entre la productividad japonesa y la estadounidense era demasiado real). La diferencia entre paranoia y preocupación justificada es convertir el miedo en hechos. Esta publicación trata sobre cómo organizar su atención hacia posibles brechas en el análisis de la cadena de suministro de su empresa.

Brechas de vigilancia

El ejército estadounidense tiene un dicho: "El tiempo dedicado al reconocimiento nunca se desperdicia". De vez en cuando, nuestro Pronosticador inteligente El blog tiene una publicación que te ayuda a girar la cabeza para ver qué sucede a tu alrededor. Un ejemplo es nuestra publicación sobre gemelos digitales, que es un tema candente en todo el mundo de la ingeniería. En resumen: utilizar simulaciones de oferta y demanda para detectar debilidades en su plan de inventario es una forma de reconocimiento de la cadena de suministro. Cerrar esta brecha de vigilancia permite a las empresas tomar medidas correctivas antes de que surja un problema real.

Brechas de conciencia situacional

Un comandante militar necesita realizar un seguimiento de lo que está disponible para su uso y de qué tan bien se está utilizando. Los informes disponibles en Analítica operativa inteligente mantenerlo actualizado sobre sus recuentos de inventario, la precisión de sus pronósticos, la capacidad de respuesta de sus proveedores y las tendencias en estas y otras áreas operativas. Sabrá exactamente cuál es su posición en una variedad de KPI de la cadena de suministro, como el nivel de servicio, las tasas de cumplimiento y la rotación de inventario. Sabrá si el desempeño real está alineado con el desempeño planificado y si el plan de inventario (es decir, qué pedir, cuándo, a quién y por qué) se cumple o se ignora.

Brechas de agilidad

El entorno empresarial puede cambiar rápidamente. Todo lo que se necesita es un camión cisterna atrapado de costado en el Canal de Suez, unos cuantos misiles balísticos antibuque en el Mar Rojo o un fenómeno meteorológico que afecte a toda la región. Estas catástrofes pueden recaer tanto sobre la cabeza de sus competidores como sobre la suya, pero ¿quién de ustedes es lo suficientemente ágil como para reaccionar primero? Informe de excepciones en Planificador de la demanda y análisis operativo inteligente puede detectar cambios importantes en el carácter de la demanda para que pueda filtrar rápidamente datos de demanda obsoletos antes de que contaminen todos sus cálculos para pronósticos de demanda u optimización de inventario. Planificador de la demanda puede avisar con antelación de un aumento o disminución pendiente de la demanda. Optimización del inventario puede ayudarle a ajustar sus tácticas de reabastecimiento de inventario para reflejar estos cambios en la demanda.

 

Brechas de innovación

Ya sea que te refieras a tu competencia como "Los otros chicos" o "Todos los demás" o algo que no se pueda imprimir, aquellos de los que debes preocuparte son los que siempre buscan una ventaja. Cuando elige a Smart como su socio, le brindaremos esa ventaja con soluciones predictivas innovadoras pero probadas en el campo. Smart Software ha estado innovando en modelos predictivos desde su nacimiento hace más de 40 años.

  • Nuestros primeros productos introdujeron múltiples innovaciones técnicas: evaluación de la calidad del pronóstico mirando hacia el futuro, no hacia el pasado; selección automática de las mejores entre un conjunto de metodologías competitivas, aprovechando los gráficos de los primeros PC para permitir una fácil gestión de las anulaciones de las previsiones estadísticas.
  • Más tarde inventamos y patentamos un enfoque radicalmente diferente para pronosticar la demanda intermitente que es característica tanto de repuestos como de bienes duraderos costosos. Nuestra tecnología fue patentada y recibió múltiples premios por mejorar drásticamente la gestión del inventario. La solución es ahora un enfoque probado en el campo utilizado por muchas empresas líderes en repuestos, MRO, repuestos de posventa y servicio de campo.
  • Más recientemente, la plataforma en la nube de Smart para pronóstico de demanda, modelado predictivo, optimización de inventario y análisis, toma todos los datos relevantes que de otro modo estarían bloqueados en sus sistemas ERP o EAM, archivos externos y otras fuentes de datos dispares, y los organiza en el canalización de datos inteligente, lo estructura en nuestro modelo de datos comúny lo procesa en nuestro nube de AWS. Inteligente utiliza el poder de nuestro patentado simulaciones probabilísticas de demanda en Smart Inventory Optimization para realizar pruebas de estrés y optimizar las reglas que utiliza para administrar cada uno de los artículos de su inventario.

Es mi trabajo, junto con mi cofundador, el Dr. Nelson Hartunian, nuestro equipo de ciencia de datos y consultores académicos, continuar ampliando los límites del análisis de la cadena de suministro y brindarle los beneficios mediante la implementación continua de nuevas versiones de nuestros productos para que usted no se quede atrapado en una brecha de innovación, ni en ninguna de las otras.