Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de error

Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información.

La precisión se representa como un porcentaje entre cero y 100, mientras que los porcentajes de error comienzan en cero pero no tienen límite superior. Los informes de MAPE (error porcentual absoluto medio) u otras métricas de error pueden denominarse informes de “precisión del pronóstico”, lo que desdibuja la distinción. Por lo tanto, es posible que desee saber cómo pasar del punto de vista del error al punto de vista de la precisión que defiende su empresa. Este blog describe cómo con algunos ejemplos.

Las métricas de precisión se calculan de manera que cuando lo real es igual al pronóstico, la precisión es 100% y cuando el pronóstico es el doble o la mitad de lo real, entonces la precisión es 0%. Los informes que comparan el pronóstico con el real a menudo incluyen lo siguiente:

  • El actual
  • La previsión
  • Error unitario = Pronóstico – Real
  • Error absoluto = Valor absoluto del error unitario
  • Error absoluto % = Error Abs / Real, como %
  • Precisión % = 100% – Error absoluto %

Mire un par de ejemplos que ilustran la diferencia en los enfoques. Digamos que Real = 8 y el pronóstico es 10.

El error de unidad es 10 – 8 = 2

Error absoluto de % = 2/8, como % = 0,25 * 100 = 25%

Precisión = 100% – 25% = 75%.

Ahora digamos que el real es 8 y el pronóstico es 24.

El error de unidad es 24– 8 = 16

Error absoluto de % = 16/8 como % = 2 * 100 = 200%

Precisión = 100% – 200% = negativo se establece en 0%.

En el primer ejemplo, las mediciones de precisión proporcionan la misma información que las mediciones de error, ya que el pronóstico y lo real ya están relativamente cerca. Pero cuando el error es más del doble del real, las mediciones de precisión llegan a cero. Indica correctamente que el pronóstico no era del todo exacto. Pero el segundo ejemplo es más preciso que el tercero, donde el valor real es 8 y el pronóstico es 200. Esa es una distinción que un rango de precisión de 0 a 100% no registra. En este último ejemplo:

El error de unidad es 200 – 8 = 192

Error absoluto de % = 192/8, como % = 24 * 100 = 2,400%

Precisión = 100% – 2,400% = negativo se establece en 0%.

Las métricas de error continúan proporcionando información sobre qué tan lejos está el pronóstico de lo real y posiblemente representan mejor la precisión del pronóstico.

Alentamos a adoptar el punto de vista del error. Simplemente espera que un pequeño porcentaje de error indique que el pronóstico no estuvo lejos de lo real, en lugar de esperar un gran porcentaje de precisión para indicar que el pronóstico estuvo cerca de lo real. Este cambio de mentalidad ofrece los mismos conocimientos y al mismo tiempo elimina las distorsiones.

 

 

 

 

Mejore la precisión del pronóstico mediante la gestión de errores

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

En este video, el Dr. Thomas Willemain, cofundador y vicepresidente sénior de investigación, habla sobre cómo mejorar la precisión de los pronósticos mediante la gestión de errores. Este video es el primero de nuestra serie sobre métodos efectivos para mejorar la precisión de los pronósticos. Comenzamos observando cómo el error de pronóstico causa dolor y el costo consecuente relacionado con él. A continuación te explicaremos los tres errores más comunes a evitar que nos pueden ayudar a aumentar los ingresos y evitar el exceso de inventario. Tom concluye revisando los métodos para mejorar la Precisión del Pronóstico, la importancia de medir el error de pronóstico y las oportunidades tecnológicas para mejorarlo.

 

El error de pronóstico puede tener consecuencias

Considere un elemento de muchos

  • Fabricar el producto X cuesta $100 y genera una ganancia neta de $50 por unidad.
  • Las ventas del Producto X resultarán ser de 1000/mes durante los próximos 12 meses.
  • Considere un elemento de muchos

¿Cuál es el costo del error de pronóstico?

  • Si el pronóstico es 10% alto, termine el año con $120,000 de exceso de inventario.
  • 100 extra/mes x 12 meses x $100/unidad
  • Si el pronóstico es 10% bajo, pierda $60,000 de ganancias.
  • 100 muy pocos/mes x 12 meses x $50/unidad

 

Tres errores a evitar

1. Ignorar el error.

  • Falta de profesionalidad, abandono del deber.
  • Desear no hará que sea así.
  • Trate la evaluación de precisión como ciencia de datos, no como un juego de culpas.

2. Tolerar más error del necesario.

  • Los métodos de pronóstico estadístico pueden mejorar la precisión a escala.
  • Mejorar las entradas de datos puede ayudar.
  • Recopilar y analizar las métricas de error de pronóstico puede identificar puntos débiles.

3. Perder tiempo y dinero yendo demasiado lejos tratando de eliminar el error.

  • Algunas combinaciones de producto/mercado son inherentemente más difíciles de pronosticar. Después de un punto, déjelos en paz (pero esté alerta a los nuevos métodos de pronóstico especializados).
  • A veces, los pasos destinados a reducir el error pueden resultar contraproducentes (por ejemplo, el ajuste).
Deja un comentario

MENSAJES RECIENTES

Direct to the Brain of the Boss – Inventory Analytics and Reporting

Directo al cerebro del jefe: análisis e informes de inventario

In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies.

Necesitas formar equipo con los algoritmos

Necesitas formar equipo con los algoritmos

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Mensajes recientes

  • Directo al cerebro del jefe: análisis de inventarioDirecto al cerebro del jefe: análisis e informes de inventario
    In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
  • Necesitas asociarte con los algoritmos para la gestión de inventario.Necesitas formar equipo con los algoritmos
    This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
  • Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de errorRepensar la precisión del pronóstico: un cambio de la precisión a las métricas de error
    Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información. […]
  • Uso de predicciones clave de rendimiento para planificar políticas de almacenamiento
    No puedo imaginarme ser un planificador de inventarios en repuestos, distribución o fabricación y tener que crear niveles de stock de seguridad, puntos de reorden y sugerencias de pedidos sin utilizar predicciones clave de desempeño de niveles de servicio, tasas de cumplimiento y costos de inventario. […]
  • Cada modelo de pronóstico es bueno para aquello para lo que fue diseñado.Cada modelo de pronóstico es bueno para lo que está diseñado
    Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
    • 5 pasos para mejorar el impacto financiero de la planificación de repuestos5 pasos para mejorar el impacto financiero de la planificación de repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
    • Estrategias de resultados para el software de planificación de piezas de repuestoEstrategias de resultados para la planificación de piezas de repuesto
      La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa. […]

      Cuatro formas útiles de medir el error de pronóstico

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

      En este video, el Dr. Thomas Willemain, cofundador y vicepresidente senior de investigación, habla sobre cómo mejorar la precisión de los pronósticos midiendo el error de pronóstico. Comenzamos con una descripción general de los distintos tipos de métricas de error: error dependiente de escala, error porcentual, error relativo y métrica de error sin escala. Si bien algunos errores son inevitables, hay formas de reducirlos, y las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico. Luego explicaremos el problema especial de la demanda intermitente y los problemas de división por cero. Tom concluye explicando cómo evaluar los pronósticos de múltiples artículos y cómo a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.

       

      Cuatro tipos generales de métricas de error 

      1. Error dependiente de la escala
      2. Error porcentual
      3. Error relativo
      4. Error sin escala

      Observación: Las métricas dependientes de la escala se expresan en las unidades de la variable pronosticada. Los otros tres se expresan como porcentajes.

       

      1. Métricas de error dependientes de la escala

      • Error absoluto medio (MAE), también conocido como desviación absoluta media (MAD)
      • Error absoluto medio (MdAE)
      • Error cuadrático medio (RMSE)
      • Estas métricas expresan el error en las unidades originales de los datos.
        • Ej: unidades, cajas, barriles, kilogramos, dólares, litros, etc.
      • Dado que los pronósticos pueden ser demasiado altos o demasiado bajos, los signos de los errores serán positivos o negativos, lo que permitirá cancelaciones no deseadas.
        • Ej: no desea que los errores de +50 y -50 se cancelen y muestren "sin error".
      • Para lidiar con el problema de la cancelación, estas métricas eliminan los signos negativos elevando al cuadrado o utilizando el valor absoluto.

       

      2. Métrica de porcentaje de error

      • Error porcentual absoluto medio (MAPE)
      • Esta métrica expresa el tamaño del error como porcentaje del valor real de la variable pronosticada.
      • La ventaja de este enfoque es que deja claro de inmediato si el error es importante o no.
      • Ej: Supongamos que el MAE es de 100 unidades. ¿Es horrible un error típico de 100 unidades? ¿OK? ¿estupendo?
      • La respuesta depende del tamaño de la variable que se pronostica. Si el valor real es 100, entonces un MAE = 100 es tan grande como lo que se pronostica. Pero si el valor real es 10,000, entonces un MAE = 100 muestra una gran precisión, ya que el MAPE es solo 1% del real.

       

      3. Métrica de error relativo

      • Error absoluto relativo mediano (MdRAE)
      • ¿Relativo a qué? A un pronóstico de referencia.
      • ¿Qué punto de referencia? Por lo general, el pronóstico "ingenuo".
      • ¿Cuál es el pronóstico ingenuo? Próximo valor de previsión = último valor real.
      • ¿Por qué utilizar el pronóstico ingenuo? Porque si no puedes vencer eso, estás en una forma difícil.

       

      4. Métrica de error sin escala

      • Error escalado relativo mediano (MdRSE)
      • Esta métrica expresa el error de pronóstico absoluto como un porcentaje del nivel natural de aleatoriedad (volatilidad) en los datos.
      • La volatilidad se mide por el tamaño promedio del cambio en la variable pronosticada de un período de tiempo al siguiente.
        • (Esto es lo mismo que el error cometido por el pronóstico ingenuo).
      • ¿En qué se diferencia esta métrica de la MdRAE anterior?
        • Ambos usan el pronóstico ingenuo, pero esta métrica usa errores al pronosticar el historial de demanda, mientras que MdRAE usa errores al pronosticar valores futuros.
        • Esto es importante porque normalmente hay muchos más valores históricos que pronósticos.
        • A su vez, eso es importante porque esta métrica "explotaría" si todos los datos fueran cero, lo que es menos probable cuando se usa el historial de demanda.

       

      Planificación de demanda intermitente y previsión de piezas

       

      El problema especial de la demanda intermitente

      • La demanda "intermitente" tiene muchas demandas cero mezcladas con demandas aleatorias distintas de cero.
      • MAPE se arruina cuando los errores se dividen por cero.
      • MdRAE también puede arruinarse.
      • Es menos probable que MdSAE se arruine.

       

      Resumen y comentarios

      • Las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico.
      • Hay dos clases principales de métricas: absolutas y relativas.
      • Las medidas absolutas (MAE, MdAE, RMSE) son opciones naturales al evaluar los pronósticos de un artículo.
      • Las medidas relativas (MAPE, MdRAE, MdSAE) son útiles al comparar la precisión entre elementos o entre pronósticos alternativos del mismo elemento o al evaluar la precisión en relación con la variabilidad natural de un elemento.
      • La demanda intermitente presenta problemas de división por cero que favorecen a MdSAE sobre MAPE.
      • Al evaluar los pronósticos de varios artículos, a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.
      Deja un comentario

      MENSAJES RECIENTES

      Direct to the Brain of the Boss – Inventory Analytics and Reporting

      Directo al cerebro del jefe: análisis e informes de inventario

      In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies.

      Necesitas formar equipo con los algoritmos

      Necesitas formar equipo con los algoritmos

      This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

      Mensajes recientes

      • Directo al cerebro del jefe: análisis de inventarioDirecto al cerebro del jefe: análisis e informes de inventario
        In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
      • Necesitas asociarte con los algoritmos para la gestión de inventario.Necesitas formar equipo con los algoritmos
        This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
      • Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de errorRepensar la precisión del pronóstico: un cambio de la precisión a las métricas de error
        Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información. […]
      • Uso de predicciones clave de rendimiento para planificar políticas de almacenamiento
        No puedo imaginarme ser un planificador de inventarios en repuestos, distribución o fabricación y tener que crear niveles de stock de seguridad, puntos de reorden y sugerencias de pedidos sin utilizar predicciones clave de desempeño de niveles de servicio, tasas de cumplimiento y costos de inventario. […]
      • Cada modelo de pronóstico es bueno para aquello para lo que fue diseñado.Cada modelo de pronóstico es bueno para lo que está diseñado
        Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
          En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
        • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
        • 5 pasos para mejorar el impacto financiero de la planificación de repuestos5 pasos para mejorar el impacto financiero de la planificación de repuestos
          En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
        • Estrategias de resultados para el software de planificación de piezas de repuestoEstrategias de resultados para la planificación de piezas de repuesto
          La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa. […]