Solving the Inventory Dilemma:
Cut Costs NOW and Improve Service

Gregory Hartunian
Director of Sales
Smart Software, Inc.

Reginald Soubry
Senior Analyst, Supply Chain
Montreal Transit Corporation

Webinar hosted by Smart Software, Inc.
December 6, 2011

About Smart Software

- Leading provider of forecasting, demand planning, and inventory optimization software since 1984
- Primary customer need: find the inventory ‘sweet spot’
 - Meet service objectives, minimize stockouts
 - Reduce inventory costs
- Unique advantage – planning for intermittent demand
- Thousands of demand & inventory planners worldwide
- SmartForecasts® integrates with leading ERP & Supply Chain software systems
Who I am

- Reginald Soubry, p.eng.
- Senior Analyst, Material management, Logistics, Montreal Transit Corporation
- Professional experience:
 - 30 years in stock management
 - 25 years in public transit
 - 14 years with the Logistics Service
 - Last 5 years in stock management system development and performance enhancement
What is the STM?

- Société de transport de Montréal
 Provides public transit services on the 480 km² island of Montreal
- 388 million trips handled in 2010
- Bus punctuality 86.3% (scheduled time –1 to +3 minutes)
- Metro reliability: 97.9% on-time (less than 5 minutes late)
- 162 million km travelled by our buses and metro-cars
- 1705 buses and 749 metro-cars
- Annual budget (2010): 1.090 B$
- Replacement value of our assets: 14.5 B$
- 8,680 permanent employees

- 2010’s Outstanding Public Transit System in North America, according to the American Public Transportation Association (APTA)
- 2008’s Most productive manpower (hrs/car-km) of the 27 largest metro systems in the world, according to the London Imperial College.

Where We Were (2008)

- 200,000+ SKUs
- 33.6 M$ of inventory
- Inactive SKUs: estimated value over 10 M$
- Overall part availability: 76%
- No way to properly differentiate between insurance, inactive and obsolete parts.
- No way to properly identify overstocks.
- Reprovisioning parameters: safety stocks, reorder points and reorder lot sizes were, most of the time, determined by a “best guess” from the associates.
- Basic forecasting on specific items only.
Where We Wanted to Go

- We wanted to be the best parts provider in the public transit industry. Find the optimal balance between stock level and service level.
- Meet 100% of service agreement requirements
 Ex.: 99.5% of parts required for maintenance made available within the time allowed:
 - All parts stocked in store: over the counter
 - All parts stocked in network: 72 hours
- Calculated parameter:
 - Stock management parameters based on forecasted demand
 - Safety stocks to cover desired service level
 - Order points dependant on forecasted demand
- Stocks in control:
 - All parts classified according to nature and velocity
 - No overstocks, No inactive stocks and No obsolete parts
- Manage stocks proactively instead or reactively, with the proper tools, processes and people.

Challenges and To-Do List

- Management and managers buy-in on the benefits of proper stock management.
- Convincing the associates that “a machine” can properly calculate parameters.
- Clean up stocking and provisioning parameters for the 200,000+ SKUs.
- Forecasting demand: both regular and intermittent (random)
- Transferring control of the reprovisioning parameters from manual to calculated, without prior major data scrub (cleanup) and without significant financial or operational impact.
- Replenish items where stock levels were insufficient.
- Dispose of excess, inactive and obsolete stocks.
The Results

For the items that were present at the beginning of the project:

➤ Overall part availability: 94% (+18%)
➤ Inventory reduction of 4.1 M$ (-12%) to 29.2 M$
➤ Inactive stocks reduced to 7.8 M$ (-24%)
➤ Item demand estimation for major RFPs prepared with the help of the demand forecasting tool.

Critical Enablers

➤ Knowledge and understanding of the basic classical calculations and the influence of stock parameters on them.
➤ A way to forecast lead-time demand for both regular and intermittent demand items.
➤ A way to recalculate stock parameters.
➤ An improved “in-house” stock management system with re-modeled re-order point (ROP) processes that take better account of economic lot sizes, minimum stocks, maximum stocks.
Lessons Learned and Keys to Success

- Clear objectives and the priorities.
- Plan the work in stages and make sure you have measurable and reasonable targets as well as a way to measure how close you are to the bulls-eye at each step. Have a backup plan.
- Clear definition of everyone's role and buy-in at all levels: Management, managers, personnel and suppliers.
- Make sure you have the bodies to do the work properly on the floor, that they are informed and trained and manage the change.
- Involvement and teamwork at all levels and all stages of the project.
- Plan the work, Work the plan and Have the right tool set.
- Don't over think it!

Demand Forecasting: Where the Supply Chain Starts

Demand forecasts drive the supply chain, but they're nearly impossible to produce when demand is intermittent.
Intermittent Demand Example

Intermittent Demand

- What is “Intermittent Demand”
 - “slow-moving,” seemingly random requirements for parts or finished goods
 - Demand history – large percentage of zero demand values

- Generally considered difficult or nearly impossible to forecast

- Especially common among:
 - Service Parts Operations – 70% of items or more
 - Equipment / Vehicle / Facility Maintenance
 - Industrial Tools and Other Capital Goods Manufacturers
Intermittent Demand Problem

Consider – What comes next:

a) 10 20 30 40 50 60 ___
b) 50 100 50 100 50 100 ___
c) 2 4 8 16 32 64 ___
d) 0 18 0 0 6 27 ???

Finding the Inventory “Sweet Spot”

Reduce Inventory The Inventory Sweet Spot Increase Service Levels

The minimum amount of inventory required over a specified lead time to meet a desired service level
Best-in-Class Inventory Forecasting

Use a *service level driven* approach (SLD)

- Define service level requirements by item / product group
- Understand financial implications:
 - Cost to achieve the goal
 - Stock-out pain of missing the goal
- Find the optimal inventory allocation
 - Strategic decision: service level / financial trade-offs
 - Identify inventory excess, opportunities for service improvement
 - CFO, VP of Sales, Director of Operations/Materials
- *Don’t chase the forecast*

Pillars of an effective Service Level Driven (SLD) Process

- Communication across stakeholders – Finance, Sales, Operations
- Inventory classification
- Lead-time measurement
- Calculation of forecast uncertainty
- Automatically process thousands of parts
- Compare *desired vs. achieved* service level
Inventory Cost Reduction Path

- **Stage 1: Process Improvement**
 - Initial Cash Savings
 - Adjust PO’s / Deliveries
 - Year 1: $80 M
 - Year 2: $60 M
 - Year 3: $40 M
 - Year 4: $20 M

- **Stage 2: Initial Cash Savings**
 - Adjust PO’s / Deliveries

- **Stage 3: Gradual Reduction to New Equilibrium**

Getting Started - Validate the Opportunity

- You can do this in 2-3 weeks – requires:
 - Historical parts consumption data for 36 months (or periods)
 - Existing inventory levels & parts on order

- Demonstrate Opportunity:
 - Select representative subset of parts & service levels
 - Generate forecast, calculate safety stock requirements
 - Compare recommended inventory stock vs. existing levels

- Demonstrate Vendor Credibility:
 - Provide solution vendor with historical data – hold back last 2 months
 - Ask vendor to forecast at your desired service level
 - Compare: accuracy hitting service level, and cost of inventory required
Discussion

- Questions & Answers

- For more information or a copy of today’s presentation, please contact:
 Eric Cox, Smart Software, Inc.
 ericc@smartcorp.com
 617-489-2743

 Learn more at www.smartcorp.com

Solving the Inventory Dilemma: Cut Costs NOW and Improve Service

Thank you for joining us!