El Blog de Smart

 Siguiendo las mejores prácticas en la planificación de la demanda,

previsión y optimización de inventario

Taiichi Ohno of Toyota is credited with inventing Just-In-Time (JIT) manufacturing in the 1950s. JIT ensures that a manufacturer produces only what is needed, only when required, and only in the necessary amount. That innovation has since had major impacts, some good, some less so.

A recent New York Times article “How the World Ran out of Everything” describes some of the “less so” impacts.  For example, JIT has kept inventory costs very low improving return on assets.  This in turn is rewarded by Wall Street, so many companies have spent the last few decades reducing their inventories dramatically. Focused as they were on financials, many companies ignored the risks inherent in reducing inventories to the point that “lean” began to border on “emaciated.” Combined with increased globalization and new risks of supply interruption, stock-outs have abounded.

Some industries have gone too far, leaving them exposed to disruption. In a competition to get to the lowest cost, companies have inadvertently concentrated their risk, been interrupted by shortages of raw materials or components, and sometimes forced to halt assembly lines. Wall Street does not look kindly on production halts.

We all know that random events have added to the problem. First among them has been the Covid pandemic. As the pandemic has hindered factory operations and spread disarray in global shipping, many economies worldwide have been tormented by shortages of an immense range of goods — from computer chips to lumber to clothing.

The damage is compounded when more unexpected things go wrong. The Suez Canal Blockage is a prime example, obstructing the main trade route between Europe and Asia. Recently, cyberattacks have added another layer of disruption.

The reaction creates its own problems, just as the cyberattack on the Colonial Pipeline created gas shortages through panic buying. Suppliers start filling orders more slowly than usual. Manufacturers and distributors reverse course and increase inventories and diversify their suppliers to avoid future stockouts. Simply expanding warehouses may not deliver the solution, and the need to determine how much inventory to keep is more urgent every day.Manager In Warehouse With Inventory Management Software

So how can you execute a real-world plan for JIT inventory amidst all this risk and uncertainty? The foundation of your response is your corporate data. Uncertainty has two sources: supply and demand. You need the facts for both.

On the supply side, exploit the data you have on recent supplier lead times, which reflect the current turbulence. Don’t use average values when you can use probability distributions that reflect the full range of contingencies. Consider this comparison. Supplier A is now reliably filling orders in exactly 10 days. Supplier B also averages 10 days but does with a 78%/22% mix of 7 and 21 days. Both A and B have an average replenishment delay of 10 days, but the operational results they provide will be very different. You can only recognize this if you use probability models of inventory performance.

On the demand side, similar considerations apply. First, recognize that there may have been a major shift in the character of item demand (statisticians call this a “regime change”), so purge from your analysis any data that represent the “good old days.” Then, again, stop thinking in terms of averages. While the average demand is important, it is not a sufficient descriptor of the problem you face. Equally important is the volatility of demand. Volatility is the reason you keep inventory in the first place. If demand were completely predictable, you would have neither stockouts nor excess inventory. Just as you need to estimate the full probability distribution of replenishment lead times, you need the full distribution of demand values.

Once you understand the range of variability in both supply and demand, probabilistic forecasting will allow you to account for disruptions and unusual events. Software will convert your data on demand and lead times into huge numbers of scenarios representing how your next planning period might play out. Given those scenarios, the software can determine how best to meet your goals for such metrics as inventory costs and stockout rates. Using solutions such as Smart Inventory Optimization , you will confidently plan based on your targeted stockout risk with minimal inventory carrying cost. You may also consider letting the solution prescribe optimal service level targets by assessing the costs of additional inventory vs. stockout cost.

In inventory planning, as in science, we cannot escape the reality of uncertainty and the impact of unusual events. We must plan accordingly: using inventory optimization software helps you identify the least-cost service level. This creates a coherent, company-wide effort that combines visibility into current operations with mathematically correct assessments of future risks and conditions.

Inventory planning has become more “interesting” and requires a greater degree of risk awareness and agility. The right software can help.

 

Deja un comentario

Artículos Relacionados

Mensajes recientes

  • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
    Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
  • Mecánico barbudo maduro en uniforme examinando la máquina y reparándola en fábricaPlanificación de consumibles frente a piezas reparables
    Al decidir los parámetros correctos de almacenamiento de repuestos y piezas de repuesto, es importante distinguir entre piezas consumibles y reparables. Estas diferencias a menudo se pasan por alto por el software de planificación de inventario y pueden dar lugar a estimaciones incorrectas de lo que hay que almacenar. Se requieren diferentes enfoques al planificar consumibles frente a reparables. […]
  • Cuatro errores comunes al planificar los objetivos de reposiciónCuatro errores comunes al planificar los objetivos de reposición
    ¿Con qué frecuencia recalibra sus políticas de almacenamiento? ¿Por qué? Aprenda a evitar errores clave al planificar objetivos de reabastecimiento mediante la automatización del proceso, la recalibración de piezas, el uso de métodos de previsión de objetivos y la revisión de excepciones. […]
  • Smart Software se complace en presentar nuestra serie de seminarios web, ofrecidos exclusivamente para usuarios de Epicor.Amplíe el pronóstico y la planificación mínima/máxima de Epicor Kinetic con Smart IP&O
    Epicor Kinetic puede administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden. El problema es que el sistema ERP requiere que el usuario especifique manualmente estos puntos de pedido o use un enfoque rudimentario de "regla general" basado en promedios diarios. En este artículo, revisaremos la funcionalidad de pedido de inventario en Epicor Kinetic, explicaremos sus limitaciones y resumiremos cómo reducir el inventario y minimizar los desabastecimientos al proporcionar la sólida funcionalidad predictiva que falta en Epicor. […]
  • Pronóstico basado en escenarios vs EcuacionesPronóstico basado en escenarios versus ecuaciones
    Tradicionalmente, el software ha servido como vehículo de entrega de ecuaciones. Esto está bien, hasta donde llega. Pero en Smart Software creemos que le iría mejor cambiando sus ecuaciones por escenarios. Descubra por qué la planificación basada en escenarios ayuda a los planificadores a gestionar mejor el riesgo y crear mejores resultados. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Pedidos generales Software inteligente Demanda y planificación de inventario HDÓrdenes generales
      Nuestros clientes son grandes maestros que siempre nos han ayudado a cerrar la brecha entre la teoría de los libros de texto y la aplicación práctica. Un excelente ejemplo sucedió hace más de veinte años, cuando nos presentaron el fenómeno de la demanda intermitente, que es común entre las piezas de repuesto pero poco común entre los productos terminados administrados por nuestros clientes originales que trabajan en ventas y marketing. Esta revelación pronto llevó a nuestra posición preeminente como proveedores de software para la gestión de inventarios de piezas de repuesto. Nuestra última parte de la educación se refiere a las "órdenes generales". […]
    • Mano colocando piezas para construir una flechaPronóstico Probabilístico para Demanda Intermitente
      La nueva tecnología de pronóstico se deriva del pronóstico probabilístico, un método estadístico que pronostica con precisión tanto la demanda promedio de productos por período como los requisitos de inventario del nivel de servicio al cliente. […]
    • Ingeniería bajo pedido en Kratos Space: hacer que la disponibilidad de piezas sea una ventaja estratégica
      El grupo Kratos Space dentro del innovador en tecnología de seguridad nacional Kratos Defense & Security Solutions, Inc., produce el software COTS y los productos de componentes para las comunicaciones espaciales: hacer de la disponibilidad de piezas una ventaja estratégica […]
    • figuras-de-madera-de-personas-y-un-iman-equipo-gestion-almacen inventarioGestión del inventario de artículos promocionados
      En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva. […]