El Blog de Smart

 Siguiendo las mejores prácticas en la planificación de la demanda,

previsión y optimización de inventario

Two Inventory Problems

If you both make and sell things, you own two inventory problems. Companies that sell things must focus relentlessly on having enough product inventory to meet customer demand.  Manufacturers and asset intensive industries such as power generation, public transportation, mining, and refining, have an additional inventory concern:  having enough spare parts to keep their machines running. This technical brief reviews the basics of two probabilistic models of machine breakdown. It also relates machine uptime to the adequacy of spare parts inventory.

 

Modeling the failure of a machine treated as a “black box”

Just as product demand is inherently random, so is the timing of machine breakdowns. Likewise, just as probabilistic modeling is the right way to deal with random demand, it is also the right way to deal with random breakdowns.

Models of machine breakdown have two components. The first deals with the random duration of uptime. The second deals with the random duration of downtime.

The field of reliability theory offers several standard probability models describing the random time until failure of a machine without regard for the reason for the failure. The simplest model of uptime is the distribución exponencial. This model says that the hazard rate, i.e., the chance of failing in the next instant of time, is constant no matter how long the system has been operating. The exponential model does a good job at modeling certain types of systems, especially electronics, but it is not universally applicable.

 

Download the Whitepaper

 

The next step up in model complexity is the Weibull model (pronounced “WHY-bull”). The Weibull distribution allows the risk of failure to change over time, either decreasing after a burn in period or, more often, increasing as wear and tear accumulate. The exponential distribution is a special case of the Weibull distribution in which the hazard rate is neither increasing nor decreasing.

Weibull Reliability Plot

Figure 1: Three different Weibull survival curves

Figure 1 illustrates the Weibull model’s probability that a machine is still running as a function of how long it has been running. There are three curves corresponding to constant, decreasing and increasing hazard rates. For obvious reasons, these are called survival curves because they plot the probability of surviving for various amounts of time (but they are also called reliability curves). The black curve that starts high and sinks fast (β=3) depicts a machine that wears out with age. The lightest curve in the middle fast (β=1) shows the exponential distribution. The medium-dark curve (β=0.5)  is one that has a high early hazard rate but gets better with age.

Of course, there is another phenomenon that needs to be included in the analysis: downtime. Modeling downtime is where inventory theory enters the picture. Downtime is modeled by a mixture of two different distributions. If a spare part is available to replace the failed part, then the downtime can be very brief, say one day. But if there is no spare in stock, then the downtime can be quite long. Even if the spare can be obtained on an expedited basis, it may be several days or a week before the machine can be repaired. If the spare must be fabricated by a far-away supplier and shipped by sea then by rail then trucked to your plant, the downtime could be weeks or months. This all means that keeping a proper inventory of spares is very important to keeping production humming along.

In this aggregated type of analysis, the machine is treated as a black box that is either working or not. Though ignoring the details of which part failed and when, such a model is useful for sizing the pool of machines needed to maintain some minimum level of production capacity with high probability.

The binomial distribution is the probability model relevant to this problem. The binomial is the same model that describes, for example, the distribution of the number of “heads” resulting from twenty tosses of a coin. In the machine reliability problem, the machines correspond to coins, and an outcome of heads corresponds to having a working machine.

As an example, if

  • the chance that any given machine is running on any particular day is 90%
  • machine failures are independent (e.g., no flood or tornado to wipe them all out at once)
  • you require at least a 95% chance that at least 5 machines are running on any given day

then the binomial model prescribes seven machines to achieve your goal.

 

Modeling machine failures based on component failures

Maximice el tiempo de actividad de la máquina con el modelado probabilístico

The Weibull model can also be used to describe the failure of a single part. However, any realistically complex production machine will have multiple parts and therefore have multiple failure modes. This means that calculating the time until the machine fails requires analysis of a “race to failure”, with each part vying for the “honor” of being the first to fail.

If we make the reasonable assumption that parts fail independently, standard probability theory points the way to combining the models of individual part failure into an overall model of machine failure. The time until the first of many parts fails has a poly-Weibull distribution. At this point, though, the analysis can get quite complicated, and the best move may be to switch from analysis-by-equation to analysis-by-simulation.

 

Simulating machine failure from the details of part failures

Simulation analysis got its modern start as a spinoff of the Manhattan Project to build the first atomic bomb. The method is also commonly called Monte Carlo simulation after the biggest gambling center on earth back in the day (today it would be “Macau simulation”).

A simulation model converts the logic of the sequence of random events into corresponding computer code. Then it uses computer-generated (pseudo-)random numbers as fuel to drive the simulation model. For example, each component’s failure time is created by drawing from its particular Weibull failure time distribution. Then the soonest of those failure times begins the next episode of machine downtime.

simulation of machine uptime over one year of operation

Figure 2: A simulation of machine uptime over one year of operation

Figure 2 shows the results of a simulation of the uptime of a single machine. Machines cycle through alternating periods of uptime and downtime. In this simulation, uptime is assumed to have an exponential distribution with an average duration (MTBF = Mean Time Before Failure) of 30 days. Downtime has a 50:50 split between 1 day if a spare is available and 30 days if not. In the simulation shown in Figure 2, the machine is working during 85% of the days in one year of operation.

 

An approximate formula for machine uptime

Although Monte Carlo simulation can provide more exact results, a simpler algebraic model does well as an approximation and makes it easier to see how the key variables relate.

Define the following key variables:

  • MTBF = Mean Time Before Failure (days)
  • Pa = Probability that there is a spare part available when needed
  • MDTshort = Mean Down Time if there is a spare available when needed
  • MDTlong = Mean Down Time if there is no spare available when needed
  • Uptime = Percentage of days in which the machine is up and running.

Then there is a simple approximation for the Uptime:

Uptime ≈ 100 x MTBF/(MTBF + MDTshort x Pa + MDTlong x (1-Pa)).    (Equation 1)

Equation 1 tells us that the uptime depends on the availability of a spare. If there is always a spare (Pa=1), then uptime achieves a peak value of about 100 x MTBF/(MTBF + MDTshort). If there is never a spare available (Pa=0), then uptime achieve its lowest value of about 100 x MTBF/(MTBF + MDTlong). When the repair time is about as long as the typical time between failures, uptime sinks to an unacceptable level near 50%. If a spare is always available, uptime can approach 100%.

Relating machine downtime to spare parts inventory

Minimizing downtime requires a multi-pronged initiative involving intensive operator training, use of quality raw materials, effective preventive maintenance – and adequate spare parts. The first three set the conditions for good results. The last deals with contingencies.

Inventory Planning for Manufacturers MRO SAAS

Once a machine is down, money is flying out the door and there is a premium on getting it back up pronto. This scene could play out in two ways. The good one has a spare part ready to go, so the downtime can be kept to a minimum. The bad one has no available spare, so there is a scramble to expedite delivery of the needed part. In this case, the manufacturer must bear both the cost of lost production and the cost of expedited shipping, if that is even an option.

If the inventory system is properly designed, spare parts availability will not be a major impediment to machine uptime. By the design of an inventory system, I mean the results of several choices: whether the shortage policy is a backorder policy or a loss policy, whether the inventory review cycle is periodic or continuous, and what reorder points and order quantities are established.

When inventory policies for products are designed, they are evaluated using several criteria. Service Level is the percentage of replenishment periods that pass without a stockout. Fill Rate is the percentage of units ordered that is supplied immediately from stock. Average Inventory Level is the typical number of units on hand.

None of these is exactly the metric needed for spare parts stocking, though they all are related. The needed metric is Item Availability, which is the percentage of days in which there is at least one spare ready for use. Higher Service Levels, Fill Rates, and Inventory Levels all imply high Item Availability, and there are ways to convert from one to the other. (When dealing with multiple machines sharing the same stock of spares, Inventory Availability gets replaced by the probability distribution of the number of spares on any given day. We leave that more complex problem for another day.)

Clearly, keeping a good supply of spares reduces the costs of machine downtime. Of course, keeping a good supply of spares creates its own inventory holding and ordering costs. This is the manufacturer’s second inventory problem. As with any decision involving inventory, the key is to strike the right balance between these two competing cost centers. See this article on probabilistic forecasting for intermittent demand for guidance on striking that balance.

 

Deja un comentario

Artículos Relacionados

Mensajes recientes

  • Epicor Prophet 21 with Forecasting Inventory PlanningExtend Epicor Prophet 21 with Smart IP&O’s Forecasting & Dynamic Reorder Point Planning
    Smart Inventory Planning & Optimization (Smart IP&O) can help with inventory ordering functionality in Epicor P21, reduce inventory, minimize stockouts and restore your organization’s trust by providing robust predictive analytics, consensus-based forecasting, and what-if scenario planning. […]
  • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
    Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
  • Mecánico barbudo maduro en uniforme examinando la máquina y reparándola en fábricaService Parts Planning: Planning for consumable parts vs. Repairable Parts
    When deciding on the right stocking parameters for spare and replacement parts, it is important to distinguish between consumable and repairable servoce parts. These differences are often overlooked by inventory planning software and can result in incorrect estimates of what to stock. Different approaches are required when planning for consumables vs. repairable service parts. […]
  • Cuatro errores comunes al planificar los objetivos de reposiciónCuatro errores comunes al planificar los objetivos de reposición
    ¿Con qué frecuencia recalibra sus políticas de almacenamiento? ¿Por qué? Aprenda a evitar errores clave al planificar objetivos de reabastecimiento mediante la automatización del proceso, la recalibración de piezas, el uso de métodos de previsión de objetivos y la revisión de excepciones. […]
  • Smart Software se complace en presentar nuestra serie de seminarios web, ofrecidos exclusivamente para usuarios de Epicor.Amplíe el pronóstico y la planificación mínima/máxima de Epicor Kinetic con Smart IP&O
    Epicor Kinetic puede administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden. El problema es que el sistema ERP requiere que el usuario especifique manualmente estos puntos de pedido o use un enfoque rudimentario de "regla general" basado en promedios diarios. En este artículo, revisaremos la funcionalidad de pedido de inventario en Epicor Kinetic, explicaremos sus limitaciones y resumiremos cómo reducir el inventario y minimizar los desabastecimientos al proporcionar la sólida funcionalidad predictiva que falta en Epicor. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Pedidos generales Software inteligente Demanda y planificación de inventario HDÓrdenes generales
      Nuestros clientes son grandes maestros que siempre nos han ayudado a cerrar la brecha entre la teoría de los libros de texto y la aplicación práctica. Un excelente ejemplo sucedió hace más de veinte años, cuando nos presentaron el fenómeno de la demanda intermitente, que es común entre las piezas de repuesto pero poco común entre los productos terminados administrados por nuestros clientes originales que trabajan en ventas y marketing. Esta revelación pronto llevó a nuestra posición preeminente como proveedores de software para la gestión de inventarios de piezas de repuesto. Nuestra última parte de la educación se refiere a las "órdenes generales". […]
    • Mano colocando piezas para construir una flechaPronóstico Probabilístico para Demanda Intermitente
      La nueva tecnología de pronóstico se deriva del pronóstico probabilístico, un método estadístico que pronostica con precisión tanto la demanda promedio de productos por período como los requisitos de inventario del nivel de servicio al cliente. […]
    • Ingeniería bajo pedido en Kratos Space: hacer que la disponibilidad de piezas sea una ventaja estratégica
      El grupo Kratos Space dentro del innovador en tecnología de seguridad nacional Kratos Defense & Security Solutions, Inc., produce el software COTS y los productos de componentes para las comunicaciones espaciales: hacer de la disponibilidad de piezas una ventaja estratégica […]
    • figuras-de-madera-de-personas-y-un-iman-equipo-gestion-almacen inventarioGestión del inventario de artículos promocionados
      En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva. […]